IGBT绝缘栅极双极型晶体管
怎么理解绝缘栅双极型晶体管
怎么理解绝缘栅双极型晶体管
绝缘栅双极型晶体管(IGBT)是一种半导体器件,它结合了场效应晶体管(FET)和双极型晶体管(BJT)的优点。
IGBT具有高输入阻抗和低输出电阻,使其在高电压和高电流应用中非常有用。
在本文中,我们将深入探讨IGBT的工作原理和应用。
IGBT的结构和工作原理
IGBT由三个区域组成:N型区(集电极),P型区(基极)和N型区(漏极)。
在IGBT中,P型区域被绝缘栅层隔离,这使得IGBT具有高输入阻抗。
当正向电压施加在集电极和漏极之间时,电子从N型区域流向P型区域,形成一个PN结。
当绝缘栅极施加正向电压时,它会吸引P型区域中的自由电子,这些电子会形成一个导电通道,使得电流可以流经IGBT。
当绝缘栅极施加负向电压时,导电通道关闭,电流无法流经IGBT。
IGBT的应用
IGBT被广泛应用于高电压和高电流应用中,例如电力电子、电机驱动器和可再生能源系统。
在电力电子中,IGBT被用于控制电流和电压,以实现电力转换和调节。
在电机驱动器中,IGBT被用于控制电机的速
度和转矩。
在可再生能源系统中,IGBT被用于控制太阳能电池板和风力涡轮机的输出电流和电压。
总结
绝缘栅双极型晶体管是一种半导体器件,它结合了场效应晶体管和双极型晶体管的优点。
IGBT具有高输入阻抗和低输出电阻,使其在高电压和高电流应用中非常有用。
IGBT被广泛应用于电力电子、电机驱动器和可再生能源系统中,以实现电力转换和调节、控制电机的速度和转矩,以及控制太阳能电池板和风力涡轮机的输出电流和电压。
绝缘栅双极型晶体管
绝缘栅双极型晶体管一、 IGBT介绍IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极晶体管,是由BJT(双极型)和MOS()组成的复合全控型驱动式功率, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优势。
GTR饱和压降低,载流密度大,但驱动较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种的优势,驱动功率小而饱和压降低。
超级适合应用于为600V及以上的变流系统如交流电机、变频器、、照明电路、牵引传动等领域。
二、 IGBT的结构左侧所示为一个N沟道增强型绝缘栅双极结构, N+区称为源区,附于其上的电极称为源极(即发射极E)。
P+区称为漏区。
的操纵区为栅区,附于其上的电极称为(即门极G)。
沟道在紧靠栅区边界形成。
在C、E两极之间的P型区(包括P+和P-区)(沟道在该区域形成),称为亚沟道区(Subchannel region)。
而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的,与漏区和亚沟道区一路形成PNP,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态。
附于漏注入区上的电极称为漏极(即集电极C)。
IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原先为NPN)晶体管提供基极,使IGBT导通。
反之,加反向门极电压排除沟道,切断基极电流,使IGBT关断。
IGBT的驱动方式和MOSFET大体相同,只需操纵输入极N-沟道MOSFET,因此具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N-层的空穴(少子),对N-层进行电导调制,减小N-层的,使IGBT在高电压时,也具有低的通态电压。
三、关于IGBT的测试IGBT模块的测试分为两大类:一类是静态参数测试,即在IGBT模块结温为25C时进行测试,现在IGBT工作在非开关状态;另一类是动态参数测试,即在IGBT模块结温为1时进行测试,现在IGBT工作在开关状态。
,绝缘栅双极型晶体管
,绝缘栅双极型晶体管
摘要:
1.绝缘栅双极型晶体管的概念与结构
2.绝缘栅双极型晶体管的工作原理
3.绝缘栅双极型晶体管的特点与应用
4.绝缘栅双极型晶体管的发展趋势
正文:
