检测技术第一章第三节
自动检测技术第一章 知识点
第一章 检测技术的基本概念 考核知识点和考核要求:1、领会:测量的基本概念及测量方法,测量结果的数据统计及处理2、掌握:测量误差及分类,传感器及其基本特性3、熟练掌握:绝对误差和相对误差的计算,仪表的精度等级 第一节 测量的基本概念与方法 1)根据测量是否随时间变化:静态测量。
例如:激光干涉仪对建筑物的缓慢沉降做长期监测是静态测量 动态测量。
例如:光导纤维陀螺仪测量火箭飞行速度、方向是动态测量 2)根据测量的手段不同:直接测量:直接读取被测量的测量结果。
例如:磁电式仪表测量电流电压、离子敏MOS 场效应管晶体测量PH 值和甜度间接测量:对与被测量有确定函数关系的量进行直接测量,再代入函数关系式计算测量量。
例如:测量物体密度3)根据测量结果的显示方式:模拟式测量和数字式测量(其中:数字式测量比模拟式测量精度要高) 4)根据是否是在生产过程中或流水线上测量:在线测量。
例如:自动化机床边加工边测量,在实际中大多采用在线测量方式 离线测量5)根据测量的具体手段:偏位式测量:被测量作用于仪表内部的比较装置,使该比较装置产生偏移量,直接以仪表的偏移量表示被测量的测量方式(直接用偏移量的大小表示测量量)。
例如:弹簧秤测量物体质量,高斯计测量磁场强度。
特点:简单迅速但精度低。
易产生灵敏度漂移和零点漂移零位式测量:被测量与仪表内部的标准量比较,当系统达到平衡时,用已知标准量的值决定被测量的值(标准量的值为测量量的值)。
例如:天平测量物体质量,平衡式电桥测量电阻值。
特点:精度高但平衡复杂。
微差式测量:预先使被测量与测量装置内部的标准量取得平衡,当被测量有微小变化时,测量装置失去平衡,偏位式仪表指示出变化部分的数值(先平衡再有微量变化时)。
例如:天平测量化学药品,钢板厚度测量。
特点:上述两者的综合 第二节 测量误差及分类1.真值:是指在一定条件下被测量客观存在的实际值。
分类:1)理论真值(例:三角形的内角之和为180°)2)约定真值(例:标准条件下,水的三相点为273.16K ,金的凝固点为1064.18℃)3)相对真值(例:凡精度高一级或几级的仪表的误差是精度低的仪表误差的1/3以下时,则精度高的仪表的测量值可认为是相对真值)2.测量误差:测量值与真值之间的差值 根据其特征不同:1)绝对误差:是指测量值A x 与真实值A 0之间的差值,即Δ=A x -A0 2)相对误差:反应测量值偏离真值程度的大小实际相对误差A γ:绝对误差Δ与被测量的真值A0的百分比, %1000⨯∆=A Aγ示值(标称)相对误差x γ:绝对误差∆与被测量A x 的百分比,%100⨯∆=xxA γ满度(引用)相对误差m γ:绝对误差∆与仪器满度值A m 的百分比,%100m⨯∆=A mγ3. 准确度等级S :当∆ 取仪表的最大绝对误差值∆m 时,满度相对误差常被用来确定仪表的准确度等级,100mm⨯=A ΔS 注意:仪表的准确度在工程中也常称为“精度”,准确度等级习惯上称为精度等级。
01第一章 检测技术基本概念
B 1 若 则可能含有变化的系统误差。 1 2A n
3.粗大误差
在对重复测量所得一组测量值进行数据处理之前, 首先应将 具有粗大误差的可疑数据找出来加以剔除。但绝对不能凭主观意 愿对数据任意进行取舍, 而是要有一定的根据。因此要对测量数 据进行必要的检验。
完整描述应包括:估计值(比值+误差)、测量单位、 不确定度等。
二、 测量方法
测量方法:实现被测量与标准量比较得出比值的方法。
测量方法分类
根据获得途径可分为直接测量、间接测量、组合测量; 根据测量方式可分为偏差式测量、零位法测量、微差法测量; 根据被测量变化快慢可分为静态测量、动态测量; 根据测量的精度因素情况可分为等精度测量、非等精度测量;
3)准则检查法:
马利科夫判据:将残余误差前后各半分两组,若“Σ vi
前”与“Σ vi后”之差明显不为零,则可能含有线性系
