粉末冶金含油轴承及相关工艺技术

粉末冶金含油轴承及相关工艺技术
粉末冶金含油轴承及相关工艺技术

粉末冶金含油轴承的特点

粉末冶金含油轴承具有适于大批量生产,无需切削加工,节约材料,价格便宜,噪声比滚动轴承低,几乎可以不供润滑油,也可以通过轴套壁渗透供油等特点。

1.适于大批量生产。

2.无需切削加工,节约材料,价格便宜。

3.噪声比滚动轴承低。

4.几乎可以不供润滑油,也可以通过轴套壁渗透供油。

5.模具费用高,不适于少量生产。

6.机械强度较低。

7.摩擦因数偏低。

制造这种轴套的材料叫做粉末冶金减磨材料。根据材质,粉末冶金减磨材料分为铁基、铜基和铝基三种。铁基粉末冶金减磨材料以铁为主,有时加入少量铜,以改善边界润滑性能。它的特点是强度高、价格便宜,但轴承摩擦性能较差,且会生锈,仅适用于低速场合,并且轴径必须淬火;铜基粉末冶金减磨材料以青铜为主,加入质量分数为6%~10%的锡、少量的锌和铅。它的特点是不会生锈,在中速、轻载下轴承性能稳定,但价格较贵;铝基粉末冶金减磨材料开发较晚,它的特点是价格较低、强度适中,但耐磨性和抗胶合性较差。

相关知识:什么是粉末冶金含油轴承?

含油轴承中用的最多的是粉末冶金含油轴承。通过制备粉料、成形、烧结和浸渍润滑油等主要工序制成的轴套叫做粉末冶金含油轴承。

粉末冶金含油轴承(含油轴承)是一类孔隙中含浸有润滑油的多孔性合金制品。当轴旋转时,因轴与含油轴承之间的摩擦使含油轴承的温度升高和泵吸作用。润滑油含渗出于含渗出于含油轴承之内径或外径的摩擦表面,当轴停止转动时。润滑油又回流于含油轴承内部。因此,润滑油的消耗量是非常的小,可在不从外部供给润滑油的情况下,长期运转使用。非常适合于供油困难与避免润滑油污染的场合。

什么是含油轴承?

含油轴承(oil-impregnated bearing; oil-retaining bearing; oilless bearing)

以金属粉末为主要原料,用粉末冶金法制作的烧结体,其本来就是多孔质的,而且具有在制造过程中可较自由调节孔隙的数量、大小、形状及分布等技术上的优点。利用烧结体的多孔性,使之含浸10%~40%(体积分数)润滑油,于自行供油状态下使用。运转时,轴承温度升高,由于油的膨胀系数比金属大,因而自动进入滑动表面以润滑轴承,停止工作时油又随温度下降被吸回孔隙。含油轴承具有成本低、能吸振、噪声小、在较长工作时间内不用加润滑油等特点,特别适用于不易润滑或不允许油脏污的工作环境。孔隙度是含油轴承的一个重要参数。在高速、轻载下工作的含油轴承要求含油量多,孔隙度宜高;在低速、载荷较大下工作的含油轴承要求强度高,孔隙度宜低。这种轴承发明于20世纪初,因其制造成本低、使用方便,得到了广泛应用,现在已成为汽车、家电、音响设备、办公设备、农业机械、精密机械等各种工业制品发展不可或缺的一类基础零件。

