实验二 单相桥式全控整流电路

合集下载

单相桥式全控整流电路实验心得体会

单相桥式全控整流电路实验心得体会

单相桥式全控整流电路实验心得体会篇一:单相桥式全控整流电路实验单相桥式全控整流电路实验一、实验目的一、了解单相桥式全控整流电路的工作原理二、研究相桥式全控整流电路在电阻负载、电感性负载的工作二、实验线路及工作原理图一、单相全控桥式整流器图和工作波形(电阻性负载)二、单相全控桥式整流器图和工作波形(电感性负载)三、实验(转载于: 小龙文档网:单相桥式全控整流电路实验心得体会)分析一、实验波形(上图所示,纯电阻)注意:大体数量关系及公式(1)输出电压平均值Ud为1?22U21?cos?1?cos?U2U2sin?td??t??? d???ππ22(2)输出电流平均值Id为UdU21?cos?Id??(3)输出电压有效值U21?1π??U??2Usin?td??t??U2sin2??2π?2ππ2实验波形(上图所示,感性负载)(1) 输出电压平均值Ud1???22U2Ud??2U2sin?td??t??cos???π?π(2) 输出电流平均值Id和变压器副边电流I2Id?Ud?I2R(3) 晶闸管的电流平均值IdT由于晶闸管连番导电,因此流过每一个晶闸管的平均电流只有负载上平均电流的一半。

1IdT?Id2四、实验心得体会自己完成。

篇二:上海交大电力电子技术实验+单相桥式全控整流电路实验电力电子技术基础实验报告实验一单相桥式全控整流电路实验一、实验目的一、了解单相桥式全控整流电路的工作原理。

二、研究单相桥式全控整流电路在电阻负载,电阻-电感性负载时的工作。

3、熟悉MCL-05锯齿波触发电路的工作。

二、实验线路三、实验内容一、单相桥式全控整流电路供电给电阻负载。

二、单相桥式全控整流电路供电给电阻-电感性负载。

四、实验设备一、MLC系列教学实验台主操纵屏。

二、MLC-01组件。

3、MLC-02组件。

4、MEL-03可调电阻器。

五、MEL-02芯式变压器。

六、二踪示波器。

7、万用表。

五、实验数据和波形单相桥式全控整流电路供电给电阻负载。

实验二单相桥式全控整流电路实验电力电子技术实验

实验二单相桥式全控整流电路实验电力电子技术实验

实验二单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。

3.熟悉NMCL—05(E)组件或NMCL—36组件。

二.实验线路及原理参见图1-3。

三.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感性负载。

四.实验设备及仪器1.教学实验台主控制屏;2.NMCL—33组件;3.NMCL—05(E)组件或NMCL—36组件;4.MEL-03(A)组件;5.NMCL—35组件;6.双踪示波器(自备);7.万用表(自备)。

五.注意事项1.本实验中触发可控硅的脉冲来自NMCL-05挂箱(或NMCL—36组件),故NMCL-33的内部脉冲需断,以免造成误触发。

2.电阻R D的调节需注意。

若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。

3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。

4.NMCL-05(E)(或NMCL—36)面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。

同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。

5.逆变变压器采用NMCL—35组式变压器,原边为220V,副边为110V。

6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。

六.实验方法图1-3 单相桥式全控整流电路1.将NMCL—05(E)(或NMCL—36)面板左上角的同步电压输入接NMCL—3 2的U、V输出端),“触发电路选择”拨向“锯齿波”。

2.断开NMCL-35和NMCL-33的连接线,合上主电路电源,此时锯齿波触发电路应处于工作状态。

单相桥式全控整流电路

单相桥式全控整流电路

单相桥式全控整流电路一、原理图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。

假设电路已工作于稳态。

在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。

负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。

至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。

VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。

至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。

图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。

图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。

产生有源逆变的条件如下:(1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。

(2)要求晶闸管的控制角α>π/2.,使Ud为负值。

两者必须同时具备才能实现有源逆变。

二、实验内容(1)单相桥式全控整流电路带电阻性负载。

(2)单相桥式有源逆变电路带电阻电感性负载。

(3)有源逆变电路逆变颠覆现象的观察。

(4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。

三、实验仿真1.带电阻电感性负载的仿真启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。

双击各模块,在出现的对话框内设置相应的参数。

注意:触发脉冲“Pulse”和“Pulse2”的控制角设置必须相同,“Pulse1”和“Pulse3”的控制角设置必须相同,否则就会烧坏晶闸管。

单相桥式全控整流电路

单相桥式全控整流电路
流经晶闸管的电流也降到零,VT1 和 VT4 关断。
③u2 在负半周时
仍在触发角 α 处触发 VT2 和 VT3 导通,电流从电源 b 端流出,经 VT3、R、VT2 流回 电源 a 端。
④到 u2 再次过零时
电流又降为零,VT2 和 VT3 关断。 2.带阻感负载时的工作情况
图 3 单相桥式全控整流电路带阻感负载时的电路图
150° 1.95
8 0.018 6.63 0.0142
已知 U2 由 220V 电压源经变比为 2 的降压变压器所得,又测得 R= 466Ω,于是可根据
公式计算 Ud 和 Id 的理论值,公式如下:
1 + cosα Ud = 0.9U2 2