统误差。
阿贝检验法则:检查残余误差是否偏离正态分布,若偏 离,则可能存在变化的系统误差。将测量值的残余误差 按测量顺序排列,设 A v 2 v 2 v 2 1 2 n
检测技术的基本概念
本章学习测量的基本概念、测量方 法、误差分类、测量结果的数据统计处
理,传感器的基本特性等。他们是检测
与转换技术的理论基础。
第一节 一、测量
测量的基本概念及方法
测量:以确定被测量值为目的的一系列操作。 将被测量与同种性质的标准量进行比较,确定被测 量对标准量的倍数的一系列操作。
x n u
特点:可以获得比较高的测量精度, 但测量过程比较复杂, 费 时较长, 不适用于测量迅速变化的信号。
汽车检测与诊断技术
80年代中期,汽车监理由公安部主管,1990年底统 年代中期,汽车监理由公安部主管, 年代中期 年底统 全国已有汽车检测站600多个,形成了全国的汽 多个, 计,全国已有汽车检测站 多个 车检测网。 车检测网。到1997年,全国已建立汽车综合性能检 年 测站近千家,其中A级站 级站140多家。 多家。 测站近千家,其中 级站 多家 1990年交通部发布第 号令《汽车运输业车辆技术 年交通部发布第13号令 年交通部发布第 号令《 管理规定》 年交通部发布第29号部令 管理规定》,1991年交通部发布第 号部令《汽车 年交通部发布第 号部令《 运输业车辆综合性能检测站管理办法》。 运输业车辆综合性能检测站管理办法》 我国已能自己生产全套汽车检测设备, 我国已能自己生产全套汽车检测设备,如大型的技 术复杂的汽车底盘测功机、发动机综合分析仪、 术复杂的汽车底盘测功机、发动机综合分析仪、四 轮定位仪、悬挂检测台、制动检测台、排气分析仪、 轮定位仪、悬挂检测台、制动检测台、排气分析仪、 灯光检测仪等等。 灯光检测仪等等。 国内已发布实施了有关汽车检测的国家标准、 国内已发布实施了有关汽车检测的国家标准、行业 标准、计量检定规程等100多项。从汽车综合性能检 多项。 标准、计量检定规程等 多项 测站建站到汽车检测的具体检测项目, 测站建站到汽车检测的具体检测项目,都基本作到 了有法可依。 了有法可依。
三、测量误差
1)按误差出现规律性分:
系统误差产生原因:
传感器原理方法上存在的误差(近似公 式代替) 由于元件或装置本身质量不高而产生的 误差 由于气温、湿度、气压等因素带来的误 差 人为因素产生的误差
三、测量误差
2)按被测量随时间变化的情况分类: 按被测量随时间变化的情况分类: 按被测量随时间变化的情况分类
第一章检测技术的基本概念
教师授课方案(首页)教案附页测量是借助专门的技术和仪表设备,采用一定的方法取得某一客观事物定量数据资料的认识过程。
二、测量的方法:可分为静态测量和动态测量、直接测量和间接测量、模拟式测量和数字式测量、接触式测量和非接触式测量、在线测量和离线测量。
根据测量的具体手段来分,又可分为偏位式测量、零位式测量和微差式测量。
第二节测量误差及分类【本节内容设计】由误差分类以及产生误差的原因学习之后进行有关误差计算、测量结果的数据统计处理进行传感器的基本特性中的静态特性的学习为以后学习各种传感器以及检测转换技术做知识储备【授课内容】一、误差的分类1、介绍:真值A0、绝对误差:Δ=A x–A(1-1)2、示值(标称)相对误差x3、引用误差m%100m⨯∆=A m γ (1-4) 4、当取仪表的最大绝对误差值m时,引用误差常被用来确定仪表的准确度等级S ,即100mm⨯=A ΔS (1-5) 我国的模拟仪表有下列七种等级,准确度等级的数值越小,仪表的就越昂贵表1-1 仪表的准确度等级和基本误差准确度等级 0.1 0.20.51.0 1.52.5 基本误差±0.1%±0.2% ±0.5%±1.0%±1.5%±2.5%±仪表的准确度与“精度”举例:在正常情况下,用0.5级、量程为100℃温度表来测量温度时,可能产生的最大绝对误差为:Δm =(±0.5%)×A m =±(0.5%×100)℃=±0.5℃例1-1 某压力表准确度为2.5级,量程为0~1.5MPa ,求:1)可能出现的最大满度相对误差m。