绝缘栅双极型晶体管(简称IGBT)是一种高反压大电流器件,它是由双极型三极管(BJT)和绝缘栅型场效应管(MOSFET)组成的复合全控型电压驱动式功率半导体器件。
IGBT 兼具MOSFET 的高输入阻抗和双极型晶体管的低导通压降两方面的优点,具有较高的开关速度和较低的导通损耗,常用于大功率放大输出、电磁炉等应用。
IGBT 的工作原理是通过控制MOS 管的栅极,再由MOS 管控制晶体管的通断。
当MOS 管的栅极施加正向电压时,MOS 管导通,晶体管也随之导通;当MOS 管的栅极施加负向电压时,MOS 管截止,晶体管也随之截止。
这样,通过控制MOS 管的栅极电压,可以实现对晶体管的控制,从而达到开关电路的目的。
绝缘栅双极型晶体管具有以下特点:
1.高反压:由于晶体管的集电极和发射极之间有较高的反压,使得IGBT 可以承受较高的电压。
2.大电流:IGBT 具有较大的电流容量,可以承受较大的电流。
3.高开关速度:IGBT 的开关速度较高,可以实现高频率的开关操作。
4.低导通压降:IGBT 的导通压降较低,可以降低能耗和导通损耗。
随着科技的发展,绝缘栅双极型晶体管的应用领域不断扩大,包括新能源、工业控制、家用电器等领域。
绝缘栅双极晶体管(IGBT)
绝缘栅双极晶体管【IGBT】全名:绝缘栅双极晶体管英文:(Insulated-gate Bipolar Transistor)简称:IGBTGTR和MOSFET的复合体,1986年投入市场后,取代了GTR和一部分MOSFET 的市场,中小功率电力电子设备的主导器件继续提高电压和电流容量,以期再取代GTO的地位1. IGBT的结构和工作原理三端器件:栅极G、集电极C和发射极EIGBT的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号(1)IGBT的结构如图所示,N沟道MOSFET与GTR组合——N沟道IGBT(N-IGBT)IGBT比P-MOSFET多一层P+注入区,形成了一个大面积的P+N结J1使IGBT导通时由P+注入区向N基区发射少子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,一个由MOSFET驱动的厚基区PNP晶体管RN为晶体管基区内的调制电阻(2)IGBT的工作原理驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压UGE决定导通: UGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通导通压降:电导调制效应使电阻RN减小,使通态压降小关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断2. IGBT的静态工作特性IGBT的转移特性和输出特性a) 转移特性 b) 输出特性(1)转移特性:IC与UGE间的关系,与MOSFET转移特性类似。
开启电压UGE(th)——IGBT能实现电导调制而导通的最低栅射电压UGE(th)随温度升高而略有下降,在时,UGE(th)的值一般为2~6V(2)输出特性(伏安特性):以UGE为参考变量时,IC与UCE间的关系分为四个区域:正向阻断区、有源区、饱和区和击穿区。
绝缘栅双极晶体管的原理
绝缘栅双极晶体管的原理绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,简称IGBT)是一种强大的功率开关,具有MOSFET和双极晶体管的优点。
它结合了MOSFET的高输入电阻和低功率驱动需求以及双极晶体管的低导通电阻和高功率承载能力。
IGBT广泛应用于电力电子领域,如交流驱动、逆变器、变频器、电力变压器等。
IGBT的结构主要由P型、N型硅材料和三个控制区域构成,分别是漏极区、绝缘栅区和发射极区。
首先,IGBT的控制区域是绝缘栅区,其中有一个绝缘栅极层。
绝缘栅极由绝缘氧化物层、控制电极和金属连接层组成。
绝缘栅极主要负责控制漏极与源极之间的电流流动。
其次,IGBT的发射极区由N型区域构成,是电流的主要控制区域。
当正向电压施加在漏极上时,P型基区的电子与P型漂移区的空穴重新组合,形成一个N 型区域。
在正常工作条件下,IGBT处于关闭状态。