含油轴承分为铜基、铁基、铜铁基等。

粉末冶金的特点

1、粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。

2、可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。

3、可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。

4、可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。

5、可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。

6、可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。

粉末冶金的基本工序

1、原料粉末的制备。现有的制粉方法大体可分为两类:机械

法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。

2、粉末成型为所需形状的坯块。成型的目的是制得一定形状

和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。

3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型

后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

4、产品的后序处理。烧结后的处理,可以根据产品要求的不

同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

粉末冶金工艺的优点

1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用

粉末冶金方法来制造。

2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或

很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。

3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就

不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。

4、粉末冶金法能保证材料成分配比的正确性和均匀性。

5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿

轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成。

粉末冶金生产的基本工艺流程

转贴]粉末冶金生产的基本工艺流程 标签:转贴粉末冶金生产基本工艺流程时间:2008-11-26 21:23:53 点击:2803 回帖:0 上一篇:[转贴]金属磨损自修复抗磨剂的性下一篇:金相显微镜的外形尺寸图(图) 粉末冶金生产的基本工艺流程包括:粉末制备、粉末混合、压制成形、烧结及后续处理等。用简图表示于图7-1中。陶瓷制品的生产过程与粉末冶金有许多相似之处,其工艺过程包括粉末制备、成形和致密化三个阶段。 2.1 粉末制备 2.1.1 粉末制备 粉末是制造烧结零件的基本原料。粉末 的制备方法有很多种,归纳起来可分为机械 法和物理化学法两大类。 (1)机械法机械法有机械破碎法与液 态雾化法。 机械破碎法中最常用的是球磨法。该法 用直径10~20mm钢球或硬质合金对金属进行 球磨,适用于制备一些脆性的金属粉末(如 铁合金粉)。对于软金属粉,采用旋涡研磨 法。 雾化法也是目前用得比较多的一种机械 制粉方法,特别有利于制造合金粉,如低合 金钢粉、不锈钢粉等。将熔化的金属液体通 过小孔缓慢下流,用高压气体(如压缩空气) 或液体(如水)喷射,通过机械力与急冷作 用使金属熔液雾化。结果获得颗粒大小不同的金属粉末。图7-2为粉末气体雾化示意图。雾化法工艺简单,可连续、大量生产,而被广泛采用。

(2)物理化学法常见的物理方法有气相与液相沉 积法。如锌、铅的金属气体冷凝而获得低熔点金属粉末。 又如金属羰基物Fe(CO)5、Ni(CO)4等液体经180~250℃ 加热的热离解法,能够获得纯度高的超细铁与镍粉末, 称为羰基铁与羰基镍。 化学法主要有电解法与还原法。电解法是生产工业 铜粉的主要方法,即采用硫酸铜水溶液电解析出纯高的 铜。还原法是生产工业铁粉的主要方法,采用固体碳还 原铁磷或铁矿石粉的方法。还原后得到得到海绵铁,经 过破碎后的铁粉在氢气气氛下退火,最后筛分便制得所 需要的铁粉。图7-2 粉末气体雾化示意图 2.1.2 粉末性能 粉末的性能对其成形和烧结过程,及制品的性能都有重大影响,因而对粉末的性能必须加以了解。粉末的性能可分为物理性能、化学性能和工艺性能。物理性能有颗粒形状、粒度及粒度组成、密度、硬度、加工硬化性、塑性变形能力以及显微组织等;化学性能有化学成分;工艺性能有粉末的松装密度、流动性和压制性等。通常用下述几个主要性能来评价粉末的性能。 (1)颗粒形状、粒度及粒度组成 a.颗粒形状颗粒形状是决定粉末工艺性能的主要因素。用不同方法制造的粉末形状不同,如表7-2所示。颗粒的形状如图7-3所示。颗粒形状对粉末的压制成形和烧结都会带来影响。如表面光滑的粉末颗粒,其流动性好,对提高压坯的密度有利。但形状复杂的粉末,对提高制品的压坯强度有利,同时能促进烧结的进行。 表7-2 颗粒形状、松装密度与粉末生产方法的关系 粉末生产方法 粉末颗粒形状 松装密度g/cm3 粉末生产方法

轴承加工工艺

转盘轴承加工工艺流程简介 1)锻件毛坯的检查 在加工前首先了解毛坯的材质、锻后状态(一般为正回火状态,查阅锻件合格证即材质书)。其次要检查毛坯是否有叠层、裂纹等缺陷。 测量毛坯外型尺寸。测量毛坯内外径、高度尺寸、计算加工余量,较准确地估算出车削加工的分刀次数。 2)车削加工 2.1 粗车:根据车削工艺图纸进行粗车加工,切削速度、切削量严格按工艺规定执行(一般切削速度为5转/分钟。切削量为10mm~12mm)。 2.2 粗车时效:轴承零件粗车完成后,采用三点支承、平放(不允许叠放),时效时间不小于48小时后才能进行精车加工。 2.3 精车轴承零件精车时,切削速度每分钟6至8转,切削量0.3~0.5毫米。 2.4 成型精车:轴承零件最后成型精车时,为防止零件变形,须将零件固定夹紧装置松开,使零件处于无受力状态,车削速度为每分钟8转、切削量为0.2毫米。 2.5 交叉、三排滚子转盘轴承内圈特别工艺:为防止交叉、三排滚子转盘轴承内圈热处理后变形。车削加工时必须进行成对加工,即滚道背靠背加工,热处理前不进行切断,热后切断成型。 2.6 热后精车:轴承内外圈热处理后,进行精车成工序、工艺规程同2.3、2.4 3)热处理— 3.1 滚道表面淬火:轴承滚道表面中频淬火,硬度不低于55HRC,硬化层深度不小于4毫米,软带宽度小于50毫米,并在相应处作“S”标记。(有时客户要求可以渗碳、渗氮、碳氮共渗等) 3.2 热后回火处理:轴承内外圈中频淬火后需在200C度温度下48小时方可出炉。以确保内应力的消失。 4)滚、铣加工— 4.1 对有内外齿的转盘轴承,磨削加工前要进行滚铣齿工序,严格按工艺要求加工,精度等级要达到8级以上。 5)钻孔— 5.1 划线:在测量零件的外型尺寸后,按图纸规定尺寸进行划线、定位工序,各孔相互差不得大于3%0。 5.2 钻孔:对照图纸检测划线尺寸,确保尺寸正确无误后再进行钻孔工序,分体内套转盘轴承安装孔应组合加工,并使软带相间180C度各孔距误差不得大于5%0

