2017年中考二模考试试卷.doc
2017年中考数学二模试题(潍坊市附答案)
2017年中考数学二模试题(潍坊市附答案)2017年潍坊市初中学业水平模拟考试(二)数学试题 2017.5 注意事项: 1.本试卷分第Ⅰ卷和第Ⅱ卷两部分. 第Ⅰ卷,为选择题,36分;第Ⅱ卷,为非选择题,84分;满分120分,考试时间120分钟. 2.答卷前务必将试卷密封线内和答题卡上面的项目填涂清楚.所有答案都必须涂写在答题卡的相应位置,答在本试卷上一律无效. 第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列运算正确的是(). A.an•a2=a2n B.a3•a2=a6 C.an•(a2)n=a2n+2 D.a2n-3÷a-3=a2n 2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为(). A.0.2×107 B.2×107 C.0.2×108 D.2×108 3.如图,厂房屋顶人字形(等腰三角形)的钢架的跨度BC=10米,∠B=36o,则中柱AD(D为BC的中点)的长为(). A.5sin36o B.5cos36o C.5tan36o D.10tan36o 4.已知关于x的方程的解是非负数,则m范围是(). A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 5.若关于x的方程x2-2x+cosα=0有两个相等的实数根,则锐角α为(). A.30° B.45° C.60° D.75°6.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是().A.40πB.24πC.20 πD. 12π7.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为(). A.65° B.50° C.40° D.35° 8.如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则的值为(). A. B. C. D. 9.二次函数y=�x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是(). A.点C的坐标是(0,1) B.线段AB的长为2 C.△ABC是等腰直角三角形 D.当x>0时,y随x增大而增大 10.如图,⊙C过原点,与x轴、y轴分别交于A.D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是(). A.433 B.233 C.43D. 211.如图,在菱形ABCD中,∠B=45o,以点A为圆心的扇形与BC,CD 相切. 向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率是(). A.1-32π16 B.2- 3π8 C.1- 3π8 D.3π8 12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是(). A. B. C. D.第Ⅱ卷(非选择题共84分)说明:将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题卡的相应位置上. 二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.) 13. 分解因式:x2-y2-3x-3y=__________ 14.计算的结果是__________________.15.如图,已知函数y=ax+b与函数y=kx-3的图象相交于P(4,-6),则不等式ax+b≤kx-3<0的解集是_______________.16计算:. 17.如图,已知正方形ABCD的对角线交于点O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF 等于.18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3……,则S1+S2+S3+……+S20= _______________.三、解答题(本大题共7小题,共66分. 解答要写出文字说明、证明过程或演算步骤) 19.(本题满分8分)某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:课题测量教学楼高度方案一二图示测得数据 CD=6.9m,∠ACG=22°,∠BCG=13°, EF=10m,∠AEB=32°,∠AFB=43° 参考数据sin22°≈0.37,cos22°≈0.93,tan22°≈0.40 sin13°≈0.22,cos13°≈0.97,tan13°≈0.23 sin32°≈0.53,cos32°≈0.85,tan32°≈0.62 sin43°≈0.68,cos43°≈0.73,tan43°≈0.93 请你选择其中的一种方案,求教学楼的高度(结果保留整数)20.(本题满分8分)目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率. 21.(本题满分8分)小明早晨从家里出发匀速步行去上学.小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图象如图中的折线段OA�AB所示.(1)试求折线段OA�AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)22.(本题满分10分) LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LE D灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表: LED灯泡普通白炽灯泡进价(元) 45 25 标价(元) 60 30(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元? 23. (本题满分10分)如图,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形. (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明;若不是,请说明理由. 24. (本题满分10分)如图,在Rt△ABC中,∠C=90o,sinA= ,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF. (1)求证:DF为⊙O的切线;(2)若AO=x,DF=y,求y与x之间的函数关系式. 25.(本题满分12分)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=�x2+ x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,是否存在t,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2017年潍坊市初中学业水平模拟考试(二)数学试题参考答案及评分标准一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填在题后的小括号内,每小题选对得3分. 错选、不选或多选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B C C C C B A D B A B 二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.) 13. (x+y)(x�y�3);14. 23+1;15. -4<x≤4;16. ;17. 5;18.195π三、解答题(本大题共7小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.解方案一,解法如下:在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∵tan∠BCG=BGCG ,∴CG=6.9tan13o≈6.90.23=30,……………………………3分在Rt△ACG中,∠AGC=90°,∠ACG=22°,∵tan∠ACG=AGCG,∴AG=30×tan22°≈30×0.40=12,…………………6分∴AB=AG+BG=12+6.9≈19(米).……………………………………7分答:教学楼的高度约19米.……………………………………8分方案二,解法如下:在Rt△AFB中,∠ABF=90°,∠AFB=43°,∵tan∠AFB=ABFB,∴FB=ABtan43o≈AB0.93,……………………………3分在Rt△ABE 中,∠ABE=90°,∠AEB=32°,∵tan∠AEB=ABEB,∴EB=ABtan32o≈AB0.62,……………………………6分∵EF=EB�FB 且EF=10,∴AB0.62�AB0.93=10,……………………7分解得AB=18.6≈19(米).答:教学楼的高度约19米.