2)可能出现的最大绝对误差m为多少kPa ?3)测量结果显示为0.70MPa 时,可能出现的最大示值相对误差x。
解 1)可能出现的最大满度相对误差可以从准确度等级直接得到,即m=±25%。
2) m =mA m =±25%1.5MPa =±0.0375MPa =±37.5kPa由上例可知,x的绝对值总是大于(在满度时等于)m例1-2 现有准确度为0.5级的0~300℃的和准确度为1.0级的0~100℃的两个温度计,要测量80℃的温度,试问采用哪一个温度计好?解 计算用0.5级表以及1.0级表测量时,可能出现的最大示值相对误差分别为±1.88%和±1.25%。
检测技术—第一章
① 真值; ② 标称值 ③ 示值 ④ 精度 ⑤ 重复性 ⑥ 误差公理
1、真值:被测量的真实数值,真值是真实存在的, 但不可测量。
1)理论真值。如:一大气压下水的沸点为100℃
2)约定真值。如:米、千克、安培
米的定义:光在真空中,在1/299792458秒时间 间隔内所行路径的长度。
系统误差也称装置误差,它反映了测量值偏离真 值的程度。凡误差的数值固定或按一定规律变化者, 均属于系统误差。
系统误差是有规律性的,因此可以通过实验的方 法或引入修正值的方法计算修正,也可以重新调整测 量仪表的有关部件予以消除。
说明: (1) 系统误差估算:无限多次测量结果 的平均值减去该被测量的真值。
2 1 2 3
3
x0
x
图 正态分布曲线
2、标准偏差及其估计
标准偏差表示测量值的分散程度。标准偏差越小,表示 测得值的离散性小,也即小误差出现的机会越多,而大误差 出现的机会少,这意味着测量精度高;反之,标准偏差大, 曲线平坦,表示所测得值分散。
当测量次数无穷大时,标准偏差可表示如下
lim N
产生粗大误差的一个例子
第三节 随机误差的分析与处理
在测量中, 对测量数据进行处理时, 首先判断测 量数据中是否含有粗大误差, 如有, 则必须加以剔除。 再看数据中是否存在系统误差, 对系统误差可设法消 除或加以修正。 对排除了系统误差和粗大误差的测 量数据, 则利用随机误差性质进行处理。
一.随机误差及其分布
(3)理论计算或按经验公式计算
2、变值系统误差的判别法
(1)观察法
根据测量数据的各个残差大小和符号的变化规律,直接 由误差数据或误差曲线图形来判断有无系统误差。这种方法 主要适用于发现变值系差。通常将测量列的残差做散点图:
检测技术的基本概念讲解
分压比电路的计算公式如下:
对圆盘式电位器来说,Uo 与滑动臂的旋转角度成正比:
Uo
360 Ui
直滑电位器式传感器
的输出电压Uo与滑动触点C 的位移量x成正比:
Uo
x L Ui
二、传感器分类
传感器的种类名目繁多,分类不尽相 同。常用的分类方法有:
1)按被测量分类:可分为位移、力、 力矩、转速、振动、加速度、温度、压力、 流量、流速等传感器。
第一章 检测技术的基本概念
本章学习测量的基本概念、测量方法、 误差分类、测量结果的数据统计处理、测量 不确定度,以及传感器的基本特性等,是检 测技术的理论基础。
第一节 检测技术的基本概念及方法
静态测量
对缓慢变化的对 象进行测量亦属于静 态测量。
最高、最低 温度计
动态测量
地震测量 振动波形
便携式仪表
可以显示波形的 手持示波器
直接测量
电子卡尺
间接测量
对多个被测量进行测量,经过计算求得 被测量。
(阿基米德测量皇冠的比重)
接触式测量
非接触式测量
例:雷达测速
车载电子警察
离线测量
产品质量检验
在线测量
在流水线上,边加工, 边检验,可提高产品的一致 性和加工精度。
第二节 测量误差及分类
绝对误差:
2)按测量原理分类:可分为电阻、电 容、电感、光栅、热电耦、超声波、激光、 红外、光导纤维等传感器。
本教材采用哪一种分类法?