粉末冶金工艺基本知识

粉末冶金工艺基本知识 粉末冶金成形 粉末冶金工艺及材料 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点: 1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。 2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。 3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。 粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。随着粉末冶金生产技术的发展,粉末冶金及其制品将在更加广泛的应用。 1 粉末冶金基础知识 ⒈1 粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴ 粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际的粉末往往是团聚了的颗粒,即二次颗粒。图描绘了由若干一次颗粒聚集成二次颗粒的情形。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。 ⑵ 颗粒形状 即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。 ⑶ 比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴ 填充特性 指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末

国内外关于粉末冶金机械零件——技术标准

国内外关于粉末冶金机械零件 材料的一些技术标准 滑动轴承粉末冶金轴承技术条件 (中华人民共和国国家标准GB2688-81) 本标准适用于GB2685-81《粉末冶金筒形轴承型式、尺寸与公差》、GB2686-81《粉末冶金带挡边筒形轴承型式、尺寸与公差》及GB2687-81《粉末冶金球形轴承型式、尺寸与公差》所规定的粉末冶金铁基和钢基轴承(以下简称轴承)。 1.技术要求 1.1轴承的材料按合金成分与密度分类规定于表1。 表1 材料牌号标记实例

铁基1类含油密度为5.7~6.28/cm3的粉末冶金轴承材料标记; 1.2轴承化学成分与物理一机械性能应符合表2规定。 1.3轴承的机构型式、尺寸与公差应符合GB2685-81、GB2686-81及GB2687-81的规定。 1.4轴承外观应有均匀的金属光泽,不允许有裂纹、夹杂和锈蚀等缺陷。 1.5轴承成品应浸渍的润滑油。一般浸渍GB443-64规定的HJ-20牌号机械油(铁基轴承允许加入防锈剂)。如对于浸渍的润滑油另有要求,应在订货时提出。 1.6轴承应有良好的表面多孔性。 1.7对本标准未规定的特殊技术要求应在订货时提出。 2.验收规则 2.1轴承成品应由制造厂按本标准检验合格后,并附有产品合格证方能出厂。 2.2轴承成品应按批交货验收。批量大小应在订货时注册,如不注明则由制造厂规定。 2.3有必要时订货单位可对制造厂交货的成品按批抽样检验,其方法规定如下: 2.3.1每批轴承成品任取2%,但不少于5件不多于50件,用肉眼按本标准规定检查外观质量。 2.3.2每批轴承成品任取2%,但不少于5件不多于50件,按本标准规定检查尺寸与公差。 2.3.3每批轴承成品至少任取2件样品,经脱油处理后,取得不少于50克试样,按表2的规定分析化学成分。 2.3.4每批轴承成品任取5~10件(或由双方商定),按表2规定检查物理一机械性能。 2.3.5各类抽检结果中,如有一件不合格时,仍就不合格项目抽取2倍数量的成品复 表2 注:1.铁基各类轴承的化学成分中允许有<1%的硫 2.化合碳含量允许用金相法评定。 3.铜基各类轴承化学成分中的总碳是指游离石墨。 4.在同一个试件上三点硬度值的波动范围不许超过15个不氏单位。 查,如仍有一件不合格时,则不予验收。 2.4轴承成品按以下规定方法进行检验。