当绝缘栅极加上正向电压时,绝缘栅极下方的N型区域和P型漂移区产生内建电场。
这个电场将吸引P型漂移区的空穴向N型区域移动,形成一个名为空穴输运层(holes injection layer)的区域。
当发射极加上正向电压,空穴输运层的空穴将通过N型区域向漏极流动。
在这个过程中,N型区域的电子与空穴再次发生复合,形成一个N型输运层,其中的电子将通过N型纵向导通区流向漏极。
因此,IGBT可以形成一个NPN双极结构。
IGBT的导通过程是通过绝缘栅极的电压控制的。
当绝缘栅极处于低电平时(通常为零电压),N型输运层的电子将被吸引到绝缘栅极下的P型漂移区。
由于电子与空穴再次发生复合,电流无法流过N型区域,因此IGBT处于关断状态。
当绝缘栅极加上正向电压时,电子从N型输运层流向绝缘栅极,形成一个细弱的沟道。
这个沟道会引起N型输运层与P型漂移区之间的空间电荷区扩展,使得电流可以通过N型区域流向漏极。
当绝缘栅极施加足够的电压时,空间电荷区达到最大并且IGBT进入饱和导通状态。
绝缘栅双极型晶体管作用
绝缘栅双极型晶体管作用
绝缘栅双极型晶体管(IGBT)是一种高性能功率半导体器件,广泛应用于电力电子、交通运输、工业自动化等领域。
其主要作用如下:
1. 放大信号:IGBT具有较高的电压放大倍数和较低的输入阻抗,能够有效地放大小信号。
2. 控制电流:IGBT的控制端可以通过调节输入信号的大小来控制输出电流的大小,从而实现对电路的精确控制。
3. 开关功能:IGBT具有快速开关和可靠性高等特点,可以在高频率下进行开关操作,并且不易出现损坏情况。
4. 降低功耗:由于IGBT具有较低的导通损耗和截止损耗,因此能够有效地降低功耗并提高效率。
5. 保护作用:当负载电流过大或过载时,IGBT可以自动切断电路以避免设备损坏,并保护系统安全运行。
6. 防止反向漏电流:由于IGBT具有良好的反向阻断特性,能够有效地防止反向漏电流对设备造成损害。
总之,绝缘栅双极型晶体管是一种高性能功率半导体器件,具有多种作用,能够广泛应用于各个领域。
IGBT简介介绍
过压、过流及短路保护
01
过压保护
为了防止IGBT在过高的电压下工作导致损坏,需要设置过压保护电路。
当电压超过设定值时,保护电路会迅速动作,切断IGBT的工作电源。
02
过流保护
当IGBT流过过大的电流时,过流保护电路会起作用,限制电流继续增加
,避免IGBT因过热而损坏。
03
短路保护
短路是IGBT运行过程中可能遇到的严重问题。短路保护电路能在发生短
IGBT具有较好的热稳定性 ,能够在高温环境下正常 工作。
IGBT的应用领域
电源变换
IGBT广泛应用于DC-DC变换器、ACDC整流器等电源电路中,实现电压、 电流的变换和控制。
01
02
电机驱动
IGBT可用于电机驱动电路中,如电动 汽车、电动自行车等驱动系统。
03
焊接设备
IGBT作为核心器件,应用于电阻焊、 电弧焊等焊接设备中。
IGBT的市场前景及展望
新能源汽车市场
随着新能源汽车市场的持续增长,IGBT作为核心 功率器件,其需求将继续旺盛。
智能电网与可再生能源
智能电网建设及可再生能源的快速发展将为IGBT 提供新的增长点。
轨道交通市场
轨道交通的电气化与智能化趋势将推动IGBT在轨 道交通领域的应用不断扩大。
展望
未来,随着技术的不断进步,IGBT将在更多领域 得到应用,市场规模将持续扩大。同时,国内品 牌在技术和市场上将不断取得突破,逐步缩小与 国外品牌的差距。
IGBT的驱动方式
栅极驱动:通过控制栅极与发射极之间的电压来控制IGBT的开通与关断。这种方式 简单、直接且效率高。
电流源驱动:通过电流源来为栅极提供驱动电流。这种方式更为稳定,但需要额外 的电流源。
绝缘栅双极型晶体管设计与工艺
绝缘栅双极型晶体管设计与工艺
绝缘栅双极型晶体管(IGBT)是一种常用的功率半导体器件,通常用于高电压、高电流和高功率应用中。
IGBT具有具有高
开关速度、低导通压降和低饱和压降等优点,被广泛应用于电力电子和电动机控制等领域。
以下是IGBT的设计与工艺步骤:
1. 设计IGBT电路结构:根据需要的电流和电压要求,确定IGBT的电路结构,包括NPN功率二极管的织构和PNP织构等。