三、传感器基本特性
传感器的特性一般指输入、输出特性, 包括:灵敏度、分辨力、分辨率、线性度、
稳定度、电磁兼容性、可靠性等。
灵敏度 :
灵敏度是指传感器在稳态下输出变 化值与输入变化值之比,用K 来表示:
检测与转换技术-第01章 检测与转换技术的理论基础
设总的测量次数n=150次。现将150个测量值(xi)由小到大排列分 成11个区间,或按误差大小排列,并取等间隔值。
随机误差实验结果
对于不同的间隔值△δi或△xi ,频率ni/n值也不同,间隔值越大, 频率值也越大。因此,对同一组实验数据,频率直方图也将不同。若取
量ni/(n △ δ i)作为纵坐标,则可避免此问题。
第一章 检测与转换技术的理论基础
第一节 检测与转换技术的基本概念
第二节 测量误差的概念和分类
第三节 随机误差概率密度的正态分布
第四节 算术平均值与标准误差
第五节 置信区间与置信概率
第六节 粗差的判别与坏值的舍弃
第七节 系统误差
第八节 误差的传递
第九节 误差的合成
第十节 最小二乘原理
第十一节 曲线的拟合
独立的及随机的因素综合影响就产生了随机误差。根据概率论的中心极 限定理知:大量的、微小的及独立的随机变量的总和服从正态分布。显 然,随机误差必然服从正态分布。 凡是概率密度可由高斯方程描述的随机变量必然遵循正态分布,而 服从正态分布的随机变量,其概率密度也一定可由高斯方程描述。随机 误差和无系差、无粗差的测量值就是这样的随机变量,它们的概率密度
都是电信号)。
信息转换是将所提取的有用信息,根据下一单元需要,在幅值、功 率及精度等方面进行处理和转换。
信息处理的任务,视输出环节的需要,将变换后的电信号进行数字
运算、A/D变换等处理。 信息传输的任务是,在排除干扰的情况下经济地、准确无误地把信
息进行传递。
第二节 测量误差的概念和分类
一、有关测量技术中的部分名词
(1)等精度测量 。 (5)标称值 。 二、误差的分类 1.按表示方法分类
(2)非等精度测量 。 (6)示值 。
1检测技术基础知识-概述
主要测量被测量随时间的变化规律。
2.频域测量(稳态测量)
主要目的是获取待测量与频率之间的关系。
3.数据域测量(逻辑量测量)
主要是用逻辑分析仪等设备对数字量或电路的逻辑状
态进行测量。
4.随机测量(统计测量)
主要是对各类噪声信号进行动态测量和统计分析。
1.5 xm m xm 100 1.5V 100
可见:同一量程内,测得值越小,示值相对误差 越大。因此测量中所用仪表的准确度并不是测量 结果的准确度,一般测得值的准确度是低于仪表 的准确度,在示值和满度值相等时两者才相等。 例2:某1.0级电流表,满度值Xm=100uA,求测量值 测量时,为减小误差,示值应尽量接近满度值, 一般也不小于满度值的2/3为宜。 X1=100uA,X2=80uA,X3=20uA时的绝对误差和示值
小依次划分为0.1、0.2、0.5、1.0、1.5、2.5和5.0七级。 如某电压 表S=0.5,即表明它的准确度等级为0.5级,也就是它的满度相对 误差不超过0.5%,即 m 0.5% ,习惯上写成 m 0.5%。
例1:某电压表S=1.5,试标出它在0-100V量程中的最
大绝对误差。 解:该表在0-100V量程内上限值(仪表满度值)为 Xm=100V,而S=1.5,所以
第三节 误差理论
3.1 测量误差的基本概念
误差公理 真值 指定真值(约定真值) 实际值(相对真值) 标称值 示值(测量值)
3.2 测量误差的分析
1.按表示方法分析 (1)绝对误差:示值AX与被测量真值A0之间的差值。
Δ A=AX-A0 式中: Δ A为绝对误差,AX为示值(测量值), A0为被测量的真值,但该值一般很难得到,所以 一般用实际值A来代替被测量的真值。即绝对误差一般表 示为Δ X=AX-A 修正值:实际值A与示值AX之间的差值。 C=A-AX C为修正值,其绝对值和绝对误差Δ X相等,但符号相反。 即: C= -Δ X =A-AX
培训教材3(计测技术)
误差
以偏离:“真值”的 程度为划分别的依 据 显著歪曲测量结果的误差_粗大误差
单个无规律,多次测量时,整体服从统计规律___随机误差
7
第三章 形状和位置误差的测量
1、形状公差符号