轴承加工工艺流程附图

轴承加工工艺流程(附图) 轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类.轴承可同时承受径向负荷和轴向负荷.能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢? 轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦-—光磨—-热处理——硬磨-—初研——外观——精研 〈2>保持架(钢板)制造基本流程: 原材料——剪料——裁环--光整--成形——整形——冲铆钉孔 〈3>套圈(内圈、外圈)制造基本流程: 原材料—-锻造--退火——车削——淬火—-回火—-磨削--装配

汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是: (a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本. (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序:

在790-810℃保温2-6h, 以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是: (a)通过热处理使材料组织转变,提高材料机械性能。 (b)提高轴承内在质量(耐磨性、强韧性),从而提高轴承寿命。 对于高碳铬轴承钢Gcr15SiMn,热处理包括淬火和低温回火淬火: 加热温度:820—840(℃)保温时间: 1—2h 冷却介质:油低温回火:

粉末冶金基础知识

安全管理编号:LX-FS-A81397 粉末冶金基础知识 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

粉末冶金基础知识 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (一)粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。

实际的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。 ⑵颗粒形状即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。 ⑶比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴填充特性 指在没有外界条件下,粉末自由堆积时的松紧程

粉末冶金含油轴承

粉末冶金含油轴承 来源:大连轴研科技有限公司https://www.360docs.net/doc/7218172829.html, ------------------------------------------------------------------------------- 含油轴承中用得最多的就是粉末冶金含油轴承,通过制备粉料,成型,烧结和禁制润滑油等主要工序制成的轴套叫做粉末冶金含油轴承 粉末冶金含油轴承的特点是:适于大批量生产,无需切削加工,节约材料,价格便宜,噪声比滚动轴承低,几乎可以不供润滑油,也可以通过轴套壁渗透供油,磨具费用高,不适于少量生产,机械强度较低,摩擦因数偏大 制造这种轴套的材料叫做粉末冶金减摩材料以铁为主,有时加入少量铜,以改善边界润滑性能,他的特点是强度高,价格便宜,但轴承摩擦性能较差,且会生锈,仅适用于低速场合,并且轴颈必须淬火,酮基粉末冶金减磨材料以青铜为主,加入质量分数为百分之六到百分之十的锡,少量的锌和铅 他的特点是不会生锈,在中速,轻载下轴承性能稳定,但价格较贵,铝基粉末冶金减磨材料开发较晚,它的特点是价格较低,强度适中,但耐磨性格抗胶合性较差 铁基和酮基粉末冶金减磨材料已制定了国家标准 参数选择 宽比径因为轴套两端的空隙度一般比中间部位小,故轴套不宜过窄, 压入过盈量应该用压力机将轴套压入轴承座,不许用锤击打,

轴套外径与轴承座孔应为过盈配合 选择轴承座孔径公差时,应使最大过盈不大于二倍平均过盈,最小过盈不小于平均过盈的二分之一 轴套压入轴承座后,轴套孔径会收缩变小,确定轴颈尺寸时,应考虑到该收缩量,轴套孔径收缩量与过盈量轴套内外径尺寸和孔隙度有关, 材料弹性较大,轴承座刚度较大时,需要按最大值计算孔径收缩量,反之,按较小值计算孔内收缩量

粉末冶金含油轴承的润滑解决方案

粉末冶金含油轴承的润滑解决方案 含油轴承产品的主要形状与种类:直筒型、法兰型、纯球型、带凸缘球型、中空型 不同类型粉末冶金“含油轴承”产品所能达到之精度: (一)直筒型 微小产品:外径D<Φ8 外径偏芯:0.02 端面偏芯:0.02较外偏更难控制 内径真圆度:0.002 圆柱度是极难控制的一项 普通产品:外径D>Φ8 外径和端面偏芯:0.03 内径真圆度0.003 以上,指为比较正常的规格,精度越高,成本越高,精度越低,成本不会有多大降低! 目前市场上做的较高精度的产品偏芯可达到“0.01”之内,再高精度的产品批量生产较困难! (二)法兰型