………………………………………8分 20. 解:(1)共调查的中学生家长数是:40÷20%=200(人);………………1分(2)扇形C所对的圆心角的度数是:360°×(1�20%�15%�60%)=18°;…………………………………………2分 C类的人数是:200×(1�20%�15%�60%)=10(人),…………………3分补图如下:……………………4分(3)根据题意得:10000×60%=6000(人),答:10000名中学生家长中有6000名家长持反对态度;………………5分(4)设初三(1)班两名家长为A1,A2,初三(2)班两名家长为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种………………7分∴P(2人来自不同班级)=812=23.…………………………………………8分 21. 解:(1)线段OA对应的函数关系式为:s=112t(0≤t≤12)…………1分线段AB对应的函数关系式为:s=1(12<t≤20);……………………2分(2)图中线段AB的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟;……………………4分(3)由图象可知,小明花20分钟到达学校,则小明的妈妈花20�10=10分钟到达学校,可知小明妈妈的速度是小明的2倍,即:小明花12分钟走1千米,则妈妈花6分钟走1千米,故D(16,1),小明花20�12=8分钟走圆弧形道路,则妈妈花4分钟走圆弧形道路,故B(20,1).……………………………………………6分妈妈的图象经过(10,0)(16,1)(20,1)如图中折线段CD�DB就是所作图象.…………………………………………8分 22. 解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为(300-x)个,根据题意得:(60-45)x+(0.9×30-25)(300-x)=3200 ………………………………2分解得,x=200 300-200=100 答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个. ………4分(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120�a)个,这批灯泡的总利润为W元,根据题意得W=(60�45)a+(30�25)(120�a)…………………………………5分=10a+600 …………………………………6分∵10a+600≤[45a+25(120�a)]×30% …………………………………7分解得a≤75,…………………………………8分∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,………………… ………………9分此时购进普通白炽灯泡(120�75)=45个.答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.…………………………………………………………………10分23. 解:(1)CD=BE;理由如下………………………1分∵△ABC和△ADE为等边三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=60°,…2分∵∠BAE=∠BAC-∠EAC=60°-∠EAC,∠DAC=∠DAE-∠EAC=60°-∠EAC,∴∠BAE=∠DAC,……………………………………………3分∴△ABE≌△ACD,……………………………………………4分∴CD=BE;………………………………………………………5分(2)△AMN是等边三角形;理由如下:………………………6分∵△ABE≌△ACD,∴∠ABE=∠ACD,∵M、N分别是BE、CD的中点,∴BM=12BE=12CD=CN,…………7分∵AB=AC,∠ABE=∠AC D,∴△ABM≌△ACN,………………………………………………8分∴AM=AN,∠MAB=∠NAC,∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,………9分∴△AMN是等边三角形,……………………………………………10分24. (1)连接OD.∵OA=OD,∴∠OAD=∠ODA. -------------------------2分∵EF是BD的中垂线,∴DF =BF.∴∠FDB=∠B. ------------------------------------------------3分∵∠C=90°,∴∠OAD+∠B=90°.∴∠ODA+∠FDB=90°.∴∠ODF=90°.----------------------------4分又∵OD 为⊙O的半径,∴DF为⊙O的切线.-----------------------------------5分 (2)法一:连接OF.在Rt△ABC中,∵∠C=90°,sinA= ,AB=10,∴AC=6,BC =8. -----------------------------------------7分∵AO=x,DF=y,∴OC=6-x,CF=8-y,在Rt△COF中,OF2=(6-x)2+(8-x)2 在Rt△ODF中,OF2=x2+y2 ∴(6-x)2+(8-x)2=x2+y2.-----------------------------------------9分∴y=-34x+254(0<x≤6)---------------------------------------10分法二:过点O做OM⊥AD于点M.在Rt△OAM中,∵AO=x,sinA= ,∴AM=35x.----------- ------------------------------7分∵OA =OD,OM⊥AD,∴AD= 65x.∴BD=10-65x. ∵EF是BD的中垂线,∴BE=5-35x ∵cosB= BE BF = BC AB,∴5-35xy =810.-----------------------------------------9分∴y=-34x+254(0<x≤6)---------------------------------------10分 25. 解:(1)抛物线y=� x2+ x+4中:令x=0,y=4,则B(0,4);………………………………………………2分令y=0,0=�x2+ x+4,解得x1=�1、x2=8,则A(8,0);∴A(8,0)、B(0,4).…………………………………………………4分(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,�4).由A(8,0)、B(0,4),得:直线AB:y =�x+4;…………………5分依题意,知:OE=2t,即E(2t,0);∴P(2t,�2t2+7t+4)、Q(2t,�t+4), PQ=(�2t2+7t+4)�(�t+4)=�2t2+8t;……………………………………6分S=S△ABC+S△PAB= ×8×8+ ×(�2t2+8t)×8=�8t2+32t+ 32=�8(t�2)2+64;∴当t=2时,S有最大值,且最大值为64.…………………………………8分(3)∵PM∥y轴,∴∠AMP=∠ACO<90°;而∠APM是锐角,所以△PAM 若是直角三角形,只能是∠PAM=90°;即有△PAE∽△AME,所以,即……………9分由A(8,0)、C(0,�4),得:直线AC:y= x�4;所以,M(2t,t-4),得:PE=�2t2+7t+4,EM=4�t,AE=8�2t ∴(�2t2+7t+4)(4�t)=(8�2t)2,………………………………………10分故(�2t2+7t+4)(4�t)=4(4�t)2 �2t2+7t+4=4(4�t)即有2t2-11t+12=0,解之得:或(舍去)∴存在符合条件的.…………………………12分。
2017届初三二模试卷(定稿)