Id
=
Ud R
比较实验数据和所求得得理论值,发现数据较接近但仍有误差,可能是肉眼观察示波器
所得的 α 值带来较大误差对负载输出产生影响。
2.观察单相桥式全控整流电路接阻感负载时,α = 30°、60°、90°情况下的负载输出,并记
录 Ud 和 Id 的值
α
Uct/V
RL 负载
Ud/V Id/A
R 负载
Ud/V Id/A
30° 7.60 84 0.177 88 0.189
60° 6.25 69 0.146 73 0.157
α
Uct/V
实验数据
Ud/V Id/A
理论计算
Ud/V Id/A
30° 7.60 88 0.189 92.37 0.1982
60° 6.25 73 0.157 74.25 0.1593
90° 4.83 50 0.109 49.5 0.0875
120° 3.45 28 0.061 24.75 0.0531

实验二 单相桥式全控整流电路

实验二 单相桥式全控整流电路

实验二、单相桥式全控整流电路一、实验目的1、掌握单相桥式全控整流电路的基本组成和工作原理。

2、熟悉单相桥式全控整流电路的基本特性。

二、实验内容1、验证单相桥式全控整流电路的工作特性。

三、实验设备与仪器1、“电力电子变换技术挂箱Ⅱx(DSE03)”—DE08、DE09单元2、“触发电路挂箱Ⅰ(DST01)—DT02单元3、“电源及负载挂箱Ⅰ(DSP01)”或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01、DP02单元4、慢扫描双踪示波器、数字万用表等测试仪器四、实验电路的组成及实验操作1、实验电路的组成:实验电路主要由触发电路、脉冲隔离、功率开关(晶闸管)、电源及负载组成。

主电路原理见图2-4。

单相全控电路的主电路是由四只晶闸管构成的全控桥,把不可控桥式整流电路中的四只不可控导通的二极管换成四只可控的晶闸管,就成为了全控整流电路。

在交流电源的每一个半波内有一对晶闸管来限定电图2-4单相桥式全控整流电路示意图流的通路,2、实验操作:打开系统总电源,系统工作模式设置为“电力电子”。

将主电源面板上的电压选择开关置于“3”位置,即主电源相电压输出设定为220V。

按附图4完成实验接线。

将DT02单元的控制电位器逆时针旋到头,经指导教师检查无误后,可上电开始实验。

依次闭合控制电路、挂箱上的电源开关、主电路;用示波器监测负载电阻两端的波形,顺时针缓慢调节DT02单元的控制电位器,观察并记录负载电压波形及变化情况,分析电路工作原理。

实验完毕,依次关闭系统主电路、挂箱上的电源开关、控制电路以及系统总电源。

五、实验报告1、通过实验,分析单相全控整流电路的工作特性及工作原理。

2、分析桥式全控整流较半波可控整流电路的优缺点。

3、拟定数据表格,分析实验数据。

4、观察并绘制有关实验波形。

(1)、带电阻负载时的整流电压波形(2)、带电阻串联大电感负载时的整流电压波形附图4 锯齿波移相触发的单相桥式全控整流电路。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告实验目的:通过实验,了解单相全控桥式整流电路的工作原理,掌握其控制特性和输出特性,加深对电力电子器件的认识。