法兰型产品之精度控制应该比直筒型要困难一些,但就达到之精度来讲,可认为是一样的! 主要是法兰背面偏芯较难控制! 其内径精度一般可达到0.004甚至更小!外径尺寸精度可达到0.01的公差! (三)球形 球形产品尺寸要求精度各种各样,但就其能力来讲,要达到直筒形的精度是很难的! 球径公差:SΦ<6 可达到±0.03 对称度|X-Y|< 0.03 球偏芯可达到0.03 不完全球径精度一般要求在Φ(0/-0.1)规格内 经过二次整形可达±0.01 对于大的球产品,其精度公差要大一些! 球偏芯为0.05,球公差为±0.05,真圆度0.003,端面偏芯0.05 烧结金属含油轴承摩擦系数: 含油轴承一般含有10~30(体积分数)%的孔隙度,在孔隙内含浸有润滑油。在旋转过程中,由于“泵吸”作用,润滑油被吸入轴与轴承内径的间隙,供给到摩擦的部位。根据滑动轴承的功能可知,润滑油能够使轴产生一种浮上作用,这与常规轴承的情况完全相同。但是,与常规轴承相比,烧结含油轴承有以下特点: 1、由于该类轴承仅靠孔隙内的润滑油供油,因此容易发生供油量不足,在轴承内径的上部的间隙内就容易形成大的空洞; 2、间隙内的润滑油还可能通过孔隙而向多孔性轴承内泄漏,所以在轴承内径下部的摩擦部位就会有产生油压降低、油膜变薄的倾向,从而导致即使在较轻的载荷下也会发生在润滑区域产生边界润滑和固体接触摩擦的现象。 音象设备等高要求设备对烧结金属含油轴承所产生的噪音非常敏感。

硬质合金基础知识

硬质合金基础知识 1概述 1.1 硬质合金定义 硬质合金是由难熔金属硬质化合物和金属粘结剂经过粉末冶金方法而制成的。其中难熔金属化合物有碳化钨(WC)、碳化钛(TiC)、碳化铌(NbC)、碳化钽(TaC)等。粘结金属有铁(Fe)、钴(Co)、镍(Ni)等。 1.2 硬质合金的性能及用途 硬质合金具有熔点高、硬度高、屈服强度高;良好的耐磨性、导热性、抗腐蚀性、抗氧化性等特殊的优良性能,广泛地应用于切削刀具、耐磨零件、模具材料、矿用齿、石油控制件等方面。 1.3 硬质合金的分类 按照硬质合金的用途,可分为: (1)切削工具:用作各种各样的切削工具。如:焊接刀具、数控刀具、整体硬质合金钻头、PCB等。我国切削工具的硬质合金用量约占整个硬质合金产量的1/3。 (2)矿用工具:主要用于冲击凿岩用钎头,地质勘探用钻头,矿山油田用潜孔钻、牙轮钻以及截煤机截齿,建材工业冲击钻等。我国地矿用硬质合金约占硬质合金生产总量的25%。(3)模具:拉丝模、冷镦模、挤压模、冲压模、拉拔模以及轧辊等。用作各类模具的硬质合金约占硬质合金生产总量的8%, (4)结构零件:如压缩机活塞、车床夹头、磨床心轴、轴承轴颈等。 (5)耐磨零件:如喷嘴、导轨、柱塞、球、轮胎防滑钉、铲雪机板等。 (6)耐高压高温用腔体:顶锤、压缸等制品。 (7)其他用途:如表链、表壳、高级箱包的拉链头、硬质合金商标等。 2. 硬质合金生产流程

3 硬质合金性能与应用 硬质合金性能指标: 包括材质检测和外观尺寸检测。 ?密度D—密度是单位体积重量; ?硬度HRA、HV—表征合金抵抗变形和磨损的能力; ?相对磁饱和Ms%—现代硬质合金生产总碳控制是通过合金的磁饱和来实现的; ?矫顽磁力Hc—主要决定于钴层厚度,同时与钴相分布的均匀性和合金的碳含量有 关; ?抗弯强度TRS—表征合金在弯曲负荷的作用下,试样完全断裂时的极限强度。 ?冲击韧性a k—试样破断时的冲击消耗功与所测试样横截面积之比值。固溶度越大, 冲击韧性越大。 ?金相—微观结构特征和缺陷。微观结构特征包括合金相成份、平均晶粒度和粒度组 成,钴层厚度及其分布。缺陷包括孔隙度,夹杂,聚晶、夹粗、混料、钴池、渗碳、脱碳等。 ?尺寸——主要指合金的尺寸以及形位公差。 ?外观——主要指合金的外观颜色、缺口、掉边、凹坑等等。 如有侵权请联系告知删除,感谢你们的配合!