2017届初三年级第二次模拟调研测试数学试卷恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相....应位置...上) 1. 下列各数中,小于-2的数是A .1B .0C .-1D .-32. 月球的半径约为1 738 000m ,1 738 000这个数用科学记数法可表示为A .1.738×106B .1.738×107C .0.1738×107D .17.38×1053. 计算(-2xy 2)3的结果是A .-2x 3y 6B .-6x 3y 6C .8x 3y 6D .-8x 3y 64. 下列长度的三条线段,不能组成三角形的是A .2,6,3B .3,8,6C .10,16,8D .9,15,125. 下列水平放置的几何体中,俯视图为矩形的是6.已知关于x 的方程x 2-x +14m -1=0有两个不相等的实数根,则m 的值可能是A .4B . 5C . 6D . 77. 如图,在△ABC 中,DE ∥BC ,AD AB =13,则下列结论中正确的是A .AE EC =13B .DE BC =12C .△ADE 的周长△ABC 的周长=13D .△ADE 的面积△ABC 的面积=13A . 圆柱B . 长方体C . 三棱柱D .圆锥ECBA (第7题)D8. 经过经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是A .47B .49C .29D .199. 如图,AB 为半圆的直径,且AB =4,半圆绕点B 顺时针旋转45°,点A 旋转到A ′的位置,则图中阴影部分的面积为 A . πB . 2πC . π2D . 4π10.如图,等腰Rt △ABC 中,∠C =90°,O 是AB 的中点,点D ,E 分别在AC ,BC 边上,CE +DE =AD ,若AD BE =34,OD =m ·EO ,则m 的值为A . 34B . 45C .916D二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.函数yx 的取值范围为 ▲ .12.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =68°,则∠BOD = ▲ 度. 13.分解因式:xy 3-4xy = ▲ .14.若一组数据1,2,x ,4的众数是1,则这组数据的方差为 ▲ .15.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为 ▲ 元.16. 如图,P A ,PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,∠BAC =25°,则∠P = ▲ 度.17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 对18.如图,抛物线y =ax 2经过矩形OABC 的顶点B ,交对角线AC 于点D .则ADAC的值(第18题)(第17题)EDC BAO (第12题) EOB CA (第10题) (第9题)B A'三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(10(π3)4---;(2)先化简,再求代数式的值:(x +2x 2-2x -x -1x 2-4x +4 )÷x -4x ,其中x =-1.20.(本小题满分8分)解不等式组⎩⎪⎨⎪⎧2x -1<5,①3x +12-1≥x ,②并把它的解集在数轴上表示出来.21.(本小题满分8分)如图,点C 在线段AB 上,CD ,AE 相交于点P ,AP =CP ,AB =CD ,∠B =∠D . (1)求证:△CAD ≌△AEB ;(2)若AC =3cm ,∠BAE =30°,请问△AEB 经过怎样的变换得到△CAD ?(第20题)-3 -2 -1123PE DA(第22题)22.(本小题满分10分)某班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m = ▲ ;(2)在扇形统计图中,“其他”类所占的百分比为 ▲ ;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.23.(本小题满分8分)如图,物理实验室有一单摆在左右摆动,摆动过程中选取了两个瞬时状态,从C 处测得E ,F 两点的俯角分别为∠ACE =60°,∠BCF =45°,这时点F 相对于点E 升高了3 cm .求该摆绳CD 的长度.1.71.4)(第23题)DABCFE60°45°24.(本小题满分8分)游泳池完成换水需要经过“排水—清洗—注水”三个过程.如图,图中折线表示的是游泳池在换水过程中池中的水量y (m 3)与时间t (min )之间的关系. (1)求注水过程中y 与t 的函数关系式; (2)求清洗所用的时间.25.(本小题满分8分)如图,AB为⊙O 的直径,C 为⊙O 上一点,D为AC 的中点,DE ⊥AB ,垂足为E ,DE 交AC 于点F . (1)求证:AF =DF ;(2)若AB =10,BC =6,求DE 的长. 26.(本小题满分10分)如图,点P (t ,0)为x 轴正半轴上的一点,过点P 作x 轴的垂线,分别交抛物线y =-x 2+4x 和y =13x 2于点A ,B ,且点A 在点B 的上方.(1)求两条抛物线的交点坐标; (2)当线段OP ,PB ,AB 中恰有两条线段相等时,求(第24题)B (第25题)(第26题)27.(本小题满分13分)如图,□ABCD 中,AB =4,BC =8,点E ,F 分别在BC ,CD 边上,且∠EAF =∠ABC =60°. (1)求证:AC ⊥CD ;(2)若BE =3,求DF 的长;(3)设△AEF 的面积为S ,求S 的取值范围.28.(本小题满分13分)如图,正方形OABC 的边长为2,点A ,C 分别在x 轴,y 轴的正半轴上,曲线L :y =kx (x >0)与BC ,AB 分别交于点D ,E ,且BD =AE . (1)求k 的值;(2)若点P 在直线AC 上,且四边形BCPQ 是菱形,求证点Q 在曲线L 上; (3)点F 在线段AC 上,且不与点A ,C 及AC 的中点重合,过点F 作x 轴的垂线,交曲线L 于点 M ,过点F 作y 轴的垂线,分别交曲线L ,AB 于点N ,G ,连接MN ,BN .试判断∠BNG 与∠FMN 之间的数量关系,并说明理由.F EDCBA(第27题)。
天津五区县2017年中考语文二模试题及答案
2017年天津市部分区初中毕业生学业考试第二次模拟练习参考答案一、本大题共11小题,共27分。
(1~3小题,6~8小题,每题2分;4-5小题,9~11小题,每题3分)1.D2.C3.B4.B5.C6.D7.A 8.C9.B 10.A11.B二、本大题共1小题,共8分。
12.(1)江春入旧年(2)国破山河在(3)明月何时照我还(4)江入大荒流(5)山回路转不见君(6)伤心秦汉经行处(7)浊酒一杯家万里燕然未勒归无计(每句1分,错字漏字不给分)三、本大题共3小题,共7 分。
13.(1)同“返”,返回(2)害怕,畏惧(2分)14. 曾参的话足够用来保全他的气节了。
(2分)15. 赞扬了曾子不随意接受别人馈赠,不贪图富贵的好品德。
启示:要保持自己的气节,无功不受禄,自食其力。
(3分。
第1问2分,第2问1分,意思对即可)四、本大题共4小题,共15分。
16.生机盎然、色彩鲜艳苍劲的深绿、庄重深厚热烈而又优雅,有一种桀骜不驯的野气和生机(3分。
每空1分)17.作者运用拟人的修辞方法,生动形象地写出西湖用她特有的心血、柔情无私的呵护着众多生命,表达了作者对充满生命力的西湖赞美之情。
(3分。
修辞1分,表达效果2分)18.B D (4分)19.这一段文字总结全文,表现了西湖的秋天蕴藏着生命的力量和对春天的憧憬,表达了作者对西湖秋天的壮丽辉煌、庄重深厚的赞叹,升华了文章的主旨。
(5分。
结构2分,内容3分,意思对即可)五、本大题共4小题,共13分。
20.材料四(2分)21.二氧化碳的排放使全球气温升高、气候发生变化;导致海平面升高;海平面和水温升高的同时会引发人体消化系统、神经系统和皮肤的疾病。
(3分。
每点1分)22. (1)杨志(2)钢铁是怎样炼成的(3)沙僧(4)范爱农(4分)23.贝多芬是一个不幸的人,他不幸失聪,受感情煎熬,又遭遇不明真相的人指责。
(2分)但他不屈不挠,以顽强的毅力投入创作,谱写出伟大的乐章。
世界不曾给他欢乐,他却创造了欢乐来给予世界。
2017年4月普陀区中考数学二模试卷(含答案)(K12教育文档)
2017年4月普陀区中考数学二模试卷(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年4月普陀区中考数学二模试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年4月普陀区中考数学二模试卷(含答案)(word版可编辑修改)的全部内容。
普陀区2016学年度第二学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是 ···················· ( ) (A)632a a a =⋅; (B )a a a =÷33; (C )ab b a 333=+; (D )623)(a a =.2.如果下列二次根式中有一个与a 是同类二次根式,那么这个根式是( ) (A)2a ; (B)23a ; (C )3a ; (D )4a .3。
在学校举办的“中华诗词大赛"中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的 ( ) (A )中位数; (B )平均数; (C )众数; (D)方差.4。
如图1,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果50A =∠,那么12+∠∠的大小为 ··························· ( ) (A )︒130; (B )︒180; (C )︒230; (D )︒260.5。
2017年安徽省六区中考数学二模试卷(解析版)