实验设备和器件:1. 单相变压器。

2. 电阻箱。

3. 电容器。

4. 交流电压表。

5. 直流电压表。

6. 电压调节器。

7. 全控桥式整流电路实验箱。

8. 示波器。

9. 电流互感器。

10. 电阻负载。

11. 电感负载。

12. 电容负载。

13. 三通电压表。

14. 三通电流表。

15. 三通功率表。

16. 三相交流电源。

17. 直流电源。

18. 电子开关管(可控硅)。

实验原理:单相桥式全控整流电路是一种能够实现交流电能转换为直流电能的电路。

其工作原理是通过控制可控硅的导通角来控制整流电路的输出电压和电流。

当可控硅导通角为0时,整流电路输出电压和电流为最大值;当可控硅导通角为π时,整流电路输出电压和电流为0。

通过不同的控制方式,可以实现对输出电压和电流的精确控制。

实验步骤:1. 将实验箱连接好,接通交流电源和直流电源。

2. 调节电压调节器,使得交流电源输出额定电压。

3. 调节电阻箱和电容器,接入电路,使得整流电路工作在不同的负载条件下。

4. 调节可控硅的触发脉冲,观察输出电压和电流的变化。

5. 使用示波器观察整流电路的输入和输出波形,并记录数据。

6. 尝试不同的控制方式,比较输出特性的变化。

实验结果分析:通过实验,我们观察到了单相桥式全控整流电路在不同控制条件下的输出特性。

当可控硅的导通角变化时,输出电压和电流呈现出不同的变化规律。

在不同负载条件下,整流电路的输出特性也有所不同。

通过实验数据的记录和分析,我们可以得出结论,单相桥式全控整流电路可以实现对输出电压和电流的精确控制,适用于不同的负载条件。

实验总结:通过本次实验,我们深入了解了单相桥式全控整流电路的工作原理和特性。

掌握了实验中所用到的各种设备和器件的使用方法,加深了对电力电子器件的认识。

同时,通过实验数据的记录和分析,我们对单相桥式全控整流电路的特性有了更深入的理解。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告实验目的:
1.了解单相桥式全控整流电路的原理和工作方式
2.学习使用半导体器件的控制技术
3.掌握实验操作的方法和技巧
实验材料:
1.单相桥式全控整流电路板
2.数字万用表
3.直流电源
4.交流电源
实验步骤:
1.将单相桥式全控整流电路板连接到交流电源上,注意正负极的正确连接。

2.将数字万用表连接到电路板上,测量电路板的交流电压和输出电压。

3.通过控制半导体器件的指令输入,分别实验控制电路板的直流输出电流和电压。

4.通过观察电路板的反馈信号,了解整个控制过程及其影响因素,并优化电路板的性能。

实验结果:
1.我们成功实现了单相桥式全控整流电路的输出,可以实现正负半周期的控制,提高了能量利用效率。

2.通过对控制电流和电压的实验,我们发现电路板的控制灵活性很强,可以满足不同场合的应用要求。

3.通过对反馈信号的观察,我们优化了电路板的输出特性,提高了电路板的效率和稳定性。

实验思考:
1.单相桥式全控整流电路的实际应用很广泛,常见于电动机驱动、电源稳定等领域。

2.电路板的控制比较复杂,需要进一步学习和练习。

3.在实验的过程中,需要注意安全措施,避免因操作不当导致危险发生。

结论:
我们通过对单相桥式全控整流电路的实验,深入了解了其原理和应用,掌握了使用半导体器件进行控制的技术,提高了实验操作的技能。

希望今后能继续深入学习和研究,为提高能源利用效率和电力质量做出更大贡献。

作业-单相桥式全控整流电路实验-电力电子技术-深圳大学-自动化

作业-单相桥式全控整流电路实验-电力电子技术-深圳大学-自动化

深圳大学实验报告课程名称:电力电子技术
实验项目名称:单相桥式全控整流电路学院:机电学院
专业:自动化
指导教师:费跃农
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务部制
一、实验目的
验证用matlab的simulink仿真的模拟电路和理论值是否一样,并且学会使用simulink仿真电路,方便我们日后设计或分析电路。

二、实验内容
1.电路结构与工作原理
(1)单相桥式全控整流电路电路结构如下图所示:
U2=220V,R=2Ω,触发角α=30o
(2) 理论分析:
输出电压平均值
Ud==0.9U2*(1+cosα)/2=184.7V
输出电流平均值电流
Id=Ud/RL=92.35A
晶闸管的额定电压为
U=(2~3)*2^0.5U2=622~933V
晶闸管流过的电流为负载电流的一半,即
I=76A
三、建模仿真
四、仿真结果分析
Ug
下载后图可调大清晰
晶闸管电压波形
输入电流的波形
输出电流与输出电压的波形
第一个是输出电流的平均值,理论值为92.35A
第二个是输出电压的平均值, 理论值为184.7V
五,实验总结
通过使用Matlab的simulink对模拟电路进行仿真,我发现Matlab可以比较完美的得出电路的各种数据。

在电路板的设计阶段,对电路的仿真是很有必要的,而simulink就是一种很方便的工具,能够简单方便而且准确地模拟出电路的运行情况。

下载后图可调大清晰。

单相桥式全控整流电路实验报告上海理工大学

单相桥式全控整流电路实验报告上海理工大学

单相桥式全控整流电路实验报告上海理工大学题目:单相桥式全控整流电路实验报告学校:上海理工大学实验目的:本实验旨在通过搭建单相桥式全控整流电路,研究和掌握全控整流电路的工作原理及其特性。

实验设备:1.单相桥式全控整流电路实验板2.变压器3.直流电源4.示波器5.电阻、电容等辅助元件实验原理:单相桥式全控整流电路是一种常用的电力电子变流器,可以实现交流电的直流化。