粉末冶金常识

粉末冶金常识 1、粉末冶金常识之什么是粉末冶金? 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形 和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称“金属粉末“)。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为“粉末冶金材料“)或制品(称为“粉末冶金制品“)。 2、粉末冶金常识之粉末冶金最突岀的优点是什么? 粉末冶金最突岀的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和 制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造岀合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高 达95%X上,它还能在一些制品中以铁代铜,做到了“省材、节能“。 粉末冶金件 3、粉末冶金常识之什么是"铁基"?什么是铁基粉末冶金? 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类? 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事? 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂? 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么? 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3 )消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项? 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物 理性能主要包括那几项? 用于粉末冶金的粉末物理性能主要包括以下三项:( 1)粉末的颗粒形状;( 2)粉末的粒度和粒度组成;(3)粉末的比表面。

粉末冶金基本知识篇

粉末冶金基本知识篇 绪论 粉末冶金(也称金属陶瓷法):制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 粉末冶金工艺:1)、制取金属、合金、金属化合物粉末以及包覆粉末; 2)、将原料粉末通过成形、烧结以及烧结后的处理制得成品。大概流程:物料准备(包括粉末预先处理(如加工,退火)、粉末分级、混合和干燥等)→成形→烧结→烧结后处理(精整、浸油、机加工、热处理、粉末冶金的特点: 1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料: ①能控制制品的孔隙度(多孔材料、多孔含油轴承等); ②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材 料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等); ③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越: ①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分 的偏析); ②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔 金属)。 粉末冶金技术的优越性和局限性: 优越性:1)、无切削、少切削,能够大量节约材料,节省能源,节省劳动。普通铸造合金切削量在30-50%,粉末冶金产品可少于5%。2)、能够大量能够制备其他方法不能制备的材料。3)、能够制备其他方法难以生产的零部件。 局限性:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 常用粉末冶金材料:粉末冶金减摩、多孔、结构、工具模、高温和电磁材料。 第一章:粉末的制取 第一节:概述 制粉方法分类: 机械法:由机械破碎、研磨或气流研磨方法将大块材料或粗大颗粒细化的方法。物理法:采用蒸发凝聚成粉或液体雾化的方法使材料的聚集状态发生改变,获得粉末。 化学法:依靠化学或电化学反应,生成新的粉态物质(气相沉积、还原化合、电化学发)。 在固态下制取粉末的方法包括:有机械粉碎法和电化腐蚀法;还原法;还原-化合法。 在气态制备粉末的方法包括:蒸气冷凝法;羟基物热离解法。 在液态制备粉末的方法有:雾化法;置换法、溶液氢还原法;;水溶液电解法;熔盐电解法。 从过程的实质看,现有制粉方法大体上可归纳为两大类,即机械法和物理化学法。机械法是将原材料机械地粉碎,而化学成分基本上不发生变化;物理化学法是

2020版粉末冶金基础知识

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版粉末冶金基础知识 Safety management is an important part of production management. Safety and production are in the implementation process

2020版粉末冶金基础知识 (一)粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。 ⑵颗粒形状即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。

⑶比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴填充特性 指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末的填充特性与颗粒的大小、形状及表面性质有关。 ⑵流动性 指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。流动性受颗粒粘附作用的影响。⑶压缩性 表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。

粉末冶金基础知识通用版

安全管理编号:YTO-FS-PD351 粉末冶金基础知识通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

粉末冶金基础知识通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 (一)粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。 ⑵颗粒形状即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。 ⑶比表面积 即单位质量粉末的总表面积,可通过实际测定。比表

粉末冶金工艺过程

粉末冶金工艺过程 2007-11-27 13:33 粉末冶金材料是指不经熔炼和铸造,直接用几种金属粉末或金属粉末与非金属粉末,通过配制、压制成型,烧结和后处理等制成的材料。粉末冶金是金属冶金工艺与陶瓷烧结工艺的结合,它通常要经过以下几个工艺过程: 一、粉料制备与压制成型 常用机械粉碎、雾化、物理化学法制取粉末。制取的粉末经过筛分与混合,混料均匀并加入适当的增塑剂,再进行压制成型,粉粒间的原子通过固相扩散和机械咬合作用,使制件结合为具有一定强度的整体。压力越大则制件密度越大,强度相应增加。有时为减小压力合增加制件密度,也可采用热等静压成型的方法。 二、烧结 将压制成型的制件放置在采用还原性气氛的闭式炉中进行烧结,烧结温度约为基体金属熔点的2/3~3/4倍。由于高温下不同种类原子的扩散,粉末表面氧化物的被还原以及变形粉末的再结晶,使粉末颗粒相互结合,提高了粉末冶金制品的强度,并获得与一般合金相似的组织。经烧结后的制件中,仍然存在一些微小的孔隙,属于多孔性材料。 三、后处理