2017年安徽省六区中考数学二模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.20172.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5 3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104 4.(4分)下面几何体的俯视图是()A.B.C.D.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,207.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣110.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=.12.(5分)分式方程=的解是.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.2017年安徽省六区中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.2017【解答】解:2017的相反数是﹣2017.故选:C.2.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104【解答】解:将902万用科学记数法表示为:9.02×106.故选:C.4.(4分)下面几何体的俯视图是()A.B.C.D.【解答】解:图中几何体的俯视图是B在的图形,故选:B.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选:A.6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,20【解答】解:∵周长为x公分,∴边长为公分,∴()2=20,∴=20,∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选:B.7.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁【解答】解:∵==9.7,S2甲>S2丙,∴选择丙.故选:C.8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选:C.10.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.【解答】解:由题意可得,FE=GE,AB=FG=4,∠FEG=90°,则FE=GE=2,点E到FG的距离为2,当点E从开始到点E到边BC上的过程中,S==﹣t2+4t(0≤t≤2),当点E从BC边上到边FG与DC重合时,S=(2≤t≤4),当边FG与DC重合到点E到边DC的过程中,S==(6﹣t)2(4≤t≤6),由上可得,选项B中函数图象符合要求,故选:B.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=2m(x﹣y)2.【解答】解:2mx2﹣4mxy+2my2,=2m(x2﹣2xy+y2),=2m(x﹣y)2.故答案为:2m(x﹣y)2.12.(5分)分式方程=的解是x=2.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.【解答】解:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52∴1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.故答案为:(n+2)2.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是①③④.【解答】解:如图,连接CF,设AC与BD的交点为点O,∵点F是AE中点,∴AF=EF,∵CE=CA,∴CF⊥AE,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵点F是Rt△ABE斜边上的中点,∴AF=BF,∴∠BAF=∠FBA,∴∠F AC=∠FBD,在△BDF和△ACF中,,∴△BDF≌△ACF,∴∠BFD=∠AFC=90°,∴BF⊥DF,所以①正确;过点F作FH⊥AD交DA的延长线于点H,在Rt△AFH中,FH<AF,在Rt△BFG中,BG>BF,∵AF=BF,∴BG>FH,∵S△ADF=FH×AD,S△BDG=BG×AD,∴S△BDG>S△ADF,所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ABF=∠ADG,∵∠BAF=∠FBA,∴∠BAF=∠ADG,∵∠AFG=∠DF A,∴△AFG∽△DF A,∴=,∴AF2=FG•FD,∵EF=AF,∴EF2=FG•FD,所以③正确;∵BF=EF,∴BF2=FG•FD,∴=,∵∠BFG=∠DFB,∴△BFG∽△DFB,∴∠ABF=∠BDF,∵由③知,∠ABF=∠ADF∴∠ADF=∠BDF,∴=(利用角平分线定理),∵BD=AC,AD=BC,∴,所以④正确,故答案为:①③④.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.【解答】解:原式=1+3﹣3﹣2=﹣1.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:=÷(+)=÷=×=,把,代入原式====.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.【解答】(1)C1的坐标是(﹣4,﹣1);(2)C2的坐标是:(4,1);(3)C3的坐标是(﹣2,1).18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)【解答】解:延长AE交CD于点G.设CG=xm,在直角△CGE中,∠CEG=45°,则EG=CG=xm.在直角△ACG中,AG==xm.∵AG﹣EG=AE,∴x﹣x=30,解得:x=15(+1)≈15×2.732≈40.98(m).则CD=40.98+1.5=42.48(m).答:这栋建筑物CD的高度约为42m.19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.【解答】(1)证明:∵∠AEC=∠DEB,∠ACE=∠DBE,∴△AEC∽△DEB.(2)解:设⊙O的半径为r,则CE=2r﹣2.∵CD⊥AB,AB=8,∴AE=BE=AB=4.∵△AEC∽△DEB,∴,即,解得:r=5.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.【解答】解:(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好是1男1女的有2种可能,∴P(恰好是1男1女的)=.(2)画树状图如下:或由树状图可知,生育两胎共有8种等可能结果,这三个小孩中至少有1个女孩的有7种结果,∴P(这三个小孩中至少有1个女孩)=.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.【解答】解:(1)把点A的坐标(2,3)代入一次函数的解析式中,可得:3=2+b,解得:b=1,所以一次函数的解析式为:y=x+1;把点A的坐标(2,3)代入反比例函数的解析式中,可得:k=6,所以反比例函数的解析式为:y=;(2)把一次函数与反比例函数的解析式联立得出方程组,可得:,解得:x1=2,x2=﹣3,所以点B的坐标为(﹣3,﹣2);(3)∵A(2,3),B(﹣3,﹣2),∴使一次函数值大于反比例函数值的x的范围是:﹣3<x<0或x>2.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得5万元利润.23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠ACB+∠ADE=180°,∴∠ADE=90°,∴∠BDE=90°,∵∠F AC=∠ACB+∠B=90°+∠B,∠CED=∠EDB+∠B=90°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△AFC≌△EDC(ASA),∴F A=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠F AC=120°+∠B,∠CED=120°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△F AC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.。
2017年中考数学二模试卷含答案解析