该电路由四个可控硅组成的桥式整流电路和一个触发电路组成。

在正半周和负半周的不同工作状态下,通过控制可控硅的导通时间,可以实现对输出电压的控制。

实验步骤:1.将实验设备接线正确连接,确保电路的安全性。

2.调节变压器的输入电压,使其输出适宜的交流电压。

3.打开直流电源,将其正负极分别接入桥式整流电路的两侧。

4.使用示波器测量输出电压的波形,并记录数据。

5.通过调节触发电路的触发角,改变可控硅的导通时间,观察输出电压的变化,并记录数据。

6.反复进行步骤4和步骤5,获得不同工作状态下的输出电压波形和特性。

实验结果:通过实验测量和记录,我们得到了不同触发角下的输出电压波形和特性曲线。

根据曲线分析,我们可以得出单相桥式全控整流电路在不同控制条件下的工作特性,如输出电压的平均值、脉动系数等。

实验结论:通过本次实验,我们深入了解了单相桥式全控整流电路的工作原理和特性。

我们成功地搭建了实验电路,并通过实验数据分析得出了电路的输出特性。

实验结果证明了该电路在不同工作状态下具有可控的输出特性,可广泛应用于交流电的直流化领域。

注意事项:在进行实验过程中,要注意电路的安全性和稳定性。

遵循实验室的操作规范,正确使用实验设备。

实验结束后,注意及时清理实验现场,并关闭相关设备。

单相桥式全控整流电路仿真建模分析实验报告

单相桥式全控整流电路仿真建模分析实验报告

一.实验目的1)不同负载时,三相可控整流电路的结构、工作原理、波形分析。

2) 在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。

二.实验内容单相桥式全控整流电路仿真建模分析一、单相桥式全控整流电路(电阻性负载)1.电路的结构与工作原理1.1电路结构R图 1 单相桥式全控整流电路(纯电阻负载)的电路原理图1.2 工作原理在电源电压正半波,在wt<α时,晶闸管VT1,VT4承受正向电压,晶闸管VT2,VT3承受反向电压,此时4个晶闸管都不导通,且假设4个晶闸管的漏电阻相等,则ut1(4)=ut2(3)=1/2U2;在wt=α时,晶闸管VT1,VT4满足晶闸管导通的两条件,晶闸管VT1,VT4导通,负载上的电压等于变压器两端的电压U2;在wt=π时,因电源电压过零,通过晶闸管VT1,VT4的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断;在电源负半波,在wt<α+π时,触发晶闸管VT2,VT3使其元件导通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(Ud=-U2)和电流,且波形相位相同。

此时电源电压反向施加到晶闸管VT1,VT4,使其承受反向电压而处于关断状态;在wt=2π时,因电源电压过零,通过晶闸管VT2,VT3的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断。

1.3基本数量关系a.直流输出电压平均值2cos 19.02cos 122)(sin 21222απωωπαπα+=+==⎰U U t d t U U db.输出电流平均值2cos 1.9.02aR U R U I d d +==c.负载电压有效值πππaa U U -+=22sin .2 d.负载电流有效值πππaa R U I -+=22sin 22. 单相桥式全控整流电路建模在MA TLAB 新建一个Model ,命名为quankong1,同时模型建立如下图所示:图 2 单相桥式全控整流电路(电阻性负载)的MATLAB仿真模型2.1模型参数设置在此电路中,输入电压的电压设置为220V,频率设置为50Hz,电阻阻值设置为1欧姆,电感设置为1e-3H,脉冲输入的电压设置为3V,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角分别设置为20°,60°,90°,150°因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周琴应相差180°。

实验二 单相桥式全控整流电路 一、实验目的

实验二 单相桥式全控整流电路 一、实验目的
锯齿波触发电路的调试; (2) 锯齿波触发电路各点电压波形的观察、记录; (3) 单相桥式全控整流电路带电阻性负载时波形观察、记录。
图 2 单相桥式全控整流电路
五、实验方法 (1)锯齿波触发电路的调试 将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为 200V,用两 根导线将 200V 交流电压接到 DJK03-1 的 “外接 220V” 端, 按下 “启动” 按钮, 打开 DJK03-1 电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。调节 RP1、RP2、RP3 观察对各点波形的影响。利用示波器观察同步电压信号和“TP6”点触发信号,调节 RP3 到 适量的值,保证只调整 RP2 调相范围可达到 0°~180°。 (2)单相全桥可控整流电路的调试 按图 2 接线,按下“启动”按钮,保持 RP2 或 RP3 中一个不变(由第一个调试结果而 定) ,调整另外一个变阻器,在α=60°、90°、120°时,用示波器观察电阻负载两端电压 波形,并记录电源电压 U2 和负载电压 Ud 的数值于下表中。 表 1 电源电压 U2 和负载电压 Ud α U2 Ud(计算值) Ud(记录值) 其中 Ud 的计算值应为: 60° 90° 120°
1 cos U d 0.9U 2 2
(1-1)
六、实验报告撰写要求 (1) 写出实验目的、实验所需挂件及附件; (2) 画出实验整体原理图; (3) 画出α=60°时,锯齿波触发电路的 TP1、TP2、TP3、TP4、TP5、TP6 的波形; (4) 填写表 1 中的数据; (5) 画出α=60°时,电阻性负载 Ud 的波形; (6) 回答思考题: a. 在锯齿波触发电路中,在控制移相电压端,为什么需要有两个变阻器(RP2、RP3) 来控制? 七、注意事项 (1) 示波器在没有“共地”的情况下,不能同时直接测量两处信号,尤其是控制电路和 主电路; (2) 在实验中,触发脉冲是从外部接入 DJK02 面板上晶闸管的门极和阴极,此时,应将 所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,避免误 触发。 (3) 在主电路未接通时,首先要调试触发电路,只有触发电路工作正常后,才可以接通 主电路。