一般情况下,烧结好的制件能够达到所需性能,可直接使用。但有时还需进行必要的后处理。如精压处理,可提高制件的密度和尺寸形状精度;对铁基粉末冶金制件进行淬火、表面淬火等处理可改善其机械性能;为达到润滑或耐蚀目的而进行浸油或浸渍其它液态润滑剂;将低熔点金属渗入制件孔隙中去的熔渗处理,可提高制件的强度、硬度、可塑性或冲击韧性等。 粉末冶金工艺的优点 1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。 2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。 3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。 4、粉末冶金法能保证材料成分配比的正确性和均匀性。 5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成.(林里粉末) 粉末冶金是制取金属粉末,及采用成形和烧结工艺将金属粉末(或金属粉末与非

轴承基本制造流程

轴承基本制造流程 一、轴承的基本结构包括: 内圈、外圈、滚动体(钢球或滚子)、保持架 二、轴承基本结构材料选用 <1>套圈和滚动体材料 (1).常用材料: 高碳铬轴承钢 Gcr15 Gcr15SiMn (2).其它材料: 渗碳轴承钢 耐腐蚀轴承钢 耐热轴承钢 <2>保持架材料 (1).有色金属: 黄铜HPb59-1 青铜QAL10-3-1.5 铝合金LY11CZ (2).黑色金属: 优质碳素钢薄 (3).非金属: 工程尼龙酚醛胶布 三、轴承制造基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程 原材料——冷镦——光磨——热处理——硬磨——初研——外观——精研 <2>保持架(钢板)制造基本流程 原材料——剪料——裁环——光整——成形——整形——冲铆钉孔 <3>套圈(内圈、外圈)制造基本流程 原材料——锻造——退火——车削——淬火——回火——磨削——装配 (1).锻造加工 锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是: (a)获得与产品形状相似的毛坯,从而提高金属材料利用 率,节约原材料,减少机械加工量,降低成本。 (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理, 金属紧密度好,从而提高轴承的使用寿命。 锻造方式: 一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2).退火 套圈退火的主要目的是: 高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的

淬回火作组织准备。 GCr15SiMn退火基本工序: 在790—810℃保温2-6h, 以10—30℃/h,冷至600℃以下,出炉空冷 (3).车削加工 车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4).热处理 热处理是提高轴承内在质量的关键加工工序 热处理的主要目的是: (a)通过热处理使材料组织转变,提高材料机械性能。 (b)提高轴承内在质量(耐磨性、强韧性),从而提高轴承寿命。对于高碳铬轴承钢Gcr15SiMn,热处理包括淬火和低温回火 淬火: 加热温度:820—840(℃) 保温时间: 1-2h 冷却介质:油 低温回火: 加热温度:150—180(℃) 保温时间:2-5h 冷却方式:空冷(5)磨削加工 磨削加工是轴承套圈和滚子加工中的最终加工,称为成品加 工。 磨削加工的主要目的是: (a)使套圈的尺寸精度和形状精度达到设计要求。 (b)为轴承装配提供合格的套圈和。 磨削加工方法: 一般采用分散工序法加工,也可把多台设备通过上、下料装置连接组成生产流水线加工,提高生产效率。 6. 轴承装配 轴承装配是轴承生产过程中的最后工序,对轴承性能具有重要的影响。 轴承装配的主要目的是: (a)把经过多种工序加工的零件(外圈、内圈、滚子和保持架)装配成轴承产品。 (b)按不同的技术要求,装配成各种精度、各种游隙和其他特殊要求的轴承产品。

粉末冶金常识

粉末冶金常识 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

粉末冶金常识 1.粉末冶金常识之什么是粉末冶金 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称"金属粉末")。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为"粉末冶金材料")或制品(称为"粉末冶金制品")。 2、粉末冶金常识之粉末冶金最突出的优点是什么 粉末冶金最突出的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造出合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高达95%以上,它还能在一些制品中以铁代,做到了"省材、节能"。 粉末冶金件 3、粉末冶金常识之什么是"铁基"什么是铁基粉末冶金 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3)消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物理性能主要包括那几项