分类 形 状 公 差
第一节 形状和位置公差种类和代号
项目 直线度 平面度 圆度 圆柱度 线轮廓度 面轮廓度 位 置 公 差 定向 符号 分类 项目 平行度 垂直度 倾斜度 同轴度 符号
第三节、系统误差、随机误差与粗大误差之间的相互关系
系统误差、随机误差与粗大误差分别反映了测量结果与被测“真值”之间的关系 系统误差:反映了测量结果与数据处理(例如读取平均值)后与“真值”的差距,对于怛定误差来 这差距值和正负符号固定不变的,系统误差的大小是测量结果正确度的标志。 说 随机误差:随机误差反映每次测量的结果的一致程度,随机误差只有在多次测量时才能发现它,随 机误差的大小的是测量结果精密度的标志。 粗大误差:它的主要特征是它的“值”远远超过同一测量条件下的系统误差与随机误出值,它反 映---------不-测量的可信程度
4
第二章 误差理论及应用
第一节、误差的定义和种类
1、误差的定义:误差就差性质可分为三类)
- 系统误差:在同一条件下,多次测量同一量值时,数值和符号保持不变或按一定规 律变化的误差 --随机误差:在同一条件下,多次测量同一量值时,数字和符号以不可预定的方式变化的误差.。 --粗大误差:超出在规定条件下预计的误差。如读错,写错等 3、误差按本身因次(单位)可分为: ---绝对误差Δ:测量结果与被测量真值之间的差为绝对误差 ---相对误差E:相对误差E是测量的绝对误差Δ与被测量的真值х之比 4、测量精度:测得值与其真值相接近的程度称测量精度。分精密度、准确度、精确度 -- 精密度:是指在一定条件下进行多次测量时,所得测量结果彼此之间的符合程度 ---准确度:是指在规定的条件下,测得值偏离其真值的程度 ---精确度:是测量结果与其值的一致程度
第三节免疫检测技术的基本原理
第三节免疫检测技术的基本原理免疫检测技术是一种利用机体免疫系统对抗入侵病原体的能力进行疾病诊断和评估的方法。
该技术主要基于抗原与抗体之间的高度特异性结合反应,通过检测抗体或抗原的存在来确定其中一种疾病是否存在或预测其中一种疾病的发展趋势。
免疫检测技术的基本原理主要包括两大类:免疫层析和免疫荧光。
免疫层析(immunochromatography)是一种利用抗原与抗体反应在试纸上形成可见免疫复合物的技术。
它使用特定的膜或纸质载体,上面含有抗体、抗原或标记物,形成不同测试区域。
当待检样品进入试纸后,如存在目标抗原,则会与试纸上的抗体发生特异性结合。
在试纸上形成特定结合的复合物,被标记物所发出的染色信号或带测结果的线条可见,从而判断是否存在该抗原。
常见的免疫层析方法包括单克隆抗体纸胶片法和双特异性抗体纸胶片法,广泛应用于尿液、血液、唾液等体液的检测。
免疫荧光(immunofluorescence)是一种利用特定的荧光标记物对抗原或抗体进行检测的技术。
它通过将特定标记的抗体与待检样品中的抗原或抗体反应,产生与待检物质特异性结合的荧光信号。
该荧光信号可以使用荧光显微镜或相关设备进行观察和分析。
免疫荧光技术具有高度敏感性和高度特异性的优势,特别适用于寻找病原体感染或自身免疫疾病的抗核抗体、抗DNA抗体等。
除了以上两种基本原理外,免疫检测技术还有其他几种常见的方法。
酶联免疫吸附实验(enzyme-linked immunosorbent assay, ELISA)是一种利用酶作为标记物来检测抗原或抗体的技术。
该方法通过将酶标记的抗体与待检样品中的抗原或抗体进行特异性结合,再加入相关底物产生反应,并通过酶底物产生的染色或荧光信号的强度或颜色来判断待测物的含量或存在与否。
ELISA广泛应用于疾病的诊断、药物检测和食品安全等领域。
免疫印迹(immunoblotting)是一种将待检样品中的蛋白质分离、转移到膜上,然后使用特异性抗体与膜上的蛋白质进行反应的技术。
徐科军主编传感器及检测技术第一章绪论
rm
xm x
a%
xn x
43
第三节测量误差与数据处理 4、随机误差
(1)正态分布 (2)随机误差的评价指标 (3)测量的极限误差
44
第三节测量误差与数据处理
4、随机误差
(1)正态分布
随机误差是以不可预定的方式变化着的误差,但在一定条件下服从统计规律
y f
1
e
2 2 2
2
F 1