同时,还要确定绝缘栅结构的参数,例如栅极长度、栅极宽度和栅极氧化层厚度等。
2. 设计IGBT掺杂层结构:在半导体衬底上进行多次掺杂和扩
散工艺,形成绝缘栅结构、集电极结构和发射极结构。
掺杂的材料和掺杂浓度要根据所需的电流和电压要求来确定。
3. 完成绝缘栅结构:使用物理气相沉积(PECVD)或化学气
相沉积(CVD)技术制备绝缘栅氧化层。
4. 完成金属电极:利用光刻和蒸镀工艺对铝或其他金属材料进行沉积和定义,形成栅极、集电极和发射极等金属电极。
5. 完成封装:将已制备好的IGBT芯片封装到塑料外壳中,并
连接外部引脚。
封装过程中需要考虑导热性能和电气隔离等。
6. 进行测试和性能验证:对制备好的IGBT进行电气性能测试
和可靠性测试,确保其性能符合要求。
以上是绝缘栅双极型晶体管设计与工艺的一般步骤,具体的步骤和工艺参数可能会有所不同,取决于具体的需求和制造工艺。
IGBT绝缘栅双极晶体管解析
IGBT是Insulated Gate Bipolar Transistor的英文缩写绝缘门双极性晶体管绝缘栅双极晶体管缩写IGBTMOSFET是场效应管,因为只有一个极性的粒子导电,又称为单极性晶体管。
是功率管,有放大作用,IGBT的本质就是一个场效应管,不过是在场效应管的基础上加上了P+层。
是结合了场效应管&双极性晶体管的特点。
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。
由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。
虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。
较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
IGBT基本结构见图1中的纵剖面图及等效电路。
导通IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。
如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。
基片的应用在管体的P+和N+ 区之间创建了一个J1结。
当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。
如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。
最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。
关断当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。
绝 缘 栅 双 极 型 晶 体 管
绝缘栅双极型晶体管 IGBT是由 MOSFET和双极型晶体管复合而成的一种器件,其输入极为 MOSFET,输出极为 PNP晶体管,因此,可以把其看作是 MOS输入的达林顿管。
它融和了这两种器件的优点,既具有 MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。
在中大功率的开关电源装置中, IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或 GTO。
但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。
因而,在选择 IGBT时除了要作降额考虑外,对 IGBT的保护设计也是电源设计时需要重点考虑的一个环节。
工作原理IGBT的等效电路如图 1所示。
由图 1可知,若在 IGBT的栅极和发射极之间加上驱动正电压,则 MOSFET导通,这样 PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若 IGBT的栅极和发射极之间电压为 0 V,则 MOSFET截止,切断 PNP晶体管基极电流的供给,使得晶体管截止。
由此可知, IGBT的安全可靠与否主要由以下因素决定:—— IGBT栅极与发射极之间的电压;—— IGBT集电极与发射极之间的电压;——流过 IGBT集电极-发射极的电流;—— IGBT的结温。