单相桥式全控整流电路实验

单相桥式全控整流电路实验

单相桥式全控整流电路实验一、实验目的1.理解单相桥式全控整流电路的工作原理;2.掌握整流电路的参数测试方法;3.学习单相桥式全控整流电路的设计与调试方法。

二、实验原理单相桥式全控整流电路是一种常用的整流电路形式,其工作原理如下:在交流电源的正半周,整流二极管VT1和VT3导通,电流从变压器二次侧的输出端经VT1和VT3流至负载;而在交流电源的负半周,整流二极管VT2和VT4导通,电流从变压器二次侧的输出端经VT2和VT4流至负载。

通过控制晶闸管的触发角,可以调节输出电压的大小。

三、实验步骤1.搭建单相桥式全控整流电路,包括电源、变压器、整流二极管、负载和触发器等部分;2.连接电源,使电路开始工作;3.使用示波器观察整流电路的输入电压和输出电压的波形;4.调整触发器的触发角,观察输出电压的变化;5.测量整流电路的输入电压、输出电压、电流等参数;6.根据实验数据计算整流效率等参数;7.对实验结果进行分析,并与理论值进行比较。

四、实验结果与分析1.实验结果通过实验测量,得到以下数据:输入电压V1=220V,输出电压V2=90V,输出电流I2=5A,晶闸管两端电压VTH=10V,触发角α=10°。

根据这些数据,我们可以计算出整流效率为η=输出电压/输入电压×100%=90/220×100%=40.9%。

2.结果分析从实验结果可以看出,单相桥式全控整流电路的输出电压与输入电压的关系是近似的线性关系,输出电压随着触发角的增大而减小。

当触发角为90°时,输出电压为零,这表明单相桥式全控整流电路具有可控性。

同时,由于晶闸管两端存在电压降,因此整流效率受到一定的影响。

但是,当触发角较小时,整流效率较高。

五、结论通过本次实验,我们验证了单相桥式全控整流电路的工作原理和设计方法。

实验结果表明,单相桥式全控整流电路具有可控性好、效率较高的优点。

在实际应用中,可以通过调整触发角来调节输出电压的大小,实现电气设备的节能控制。

晶闸管单相桥式全控整流电路仿真实验原理

晶闸管单相桥式全控整流电路仿真实验原理

晶闸管单相桥式全控整流电路仿真实验原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!晶闸管单相桥式全控整流电路的仿真实验原理解析晶闸管单相桥式全控整流电路是电力电子技术中常见的一种电路结构,广泛应用于工业电源、电机调速等领域。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告单相桥式全控整流电路实验报告引言:单相桥式全控整流电路是电力电子技术中常用的电路之一。

它能够将交流电转换为直流电,并且能够通过控制开关器件的导通角度来实现对输出电压的调节。

本实验旨在通过搭建单相桥式全控整流电路并进行实际操作,来深入了解该电路的工作原理和性能特点。

一、实验装置和原理本实验所使用的实验装置包括变压器、单相桥式全控整流电路、交流电源和直流负载。

变压器的作用是将输入的交流电压降低到适合实验的电压范围,同时也能够提供所需的电流。

单相桥式全控整流电路由四个可控硅组成,通过控制可控硅的导通角度来实现对输出电压的调节。

交流电源提供输入电压,直流负载则用于测量输出电压和电流。

二、实验步骤1. 搭建实验电路:将变压器的输入端接入交流电源,输出端接入单相桥式全控整流电路的输入端,输出端接入直流负载。

注意接线的正确性和稳固性。

2. 调节变压器输出电压:通过旋转变压器的调节旋钮,逐渐调节变压器的输出电压,使其达到实验所需的电压范围。

3. 接通电源:将交流电源的开关打开,此时电路开始供电,但是输出电压为零。

4. 控制可控硅导通角度:通过控制可控硅的触发脉冲,来调节可控硅的导通角度。

当触发脉冲的时间提前时,可控硅的导通角度变大,输出电压也随之增大;当触发脉冲的时间延后时,可控硅的导通角度变小,输出电压也随之减小。

5. 测量输出电压和电流:使用直流电压表和直流电流表来测量输出电压和电流的数值。

根据实验需求,可以调节可控硅的导通角度,来获得不同的输出电压和电流数值。

6. 记录实验数据:将测得的输出电压和电流数值记录下来,并进行整理和分析。

三、实验结果和分析通过实验,我们可以得到不同可控硅导通角度下的输出电压和电流数值。

根据实验数据,我们可以绘制出输出电压和电流随导通角度变化的曲线图。

从曲线图中可以看出,当导通角度增大时,输出电压和电流也随之增大;当导通角度减小时,输出电压和电流也随之减小。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