2017年中考数学二模试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×10103.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a34.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm27.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.88.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= .12.要使式子有意义,则a的取值范围为.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).15.抛物线y=x2﹣2x+3的顶点坐标是,当x= 时,y随x的增大而减小.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD 的长为.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?20.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.2017年中考数学二模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42亿=42 0000 0000=4.2×109,故选:C.3.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a3【考点】48:同底数幂的除法;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.4.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.1【考点】CC:一元一次不等式组的整数解.【分析】先解出不等式组的解集,从而可以得到不等式组的整数解,从而可以得到不等式组的整数解的和.【解答】解:解得,﹣2<x≤,∴的整数解是x=﹣1,x=0,x=1,∵(﹣1)+0+1=0,故的整数解得和是0,故选C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,进而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可.【解答】解:依题意知母线l=4cm,底面半径r=2÷2=1,则由圆锥的侧面积公式得S=πrl=π×1×4=4πcm2.故选B.7.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.8【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、3出现了2次,出现的次数最多,则众数是3,故本选项正确;B、把这组数据从小到大排列为:1,2,3,3,6,最中间的数是3,则中位数是3,故本选项错误;C、这组数据的平均数是(1+2+6+3+3)÷5=3,故本选项正确;D、这组数据的方差是: [(1﹣3)2+(2﹣3)2+(6﹣3)2+(3﹣3)2+(3﹣3)2]=,故本选项正确;故选B.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.4【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25【考点】S9:相似三角形的判定与性质;K3:三角形的面积;L5:平行四边形的性质.【分析】根据平行四边形的性质求出DC=AB,DC∥AB,求出DE:AB=2:5,根据相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面积比,根据三角形的面积公式求出△DEF 和△EBF的面积比,即可求出答案.【解答】解:根据图形知:△DEF的边DF和△BFE的边BF上的高相等,并设这个高为h,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:EC=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴==, ==,∴====∴S△DEF:S△EBF:S△ABF=4:10:25,故选D.10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= ﹣3xy(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3xy(x2﹣4x+4)=﹣3xy(x﹣2)2,故答案为:﹣3xy(x﹣2)212.要使式子有意义,则a的取值范围为a≥﹣2且a≠0 .【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12 个.【考点】X4:概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt △ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.【解答】解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.15.抛物线y=x2﹣2x+3的顶点坐标是(1,2),当x= <1 时,y随x的增大而减小.【考点】H3:二次函数的性质.【分析】由于二次函数的二次项系数a=1>0,由此可以确定抛物线开口方向,利用y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣可以确定对称轴,然后即可确定在对称轴的左侧y随x的增大而减小,由此得到x的取值范围.【解答】解:∵y=x2﹣2x+3,∴二次函数的二次项系数a=1>0,∴抛物线开口向上,∵y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣,∴此函数对称轴是x=1,顶点坐标是(1,2),∴当x<1时,y随x的增大而减小.故答案为:(1,2),<1.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为 a .【考点】MC:切线的性质;MH:切割线定理;S7:相似三角形的性质.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a=a.故答案为: a.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×﹣2+1=﹣1;(2)原式=•=,当a=2+时,原式==+1.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【分析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.【解答】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50﹣y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50﹣y=12;当y=39,50﹣y=11;当y=40,50﹣y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).故第二次购买方案中,方案一商家获利最多.19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.20.如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b . (1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b 的图象经过一、二、四象限的概率.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系. 【分析】(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b 的图象经过一、二、四象限的情况,即可求出所求的概率. 【解答】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种, 则P==.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值;(3)设P点坐标为(t, t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t, t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)根据BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°即可得出结论;(2)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.(3)根据△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.【解答】(1)BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△ABC∽△DEB;(2)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.