如果 IGBT栅极与发射极之间的电压,即驱动电压过低,则 IGBT 不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则 IGBT可能永久性损坏;同样,如果加在 IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过 IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流, IGBT的结温超过其结温的允许值, IGBT都可能会永久性损坏。
2 保护措施在进行电路设计时,应针对影响 IGBT可靠性的因素,有的放矢地采取相应的保护措施。
绝缘栅双极型晶体管及应用进行讨论
绝缘栅双极型晶体管及应用进行讨论绝缘栅双极型晶体管(IGBT)是一种功能强大的功率器件,广泛应用于各种电力和电子系统中。
它结合了双极型晶体管(BJT)和金属氧化物半导体场效应晶体管(MOSFET)的优点,具有高电压、高电流和高功率的能力。
首先,我们来讨论IGBT的结构。
IGBT由NPN型双极型晶体管和P型MOSFET组成,其中双极型晶体管负责控制电流,MOSFET负责控制电压。
IGBT的基极连接双极型晶体管的集电极,发射极连接双极型晶体管的基极,而栅极连接MOSFET的栅极。
这种结构使得IGBT既能够实现高电流放大能力,又能够通过栅极控制电流。
IGBT的工作原理是这样的:当栅极施加正电压时,栅极结与源结之间产生正向偏压,导致P型基区形成大量的N型电子,使得NPN型双极型晶体管处于导通状态。
通过控制栅极电压的大小,可以精确地控制双极型晶体管的导通程度,从而控制电流的大小。
当栅极电压为零或负电压时,IGBT处于截止状态,不导通电流。
这种特性使得IGBT可以用作开关器件,在高功率应用中实现快速的开关操作。
IGBT具有许多应用领域,特别是在电力电子和电力系统中。
一种主要的应用是电力转换器,用于将直流电转换为交流电或反过来。
IGBT可以承受高电压和高电流,因此非常适合于这些高功率转换应用。
此外,IGBT还用于电机驱动器,用于控制电动机的速度和转向。
IGBT的快速开关能力使电机驱动系统更加高效,减少能量损耗。
此外,IGBT还常用于电力系统中的静态无功补偿(SVC)和静态同步补偿(STATCOM)系统中。
这些系统用于实现电网的功率因数校正和电压调节。
IGBT的快速开关特性和高电压能力使得它在这些动态补偿系统中非常有用。
总的来说,绝缘栅双极型晶体管(IGBT)是一种能够高效控制功率的器件。
它结合了双极型晶体管和MOSFET的优点,具有高电压、高电流和高功率的能力。
IGBT广泛应用于电力电子和电力系统中,如电力转换器、电机驱动器、静态无功补偿和静态同步补偿系统等。
igbt作用
igbt作用IGBT(Insulated-Gate Bipolar Transistor)即绝缘栅双极晶体管,是一种大功率半导体器件。
它结合了功率金属氧化物半导体场效应管(MOSFET)和功率双极型晶体管(BJT)的优点,因此广泛应用于工业控制、电力变换和电能调节等领域。
IGBT的作用主要体现在以下几个方面:1. 转换和放大作用:IGBT具有双极型晶体管的开关性能和MOSFET的驱动能力,能够实现从微安级信号到几百安的大电流的转换和放大。
这使得IGBT在电力电子领域中广泛应用于开关电源、逆变器和交流调速装置等设备中。
2. 控制电流和电压:IGBT能够精确控制电流和电压的大小,从而实现电力调节和功率控制。
通过改变IGBT的栅极电压和信号输入,可以调整输出电流和电压的大小,满足不同电气负载的需要。
3. 高电压驱动:IGBT的栅极与驱动电路之间有绝缘层,使得其具备高耐压特性,可承受几百伏至几千伏的高电压。
这使得IGBT在电力系统中可用于高电压开关设备,如变压器和断路器,以提高电力系统的效率和稳定性。
4. 低开关损耗:与双极型晶体管相比,IGBT的开关损耗要小得多。
它的导通电压降和开关速度都比双极型晶体管低,从而减少了功率损耗和能量浪费。
这使得IGBT成为高效能源转换的理想选择,广泛应用于电机驱动系统、太阳能发电装置和电动汽车等领域。