一、实验目的1. 理解单相桥式全控整流电路的工作原理。

2. 掌握单相桥式全控整流电路的搭建方法。

3. 分析单相桥式全控整流电路在不同负载条件下的性能。

4. 学习使用示波器等实验仪器进行电路测试。

二、实验原理单相桥式全控整流电路由四个晶闸管(VT1、VT2、VT3、VT4)和负载组成。

当交流电源电压为正半周时,晶闸管VT1和VT4导通,电流从电源正极流向负载;当交流电源电压为负半周时,晶闸管VT2和VT3导通,电流从电源负极流向负载。

通过调节晶闸管的触发角,可以控制输出电压的大小。

三、实验器材1. 单相桥式全控整流电路实验装置2. 晶闸管模块3. 负载电阻4. 负载电感5. 电源6. 示波器7. 万用表8. 交流电源9. 接线板四、实验步骤1. 搭建单相桥式全控整流电路,确保电路连接正确。

2. 使用示波器观察交流电源电压波形。

3. 调节晶闸管的触发角,观察输出电压波形。

4. 测试不同负载条件下的输出电压和电流。

5. 记录实验数据,进行分析。

五、实验结果与分析1. 观察到当晶闸管的触发角为0度时,输出电压为0;当触发角为180度时,输出电压为交流电源电压的峰值。

2. 当负载为电阻时,输出电压和电流的波形基本一致,且电压和电流的平均值随触发角的增大而减小。

3. 当负载为电感时,输出电压和电流的波形存在相位差,且电流的峰值滞后于电压的峰值。

4. 当负载为电阻-电感时,输出电压和电流的波形与电阻负载相似,但电流的峰值滞后于电压的峰值。

六、实验结论1. 单相桥式全控整流电路可以将交流电转换为直流电,且输出电压大小可调。

2. 不同负载条件下,输出电压和电流的波形存在差异。

3. 通过调节晶闸管的触发角,可以控制输出电压的大小。

七、心得体会1. 通过本次实验,加深了对单相桥式全控整流电路工作原理的理解。

2. 学会了使用示波器等实验仪器进行电路测试。

3. 了解了不同负载条件下电路性能的变化。

八、注意事项1. 在搭建电路时,注意晶闸管的正确连接。

单相桥式全控整流电路的仿真设计实验报告

单相桥式全控整流电路的仿真设计实验报告

单相桥式全控整流电路的仿真设计实验报告大家好,今天给大家带来一个关于单相桥式全控整流电路的仿真设计实验报告。

这个电路虽然听起来复杂,但其实你一旦弄明白了其中的奥妙,也能理解它是怎么回事,跟小孩子玩拼图差不多,一步步拼凑,最后就能看出完整的画面。

今天咱们就一起走一遍这个过程,看看怎么把这些看似枯燥的电子元器件变成有趣的设计。

什么是单相桥式全控整流电路呢?嗯,说白了,就是用来把交流电转化为直流电的东西。

你想啊,咱们日常生活中的电器,大部分都需要直流电才能运行,比如电视、手机啥的。

但是,咱们家里的电压大多数是交流电(不管你信不信,99%的电力公司给你的是交流电),所以呢,咱们得用点儿办法,把交流电转化成直流电,才能驱动这些电器。

而这时候,单相桥式全控整流电路就登场了,正好能完成这个任务。

这个电路的名字可真长,听起来像是某个数学公式,不过仔细想想也没那么复杂。

它就是由四个二极管组成的桥式电路,再加上一些可控硅,组成的“全控”整流电路。

说白了,它的工作原理就是把交流电信号经过整流后变成直流电,再通过控制元件来调节输出电流的大小。

这种“全控”让电流能按照我们需要的方式流动,就像一个听话的电流小伙伴,指挥它去哪儿,怎么走,简直太棒了。

接下来说说仿真设计。

在实际的电路设计中,很多时候都需要先用仿真软件来模拟一下电路的工作效果。

这就像是先画草图,再去做最后的画作一样,能帮我们发现一些潜在的问题,避免在实际制作时“出师未捷身先死”。

仿真设计不但能让我们直观地看到电路的运行情况,还能让我们实时调试,看到不同的参数对电路效果的影响。

就好像你拿着遥控器试着调节电视音量,直接看到效果一样。

咱们的实验用的是Matlab/Simulink这个软件。

Simulink的界面就像是一个虚拟的电路板,里面有各种各样的模块和电路元件,你只要用鼠标点点点,连起来,就能完成一个完整的电路设计。

而且它特别好用,电路搭建完成后,直接点击仿真,就能看到电路的工作状态。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告一、实验目的1、熟悉单相桥式全控整流电路的工作原理。