能量转换
能量控制型 能量转换型
物理原理: 电参量式传感器、磁电传感器、压电式传感器等
用 途: 位移、压力、振动、温度
36
第三节测量误差与数据处理
1、测量误差的概念和分类
有关测量技术中的部分名词 (1)等精度测量 (2)非等精度测量 (3)真值 (4)实际值
(5)标称值 (6)示值 (7)测量误差
误差的分类 (1)系统误差
28
第一节自动检测技术概述
1、自动检测技术的重要性
军事战斗力
“阿波罗10”: 火箭部分---2077个传感器 飞船部分---1218个传感器
神州飞船: 185台(套)仪器装置
检测参数---加速度、温度、压力、 振动、流量、应变、 声学等
29
第一节自动检测技术概述 1、自动检测技术的重要性 综上所述,自动检测技术与我们的生产、生活密切相关。它是自动化领域的重要组成部分, 尤其在自动控制中,如果对控制参数不能有效准确的检测,控制就成为无源之水,无本之木。
可见,传感器技术在发展经济、推动社会进步等方面起着重要作用。
7
第一节自动检测技术概述 1、自动检测技术的重要性
电动助力转向系统
电动转向助力系统的部件有方向盘、 转向柱、方向盘转角传感器、转向力 矩传感器、转向齿轮、转向助力电动 机及转向助力控制单元组成
生物化学检测技术
02
原理:琼脂糖是一种天然聚合长链状分子,可以形成具有刚性的滤孔,凝胶孔径的大小决定于琼脂糖的浓度。琼脂糖凝胶电泳法分离DNA,主要是利用分子筛效应,迁移速度与分子量的对数值成反比关系。因而就可依据DNA分子的大小使其分离。该过程可以通过把分子量标准参照物和样品一起进行电泳而得到检测。
电泳槽和大分子分离结果
电泳技术分类
从实际和实用出发的分类
根据分离样品样品的数量和目的分制备和分析电泳 根据结合配套的技术分免疫、层析、等电聚焦、转移、双向、脉冲梯度电场、垂直交替凝胶电泳等 根据使用电压分常压(<500)和高压电泳。 根据电泳系统pH连续与否分连续和不连续pH电泳 根据介质使用与否分自由和区带电泳(滤纸、薄层、凝胶电泳) 根据电泳槽的形式分有 垂直的、水平的、柱状的、板状的、毛细管的、湿小室及幕状的。 毛细管电泳是20世纪80年代研制出的一种新型的区带电泳方法,具有分辨率好、灵敏度高、检测快捷等特点。
带电颗粒在电场中泳动的速度称迁移率或泳动度。 电泳时,带电颗粒(球形)在介质中受力平衡匀速运动,则有: v = F阻/f = FE/f = E·q/f = E·q/(6π·r·η) v — 泳动度 F阻 — 颗粒所受阻力 FE — 颗粒所受电场力 f — 摩擦系数 由上式可见:泳动度与球形分子半径、介质粘度、颗粒所带电荷以及电场强度有关。 非球形分子(如线状DNA)在电泳过程中受到更大的阻力,即粒子的泳动度与粒子形状有关。
试剂与设备
操作方法
上样buffer
01
02
03
04
0.25%溴酚蓝 ,0.25%二甲苯青 ,40%蔗糖水溶液
0.25%溴酚蓝 ,0.25%二甲苯青 ,30%甘油水溶液
自动检测技术及应用-检测技术的基本概念精选全文
n
xi / m
解:6个测量值中,2.90m明显是“坏
1
2.2000
值”,给予剔除,将剩下5个带有随机 2
2.2001
误差的测量值求算术平均值x=2.2000m 。 3
可以认为激光干涉测长仪的测量值为 4
相对真值A0=2.204m。
5 6
2.2002 2.1999 2.1998 2.9000
则算术平均值与真值x0之间的误差为系统误差,为负的 0.004m。因此必须在上述校验后,将该磁栅的基准向左调
零位式测量例3:自动平衡电桥
1-滑线电阻 2-电刷 3-指针 4-刻度尺 5-丝杆螺母传动 6-检零放大器 7-伺服电动机
零位式测量例4:
自动平衡电位差计式记录仪表
平衡时间: 小于1s
匀速走纸
微差式测量
微差式测量法是综合了偏位式测量法速度快 和零位式测量法准确度高的优点的一种测量方 法。这种方法预先使被测量与测量装置内部的 标准量取得平衡。当被测量有微小变化时,测 量装置失去平衡。用偏位式仪表指示出其变化 部分的数值。
接触式测量
非接触式测量
例:雷达测速
车载电子警察
离线测量
产品质量的 手工检验
离线测量
产品质量检验
电路板焊接质量检验
.