5. 保护系统:IGBT具有过流、过温、过压和短路等保护功能,可以保护设备和电路免受损坏。
例如,在逆变器中,IGBT可通过检测电流和温度来避免过载和过热,从而延长设备的使用寿命。
总之,IGBT作为一种强大和可靠的功率半导体器件,其作用在于实现大功率电流和电压的转换、放大和调节。
通过控制信号输入和电源电压,IGBT能够提供高效的能量转换,同时保护电力设备和电路免受损坏。
随着科技的不断发展,IGBT的应用领域将更加广泛,为电力系统优化和节能减排做出更大的贡献。
绝缘栅双极型晶体管并联二极管
绝缘栅双极型晶体管并联二极管绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)是一种常用的功率半导体器件,具有高电压和高电流承受能力的特点。
而并联二极管则是将多个二极管连接在一起,以增加电流承受能力和可靠性。
本文将介绍绝缘栅双极型晶体管并联二极管的原理、应用和优缺点。
一、绝缘栅双极型晶体管的原理绝缘栅双极型晶体管是一种三极管,由绝缘栅极、发射极和集电极组成。
它的工作原理是通过控制绝缘栅极的电压来控制集电极和发射极之间的电流。
当绝缘栅极施加正向电压时,形成一个导电通道,电流可以流通;而当绝缘栅极施加负向电压时,导电通道关闭,电流无法流通。
将多个绝缘栅双极型晶体管并联二极管连接在一起,可以增加电流承受能力和可靠性。
当电流通过并联二极管时,如果其中一个二极管出现故障或损坏,其他二极管可以分担其电流负荷,保证整个电路的正常工作。
并联二极管的数量越多,电流承受能力越大。
三、绝缘栅双极型晶体管并联二极管的应用绝缘栅双极型晶体管并联二极管广泛应用于各种功率电子设备和电路中,特别是在高电流和高电压场合。
以下是一些常见的应用:1. 变频器:绝缘栅双极型晶体管并联二极管可以用于变频器的输出端,以提高变频器的电流承受能力和可靠性。
2. 逆变器:逆变器将直流电转换为交流电,用于交流电源的供应。
在逆变器中使用绝缘栅双极型晶体管并联二极管可以增加电流承受能力,提高逆变器的效率和可靠性。
3. 电力电子设备:如电力变压器、电力电容器等。
绝缘栅双极型晶体管并联二极管可以在高电流和高电压的情况下,确保设备的正常工作。
4. 汽车电子:绝缘栅双极型晶体管并联二极管常用于汽车电子设备,如发动机控制单元(ECU)、点火系统等。
并联二极管的高电流承受能力保证了设备在高电流环境下的可靠性。
四、绝缘栅双极型晶体管并联二极管的优缺点绝缘栅双极型晶体管并联二极管具有以下优点:1. 增加电流承受能力:通过并联多个二极管,可以增加整个电路的电流承受能力,提高设备的可靠性。
IGBT
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管和MOS(绝缘栅型场效应管组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET 的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
))对于应用IGBT晶体管的人来说,我们主要有以下参数需要了解:IGBT的测试参数包括栅极-发射极阈值电压、集电极-发射极截止电流、集电极-发射极饱和电压、IGBT开通关断时间以及续流二极管的恢复时间等[5]。
这些参数的测试方法符合国标GB/T17007-1997的标准,但部分参数的测试方法有所差异和改进。
(1)栅极-发射极阈值电压VGE(TO)测试:由电压源对被测器件施加规定的集电极-发射极电压;从零开始逐渐增加栅极-发射极间的电压,当检测到集电极电流达到规定值时,此时的栅极电压值即为栅极-发射极阈值电压。
(2)栅极-发射极漏电流IGES测试:集电极-发射极间短路;由电压源对被测器件施加规定的栅极-发射极电压,这时通过栅极-发射极回路的电流即为栅极-发射极漏电流。
(3)集电极-发射极截止电流ICES测试:栅极-发射极短路;由电压源对被测器件施加规定的集电极-发射极电压,这时通过集电极-发射极回路的电流即为集电极-发射极截止电流。
(4)集电极-发射极饱和电压VCE(sat)测试:由电压源对被测器件施加规定幅值和脉宽的栅极电压;调节集电极-发射极电流至规定值,这时相对栅极脉冲稳定部分的集电极-发射极电压即为集电极-发射极饱和电压值。