2、掌握单相桥式全控整流电路在不同负载情况下的输出特性。

3、学会使用示波器等仪器观测电路中的电压、电流波形。

二、实验原理单相桥式全控整流电路由四个晶闸管组成,其电路图如下图所示:插入电路图在电源电压的正半周,晶闸管 VT1 和 VT4 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经 VT1、负载、VT4 流回电源的负端,负载上得到正电压;在电源电压的负半周,晶闸管 VT2 和VT3 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经VT2、负载、VT3 流回电源的负端,负载上得到负电压。

通过控制触发角α的大小,可以改变输出直流电压的平均值。

三、实验设备1、电力电子实验台2、示波器3、万用表4、电阻负载、电感负载四、实验内容及步骤(一)电阻负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(二)电感负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(三)反电动势负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

单相桥式全控整流电路

单相桥式全控整流电路

电力电子技术实验报告实验名称:单相桥式全控整流电路_______ 班级:自动化_________________组别:第组___________________分工:金华职业技术学院信息工程学院年月日目录一.单项全控整流电路电阻负载工作分析..................................................- 1 -1.电路的结构与工作原理...........................................................................- 1 -2.建模…………….............................................................................................- 3 -3.仿真结果与分析.......................................................................................- 5 -4.小结…………….............................................................................................- 5 -二.单项全控整流电路组感负载工作分析..................................................- 6 -1.电路的结构与工作原理...........................................................................- 6 -2.建模……………..............................................................................................- 8 -3.仿真结果与分析......................................................................................- 10-4.小结…………….............................................................................................- 10 -三.单项全控整流电路带反电动势阻感负载工作分析...............................- 11 -1.电路的结构与工作原理...........................................................................- 11 -2.建模……………..............................................................................................- 13 -3.仿真结果与分析........................................................................................- 15 -4.小结……………..............................................................................................- 15 -四.总结…………….............................................................................................- 16 -图索引图1 单项全控整流电路电阻负载工作分析的电路原理图………………- 1 - 图2 单项全控整流电路电阻负载的PSIM仿真模型…………………… - 3 - 图3 占空比=1/36的单项全控整流电路电阻负载仿真结果……………- 5 - 图4 单项全控整流电路阻感负载工作分析的电路原理图………………- 6 - 图5 单项全控整流电路阻感负载的PSIM仿真模型…………………… - 8 - 图6 占空比=1/36的单项全控整流电路阻感负载仿真结果……………- 10 - 图7 单项全控整流电路带反电动势工作分析的电路原理图……………- 11 - 图8 单项全控整流电路带反电动势的PSIM仿真模型………………….- 13 - 图9 单项全控整流电路带反电动势电路仿真结果………………………- 15 -一、单相桥式全控整流电路电阻负载工作分析1.电路的结构与工作原理1.1电路结构图1 单相桥式全控整流电路阻感负载工作分析的电路原理图1.2 工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告侧桥式全控整流电路实验一共分为六个部分:一、实验原理侧桥式全控整流电路是一种典型的三相整流电路,它由3个外接N次管、3个可控硅三端管和6个二极管组成。

它采用特别的电路构造,使正位及负位电源自动交互切换,从而实现整流控制。

其基本电路如下图所示:二、实验操作1、起先把实验台接上实验装置,并电源供应上图中所示的侧桥式全控整流电路原理图,然后旋转DR1的调节旋钮,微调V值到19V,等待V值稳定;2、逐步调节DR2的调节旋钮,观察负载电压和A,B,C相电压的变化,当DR2的值调节到670V时,就达到了单相整流的状态;3、关闭DR2的电源,再调节DR1的调节旋钮改变V值,记录下每次调节V值时,正负载电压及三相电压各线电压,其结果如表1所示;4、断开DR1的电源,以UI测量此时正负载桥的电压,记录下数据,其结果如表2所示sc翡翠三、实验结果实验中可观察到整流桥正负三相有所改变、正负电流不断交替互变,说明侧桥式全控整流电路能够有效控制和调整整流桥电压。

四、实验解释由实验结果可见,当DR2值调整至670V时,负载电压为2.6V,A,B,C相电压每相相等且都为520V,这说明侧桥全控整流电路已经达到了三相单相整流的状态。

另外从实验结果来看,当DR1的调节电流不断变化时,负载电压和三相电压也发生了变化。

这是因为当DR1三端添加调节电流时,三端电流机构不断发生变化,电容C1通过对桥9,12对管的电压发生控制,从而引起三相电压的变化,这样就可以实现对整流桥的有效控制。