在线测量
在流水线上, 边加工,边检 测,可提高产 品的一致性和 加工准确度。
例:安装有直 线光栅的数控 机床,一边加 工一边测量直 径和螺纹,到 达设定值时自 动退刀。
防护罩内为测量行程的传感器
2)可能出现的最大绝对误差Δm为多少千帕? 3)测量结果显示为0.70MPa时,可能出现的最大 示值相对误差γx。
解: 1)可能出现的最大满度相对误差可以从
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 几种典型信号的频谱
1.函数的定义
在时间内矩形脉冲或三角形脉冲及其它形状脉冲),其面积为1,当时,
的极限称为函数。
2.函数的性质
(1) 乘积性
若为一连续信号,则有
(1.41)
(1.42)
乘积结果为在发生函数位置的函数值与函数的乘积。
2)筛选性
(1.43)
(1.44)
筛选结果为在函数位置的函数值(又称采样值)。
3)卷积性
(1.45)
(1.46)3.函数的频谱
对取傅立叶变换:
(1.49)
(1.50)
1.3.2 矩形窗函数和常值函数的频谱
1.矩形窗函数的频谱
在例1.3中已经求出了矩形窗函数的频谱,并用其说明傅里叶变换的主要性质。
需要强调的是,矩形窗函数在时域中有限区间取值,但频域中频谱在频率轴上连续且无限延伸。
由于实际工程测试总是时域中有限长度(窗宽函数)的信号,其本质是被测信号与矩形窗函数在时域中相乘,因而得到的频谱必然应该是被测信号频谱与矩形窗函数频谱频域中的卷积,所以实际工程测试得到的频谱也将是在频率轴上连续且无限延伸。
2.常值函数(又称直流量)的频谱
幅值为1的常值函数的频谱为处的函数。
实际上,利用傅里叶变换时间尺度
改变性质,也可以得到同样的结论:当矩形窗的窗宽时,矩形窗函数就成为常值函数,其对应的频域森克函数即为函数
1.3.3 指数函数的频谱
1.双边指数衰减函数的频谱
双边指数衰减函数表达式为
其傅立叶变换为:
2.单边指数衰减函数的频谱
单边指数衰减函数表达式为
其傅里叶变换为
1.3.4 符号函数和单边阶跃函数的频谱
1.符号函数的频谱
符号函数可以看作是双边指数衰减函数当时的极限形式,即
2.单位阶跃函数的频谱
单位阶跃函数可以看作是单边指数衰减函数时的极限形式,即
1.3.5 谐波函数的频谱
1.余弦函数的频谱
利用欧拉公式,余弦函数可以表达为
其傅里叶变换为
2.正弦函数的频谱
同理,利用欧拉公式及其傅里叶变换有
1.3.6 周期单位脉冲序列函数的频谱
周期单位脉冲序列函数(又称采样函数)表达式为:
可见周期单位脉冲序列的频谱仍是周期脉冲序列。
时域周期则为;时域脉冲强度为1;
频域脉冲强度则为
?/p>
北京理工大学机械工程与自动化学院。