(3)∵△BED∽△CBA,∴,即=,解得:DE=.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.【考点】HF:二次函数综合题.【分析】(1)首先运用待定系数法求出二次函数的解析式,然后把点D(2,m)代入二次函数的解析式,就可求出点D的坐标;(2)过点D作DH⊥AB于点H,如图1,根据勾股定理可求出BD,易求出点A的坐标,从而得到AB长,然后分两种情况:①△QBE∽△ABD,②△QBE∽△DBA讨论,运用相似三角形的性质求出BQ,从而得到OQ,即可得到点Q的坐标;(3)根据待定系数法得到直线AD的解析式为:y=x+2,过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四边形CFNM的最短周长为:2+2时直线DF′的解析式为:y=3x﹣2,从而得到满足条件的点M和点N的坐标.【解答】解:(1)由题可得:,解得:,则二次函数的解析式为y=﹣x2+x+4.∵点D(2,m)在抛物线上,∴m=﹣×22+2+4=4,∴点D的坐标为(2,4);(2)过点D作DH⊥AB于点H,如图1,∵点D(2,4),点B(4,0),∴DH=4,OH=2,OB=4,∴BH=2,∴DB==2.∵点E为DB的中点,∴BE=BD=.令y=0,得﹣x2+x+4=0,解得:x1=4,x2=﹣2,∴点A为(﹣2,0),∴AB=4﹣(﹣2)=6.①若△QBE∽△ABD,则=,∴=,解得:BQ=3,∴OQ=OB﹣BQ=4﹣3=1,∴点Q的坐标为(1,0);②若△QBE∽△DBA,则=,∴=,∴BQ=,∴OQ=OB﹣BQ=4﹣=,∴点Q的坐标为(,0).综上所述:点Q的坐标为(1,0)或(,0);(3)如图2,由A(﹣2,0),D(2,4),可求得直线AD的解析式为:y=x+2,即点F的坐标为:F(0,2),过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,则四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,即四边形CFNM的最短周长为:2+2.此时直线DF′的解析式为:y=3x﹣2,所以存在点N的坐标为N(,0),点M的坐标为M(1,1).。
2017中考二模理综试题
2017.5二模理综考试第1卷(选择题共56分)一、单项选择题:(本大题共22小题,每小题2分,共44分。
)【化学部分】相对原子质量: H1 C12 N14 0 16 S 32 Cl 35.5 Na 23 Mg 24 Ca 40 Fe 56 Cu 64 Zn 65 Ag1081.下列厨房里的变化中,属于物理变化的是( )。
A.土豆切片 B.食物腐烂 C.煤气燃烧 D.铁锅生锈2.下列人类活动一般不会对空气造成污染的是( )。
A.露天焚烧垃圾 B.利用风能发电 C.工厂排放烟尘 D.汽车排放尾气3.下图所示的实验操作中,不正确的是( )。
4.右图是某原予的结构示意图,下列关于该原子的说法不正确的是( )。
A.它属于金属元素原子 B.该腺于有3个电子层C.该原子容易得到电子 D.该原子最外层电子数为75.下列说法正确的是( )。
A. 钢铁在干燥环境中比在潮湿环境中更容易发生锈蚀B.玻璃钢、光导纤维和合成纤维都是有机合成材料C.回收废旧电池,既可节约金属资源又可减少环境污染D.“低碳生活”倡导禁用化石燃料,提倡绿色出行6.下列说法中,正确的是( )。
A.某物质能与稀盐酸反应产生气体,则该物质中一定含有碳酸根离子。
B.向某溶液中加入氯化钡溶液,产生白色沉淀,财该物质中一定含有硫酸根离子。
C.将一种碱溶液和一种盐溶液混合,它们可能相互反应生成两种沉淀。
D.反应物和生成物均为薅种化合物的反应,一定是复分解反应。
7.科学家采用“组合转化,'技术,可将二氧化碳在一定条件下转纯为重要的化工原料乙烯,其反应的微观过程如下图所示。
下列说法不正确的是( )。
.A.乙烯的化学式为CzH4 B.反应前后原子种类、数目均不改变C.无机物在一定条件下可转化为有机物 D.参加反应的两种分子的个数比是l:48.下列对露置在空气中已部分变质的氢氧化钠溶液样品进行的相关实验中,实验现象及结论合理的是( )。
A.取少量溶液样品,滴入硫酸铜溶液,无明显现象。
2017年河北省石家庄市中考数学二模试卷含答案解析
2017年河北省石家庄市中考数学二模试卷含答案解析2017年河北省石家庄市中考数学二模试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和D.0和02.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60° D.50°3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+15.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70° B.40° C.70°或40°D.70°或55°8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个 B.中位数是2.5个C.众数是2个D.众数是5个10.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A. = B. = C. = D. =11.(2分)定义新运算:a※b=,则函数y=3※x的图象大致是()A.B.C.D.12.(2分)如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x轴、y轴交于A、B两点,以A为圆心,适当长为半径画弧分别交AB、AO于点C、D,再分别以C、D为圆心,大于CD的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是∠BAO的平分线;②∠BAO=60°;③点F在线段AB的垂直平分线上;④S△AOF:S△ABF=1:2.A.1 B.2 C.3 D.413.(2分)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60° B.65° C.70° D.75°14.(2分)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.15.(2分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C .D .16.(2分)在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1…、正方形A n B n C n C n ﹣1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ,2n ﹣1)C .(2n ﹣1,2n +1)D .(2n ﹣1,2n )二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为 .18.如图,在正方形纸片ABCD 中,EF ∥AD ,M ,N 是线段EF 的六等分点,若把该正方形纸片卷成一个圆柱,使点A 与点D 重合,此时,底面圆的直径为10cm ,则圆柱上M ,N 两点间的距离是 cm .19.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,点F 在边AC 上,并且CF=2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 .三、解答题(本题共69分)20.(4分)计算:(﹣1)0+2﹣1﹣+|1﹣|21.(5分)如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD 位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)22.(9分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.23.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是.(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.24.(10分)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求扇形AOE的面积.25.(10分)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.26.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?27.(12分)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE= ,EN= ;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?2017年河北省石家庄市中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和D.0和0【考点】17:倒数.