五、总结本次实验确认了侧桥式全控整流电路能够有效控制和调整整流桥电压。

通过实践,我们更加深入地了解了三相整流器的工作原理和控制原理。

表1V值正负载电压三相电压(A) 三相电压(B) 三相电压(C)18v 36v 270V 540V 270V 19v 39v 520V 520V 520V 20v 41V 780V 270V 780V 表2正负载桥电压3.2V。

单相桥式全控整流电路仿真实验步骤

单相桥式全控整流电路仿真实验步骤

单相桥式全控整流电路仿真实验步骤嘿,今天咱们聊一聊单相桥式全控整流电路的仿真实验。

听着是不是有点拗口?别着急,咱们一点点地捋清楚。

说实话,这个实验的过程其实挺简单的,但要把它理解清楚,得一步步地往下走。

就像你做饭一样,拿到食材时可能不知道怎么做,但有了步骤之后,菜肴自然就成了。

好,话不多说,咱们就开始吧!咱们要做的就是搭建一个简单的单相桥式全控整流电路。

可能很多人第一次听到这名字会觉得像是外星语,啥叫单相、桥式、全控呀?其实你不用太紧张,简单说来,单相就是咱们生活中常见的220伏交流电,这个电压是单相的;桥式,就是用四个二极管按照桥形连接起来的形式;全控,则是指在电路中加入了可控硅(或者叫SCR),你可以控制它的导通与断开。

是不是听着就有点意思了?好了,第一步咱们得把这些零件准备齐全,二极管、可控硅、电阻、电源线、示波器什么的,别小看这些东西,每个小小的部件都有它的用处。

拿到这些零件后,开始搭建电路吧!这一步就像盖房子一样,得一步步把每一块砖都垒好。

把桥式整流的四个二极管连接成一个桥形,每个二极管的方向要按照规定的方式放好,否则电流走错了地方,整套电路就玩完了,得不偿失。

然后呢,把可控硅放到适当的位置,记得它是你“掌控”的关键啊,控制好它的导通时机,才能确保电路工作正常。

电路搭好了,接下来就得接入交流电源了。

哎,这一步你千万别马虎,交流电源接错了,不仅电路不能正常工作,还可能会出事。

接好后,咱们就可以通过调节可控硅的控制信号,观察电路输出的直流电压变化了。

别忘了,电压波形可得用示波器来观察,搞不好你一不小心就成了“电波专家”。

这时你会发现,经过整流后的输出电压不像输入的交流电那么“波动大”,它变得更平稳了,简直是电流世界的小清新。

不过,这个过程可没那么简单,想要完美的输出,你得认真调试。

比如说,你可以通过调整可控硅的触发角度,看看输出电压是如何随之变化的。

触发角越大,输出电压越低;触发角越小,输出电压就越高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二、单相桥式全控整流电路
一、实验目的
1、掌握单相桥式全控整流电路的基本组成和工作原理。

2、熟悉单相桥式全控整流电路的基本特性。

二、实验内容
1、验证单相桥式全控整流电路的工作特性。

三、实验设备与仪器
1、“电力电子变换技术挂箱Ⅱx(DSE03)”—DE08、DE09单元
2、“触发电路挂箱Ⅰ(DST01)—DT02单元
3、“电源及负载挂箱Ⅰ(DSP01)”或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01、DP02单元
4、慢扫描双踪示波器、数字万用表等测试仪器
四、实验电路的组成及实验操作
1、实验电路的组成:
实验电路主要由触发电
路、脉冲隔离、功率开关(晶
闸管)、电源及负载组成。


电路原理见图2-4。

单相全控
电路的主电路是由四只晶闸
管构成的全控桥,把不可控桥
式整流电路中的四只不可控
导通的二极管换成四只可控
的晶闸管,就成为了全控整流
电路。

在交流电源的每一个半
波内有一对晶闸管来限定电
图2-4单相桥式全控整流电路示意图
流的通路,
2、实验操作:
打开系统总电源,系统工作模式设置为“电力电子”。

将主电源面板上的电压选择开关置于“3”位置,即主电源相电压输出设定为220V。

按附图4完成实
验接线。

将DT02单元的控制电位器逆时针旋到头,经指导教师检查无误后,可上电开始实验。

依次闭合控制电路、挂箱上的电源开关、主电路;用示波器监测负载电阻两端的波形,顺时针缓慢调节DT02单元的控制电位器,观察并记录负载电压波形及变化情况,分析电路工作原理。

实验完毕,依次关闭系统主电路、挂箱上的电源开关、控制电路以及系统总电源。

五、实验报告
1、通过实验,分析单相全控整流电路的工作特性及工作原理。

2、分析桥式全控整流较半波可控整流电路的优缺点。

3、拟定数据表格,分析实验数据。

4、观察并绘制有关实验波形。

(1)、带电阻负载时的整流电压波形
(2)、带电阻串联大电感负载时的整流电压波形
附图4 锯齿波移相触发的单相桥式全控整流电路。

相关文档
最新文档