(5)开通时间ton测试:由电压源对被测器件施加规定幅值、脉宽及上升率的栅极电压;调节集电极电流至规定幅值,开通时间是指开通延迟时间与集电极电流上升时间之和。
绝缘栅双极型晶体管工作原理
绝缘栅双极型晶体管工作原理绝缘栅双极型晶体管,听起来有点高大上,其实它就像一位舞台上的明星,既能独当一面,又能与其他演员配合得天衣无缝。
想象一下,在电路的世界里,它就像个神奇的开关,能在瞬间把电流导入或切断。
平常说的电流,就像是马路上的车辆,流动起来的时候,一切都井然有序,但如果遇上堵车,嘿,麻烦就来了。
那绝缘栅双极型晶体管(IGBT)到底是怎么工作的呢?它有个超厉害的结构。
想象一下,一座高楼,最上面有个阳台,阳台上有个小门,这个小门就是“栅极”。
它负责控制“楼里”的大批电流。
这楼里有电流“公寓”,一进一出,各种电流在这里忙得不可开交。
有了这个小门,电流就能听从指挥,谁进谁出,完全看这个栅极的心情。
我们来聊聊栅极的工作。
它有个特别的地方,就是不需要直接连接电流。
就像魔法一样,只要给栅极施加一个小小的电压,它就能“喊”电流过来。
电流像听话的小孩,听到指令就乖乖地涌动过来,简直是太神奇了!不过,栅极可不是随便就能控制的,得讲究技巧。
要是施加的电压不够,电流就不愿意配合,那就尴尬了。
再来说说这小门的“材料”。
绝缘层就像是它的保护罩,确保了电流不随便乱跑。
要知道,这保护罩是多么重要,稍不留神,电流就可能打破规则,产生短路,那就麻烦大了。
正因为有了这个绝缘层,IGBT才能在高电压和大电流的环境下,依然稳稳当当地工作。
IGBT不仅仅是个开关,它的应用可广泛了。
比如,咱们日常见到的电动汽车和风力发电机里,IGBT都是个大忙人。
它们帮助电能转化、调节,确保一切运转如飞。
再比如,咱们的冰箱、空调,里面的电路都有它的身影,真是家庭的“隐形英雄”。
如果我们进一步深入,IGBT的速度也让人惊叹。
它的开关速度可不是一般的快,像风一样迅捷,瞬间就能切换。
想想,开关电源的时候,简直跟开赛车一样刺激。
这速度让它能轻松应对各种负载变化,绝对是电力系统的“超级英雄”。
不过,IGBT也有小脾气。
长时间工作会让它发热,就像人在阳光下晒久了会中暑一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
在使用IGBT的场合,当栅极回路不正 常或栅极回路损坏时(栅极处于开路状 态),若在主回路上加上电压,则IGBT就 会损坏,为防止此类故障,应在G栅极与E 发射极之间串接一只10KΩ左右的电阻。
图片
名词定义
• • • • • • • • • • 专业术语 符号 定义 集电极、发射极间电压 VCES 栅极、发射极间短路时的集电极,发射极间的最 大电压 栅极发极间电压 VGES 集电极、发射极间短路时的栅极,发射极间最大 电压 集电极电流 IC 集电极所允许的最大直流电流 耗散功率 PC 单个IGBT所允许的最大耗散功率 结温 Tj 元件连续工作时芯片温厦 关断电流 ICES 栅极、发射极间短路,在集电极、发射极 间加上 指定的电压时的集电极电流 漏电流 IGES 集电极、发射极间短路,在栅极、集电极间加上 指定的电压时的栅极漏电流 饱和压降 V CE(sat) 在指定的集电极电流和栅极电压的情况下,集电 极、发射极间的电压。 输入电容 Clss 集电极、发射极间处于交流短路状态,在栅极、发 射极间及集电极、发射极间加上指定电压时, 栅极、发射极 绝缘栅双极晶体管(IGBT)本质上是一个场 效应晶体管,只是在漏极和漏区之间多了一个 P 型层 • IEC规定:源极引出的电极端子(含电极端) 称为发射极端(子),漏极引出的电极端(子) 称为集电极端(子)
工作原理
• 在IGBT的栅极G和发射极E之间加上驱动正 电压,则MOSFET导通,这样PNP晶体管的集电 极C与基极之间成低阻状态而使得晶体管导通; • 若IGBT的栅极和发射极之间电压为0V,则 MOS截止,切断PNP晶体管基极电流的供给,使 得晶体管截止。 • IGBT与MOSFET一样也是电压控制型器件, 在它的栅极G—发射极E间施加十几V的直流电压, 只有在uA级的漏电流流过,基本上不消耗功率。