【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60° D.50°【考点】JA:平行线的性质.【分析】先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.【解答】解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选:B.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.5.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】根据负数没有平方根求出x的范围,表示在数轴上即可.【解答】解:由函数y=,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示:故选A【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70° B.40° C.70°或40°D.70°或55°【考点】KH:等腰三角形的性质.【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①70°是底角,则顶角为:180°﹣70°×2=40°;②70°为顶角;综上所述,顶角的度数为40°或70°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】因为AB⊥BC,所以∠ABC=90°,则x+y=90°;∠ABD的度数比∠DBC的度数的2倍少15°,则x=2y﹣15;由此联立得出方程组即可.【解答】解:设∠ABD与∠DBC的度数分别为x,y,根据题意得.故选:B.【点评】此题考查二元一次方程组的运用,注意此题的等量关系:第一个等量关系从垂直定义可得∠ABD+∠DBC=90°,第二个是∠ABD的度数=∠DBC的度数×2倍﹣15.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个 B.中位数是2.5个C.众数是2个D.众数是5个【考点】VB:扇形统计图;W4:中位数;W5:众数.【分析】根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选C.【点评】本题考查了扇形统计图的知识,通过图形观察出投进2球的人数最多是解题的关键.10.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A. = B. = C. = D. =【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,判断即可.【解答】解:∵AB∥CD∥EF,∴=,A错误;=,B错误;=,∴=,C正确;=,D错误,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.定义新运算:a※b=,则函数y=3※x的图象大致是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】先根据新定义运算列出y的关系式,再根据此关系式及x的取值范围画出函数图象即可.【解答】解:根据新定义运算可知,y=3※x=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x 轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选B.【点评】此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12.如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x轴、y轴交于A、B两点,以A为圆心,适当长为半径画弧分别交AB、AO于点C、D,再分别以C、D为圆心,大于CD的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是∠BAO的平分线;②∠BAO=60°;③点F在线段AB的垂直平分线上;④S△AOF:S△ABF=1:2.A.1 B.2 C.3 D.4【考点】F8:一次函数图象上点的坐标特征;KF:角平分线的性质;KG:线段垂直平分线的性质.【分析】根据角平分线的作法可得①正确,再直线的斜率可得∠BAO=60°,再根据线段垂直平分线的性质逆定理可得③正确,根据直角三角形的性质得出AF=2OF,再由AF=BF得出BF=2OF,进而可得④正确.【解答】解:由题意可知AF是∠BAO的平分线,故①正确;∵一次函数y=x+1∴k=,∴∠BAO=60°,故②正确;∵∠BAO=60°,∴∠ABO=30°,∵AF是∠BAO的平分线,∴∠BAF=30°,∴∠BAF=∠ABO,∴AF=BF,∴点F在AB的垂直平分线上,故③正确;∵∠OAF=30°,∴AF=2OF.∵AF=BF,∴BF=2OF,∴S△AOF:S△ABF=1:2,故④正确.故选D.【点评】此题考查的是作图﹣基本作图,角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.13.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60° B.65° C.70° D.75°【考点】L3:多边形内角与外角.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知, =⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故选D.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.14.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.【考点】G5:反比例函数系数k的几何意义.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x轴,即可用m 表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.【解答】解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(﹣+﹣)×(2m﹣m)=.故选B.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及梯形的面积,解题的关键是用m表示出来A、B、E、D四点的坐标.本题属于基础题,难度不大,解决该题型题目时,只要设出一个点的坐标,再由该点坐标所含的字母表示出其他点的坐标即可.15.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键.16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n,2n﹣1) C.(2n﹣1,2n+1)D.(2n﹣1,2n)【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标.【解答】解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴A n(2n﹣1,2n﹣1﹣1).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1).故选A.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“A n(2n﹣1,2n﹣1﹣1)”是解题的关键.二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为3×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:30 000 000=3×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是5cm.【考点】M4:圆心角、弧、弦的关系.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,EF卷成一个圆,线段卷成圆上一段弧,该段弧所对的圆心角为×360°,要求圆柱上M,N两点间的距离即求弦MN 的长.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段EF形成一直径为10cm的圆,线段EF为圆上的一段弧.所对的圆心角为:×360°=120°,所以圆柱上M,N两点间的距离为:2×5×sin60°=5cm.故答案为:5.【点评】此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是1.2 .【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.