粉末冶金的工艺流程-粉末成形

粉末成形 简介 粉末冶金生产中的基本工序之一,目的是将松散的粉末制成具有预定几何形状、尺寸、密度和强度的半成品或成品。模压(钢模)成形是粉末冶金生产中采用最广的成形方法。18世纪下半叶和19世纪上半叶,西班牙、俄国和英国为制造铂制品,都曾采用了相似的粉末冶金工艺。当时俄国索博列夫斯基(П.Г.Соболевсκий)使用的是钢模和螺旋压机。英国的沃拉斯顿(W.H.Wollaston)使用压力更大的拉杆式压机和纯度更高的铂粉,制得了几乎没有残余孔隙的致密铂材。后来,模压成形方法逐渐完善,并用来制造各种形状的铜基含油轴承等产品。20世纪30年代以来,在粉末冶金零件的工业化生产过程中,压机设备、模具设计等方面不断改进,模压成形方法得到了更大的发展,机械化和自动化已达到较高的程度。为了扩大制品的尺寸和形状范围,特别是为了提高制品密度和改善密度的均匀性相继出现和发展了多种成形方法。早期出现的有粉末轧制、冷等静压制、挤压、热压等;50年代以来又出现了热等静压制、热挤压、热锻等热成形方法。这些方法推动了全致密、高性能粉末金属材料的生产。 主要功能 (1)将粉末成形为所要求的形状; (2)赋予坯体以精确的几何形状与尺寸,这时应考虑烧结时的尺寸变化; (3)赋予坯体要求的孔隙度和孔隙类型; (4)赋予坯体以适当的强度,以便搬运。 根据成形时是否从外部施加压力,可分为压制成形和无压成形两大类。 压制成形主要有:封闭钢模冷压成形、流体等静压制成形、粉末塑性成形、三轴向压制成形、高能率成形、挤压成形、轧制成形、振动压制成形等; 无压成形主要有:粉浆浇注、松装烧结等。 模压成形 模压成形将金属粉末装入钢模型腔,通过模冲对粉末加压使之成形。 模压过程装在模腔中的粉末由于颗粒间的摩擦和机械啮合作用会产生所谓“拱桥”现象,形成许多大小不一的孔隙。加压时,粉末体的体积被压缩,其过程一般用压坯相对密度-压制压力曲线表示(图1)。在开始阶段粉末颗粒相对移动并重新分布,孔隙被填充,从而使压坯密度急剧增加,达到最大装填密度;这时粉末颗粒已被相互压紧,故当压制压力增大时,压坯密度几乎不变,曲线呈现平坦。随后继续增加压制压力,粉末颗粒将发生弹、塑性变形或脆性断裂,使压坯进一步致密化。由于颗粒间的机械啮合和接触面上的金属原子间的引力,压制后的粉末体成为具有一定强度的压坯。 压制压力与压坯密度分布在模压过程中压制压力主要消耗于以下两部分:①克服粉末颗粒之间的摩擦力(称为内摩擦力)和粉末颗粒的变形抗力;②克服粉末颗粒对模壁的摩擦力(称为外摩擦力)。由于外摩擦力的存在,模压成形的压坯密度分布实际上是不均匀的。例如单向压制时,离施压模冲头较近的部分密度较

粉末冶金基础知识参考文本

粉末冶金基础知识参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

粉末冶金基础知识参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 (一)粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末, 其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要 求其杂质和气体含量不超过1%~2%,否则会影响制品的 质量。 2.粉末的物理性能 ⑴粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际 的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗 粒体中不同尺寸所占的百分比即为粒度分布。

⑵颗粒形状即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。 ⑶比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴填充特性 指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末的填充特性与颗粒的大小、形状及表面性质有关。 ⑵流动性

轴承加工工艺流程附图

轴承加工工艺流程附图 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

轴承加工工艺流程(附图)轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。轴承可同时承受径向负荷和轴向负荷。能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦——光磨——热处理——硬磨——初研——外观——精研 <2>保持架(钢板)制造基本流程: 原材料——剪料——裁环——光整——成形——整形——冲铆钉孔 <3>套圈(内圈、外圈)制造基本流程: 原材料——锻造——退火——车削——淬火——回火——磨削——装配 汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是:

(a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本。 (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序: 在790—810℃保温2-6h,以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是:

相关文档
最新文档