三、解答题(本题共69分)20.计算:(﹣1)0+2﹣1﹣+|1﹣|【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣1)0+2﹣1﹣+|1﹣|=1+﹣3+﹣1=﹣2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD 位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)【考点】SD:作图﹣位似变换;KQ:勾股定理.【分析】(1)分别延长BA、BC、BD到A′、C′、D′,使BA′=2BA,BC′=2BC,BD′=2BD,然后顺次连接A′BC′D′即可得解;(2)根据网格图形,重叠部分正好是以格点为顶点的平行四边形,求出两邻边的长的,然后根据平行四边形的周长公式计算即可.【解答】解:(1)如图所示:四边形A′BC′D′就是所要求作的梯形;(2)四边形A′BC′D′与五边形EFGHK重叠部分是平行四边形EFGD′,ED′=FG=1,在Rt△EDF中,ED=DF=1,由勾股定理得EF==,∴D′G=EF=,∴四边形A′BC′D′与五边形EFGHK重叠部分的周长=ED′+FG+D′G+EF,=1+1++,=2+2.故答案为:2+2.【点评】本题考查了利用位似变换作图,关键是根据位似变换的定义找出点A、C、D的对应点的位置.22.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.【考点】T8:解直角三角形的应用.【分析】(1)在Rt △ABE 中,由tan60°==,即可求出AB=10•tan60°=17.3米;(2)假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H .由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF ﹣AC=0.1米,CH=CF=0.1米,所以大楼的影子落在台阶MC 这个侧面上,故小猫仍可以晒到太阳.【解答】解:(1)当α=60°时,在Rt △ABE 中,∵tan60°==,∴AB=10•tan60°=10≈10×1.73=17.3米. 即楼房的高度约为17.3米;(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H .∵∠BFA=45°,∴tan45°==1,此时的影长AF=AB=17.3米,∴CF=AF ﹣AC=17.3﹣17.2=0.1米,∴CH=CF=0.1米,∴大楼的影子落在台阶MC 这个侧面上,∴小猫仍可以晒到太阳.【点评】本题考查了解直角三角形的应用,锐角三角函数定义,理解题意,将实际问题转化为数学问题是解题的关键.23.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为12 ;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是44% .(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)①根据各组频数之和等于总数可得a的值;②由频数分布表即可补全直方图;(2)用成绩大于或等于80分的人数除以总人数可得;(3)列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,②补充完整的频数分布直方图如下图所示,故答案为:12;(2)∵测试成绩不低于80分为优秀,∴本次测试的优秀率是:×100%=44%,故答案为:44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BA、BC、BD,所以小明和小强分在一起的概率为: =.【点评】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.24.(10分)(2017•石家庄二模)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求扇形AOE的面积.【考点】MR:圆的综合题.【分析】(1)首先利用对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,进而利用菱形的判定方法得出答案;(2)①首先求出△ABD的面积进而得出S△OBE=S△ABD;②首先求出扇形AOE的圆心角,进而利用扇形面积求出答案.【解答】(1)证明:∵AE=EC,BE=ED,∴四边形ABCD是平行四边形,∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)解:①连结OF,∵DC的延长线于半圆相切于点F,∴OF⊥CF,∵FC∥AB,∴OF即为△ABD中AB边上的高,∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4;②过点D作DH⊥AB于点H,∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°,∴四边形OHDF为矩形,即DH=OF=4,∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°,∵D点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°,∴∠AOE=180°﹣∠EOB=150°,∴S扇形AOE==π.【点评】此题主要考查了圆的综合以及菱形、矩形的判定方法、扇形面积求法等知识,正确掌握菱形的判定与性质是解题关键.25.(10分)(2016•三明)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式.【分析】(1)根据抛物线F:y=x2﹣2mx+m2﹣2过点C(﹣1,﹣2),可以求得抛物线F的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或或,解得,﹣2≤m≤0或2≤m≤4.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.(10分)(2017•石家庄二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:。
2017中考二模数学试卷
A.50°
B.40°
C.45°
ห้องสมุดไป่ตู้
D.25°
第 5 题图
第 11 题图
第 12 题图
6.(3 分)下列计算结果正确的是( )
A. a3 2 a9
B. a2 a3 a6
C.
1 2
1
22
2
D.
cos
60°
1 2
0
1
7.(3 分)化简 x2 1 的结果是( ) x 1 1 x
A.2.7×105
B.2.7×106
C.2.7×107
D.2.7×108
3.(3 分)下列几何体中,同一个几何体的主视图与俯视图不同的是( )
A.
圆柱 B.
正方体 C.
圆锥 D.
球
4.(3 分)下列图形中,既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
5.(3 分)如图所示,AB∥CD,EF⊥BD,垂足为 E,∠1=50°,则∠2 的度数为( )
A. 6 3 米 B.12 米 C. 4 2 3 米 D.10 米
第 1 页,共 8 页
第 2 页,共 8 页
13.(3 分)如图,在正方形 ABCD 中,E、F 分别是边 BC、CD 上的点,∠EAF=45°,
2017年中考二模试卷
2017年河南省普通高中招生考试第二次质量检测英语一.听力理解。
(略)二.单项选择(15小题;每小题1分,共15分)从A、B、C、D四个选项中选出一个最佳答案,并将其标号填涂在答题卡相应的位置。
( )21. Lily went to station by taxi, hoping to catch 8:38 am train to Beijing.A. a; aB. an; theC. the; anD. the, the( ) 22.—The Chinese Poetry Conference (中国诗词大会) on CCTV is a great .—You are right. More and more people begin to enjoy the beauty of poemsA. projectB. successC. chanceD. experiment ( )23. — Sara spends more money on clothes than daughter in the family.—I agree. She always spends most.A.otherB. the otherC. anotherD.any other ( )24. For teenagers, it's more important to their interest in studies than to get good gradesA. developB. mentionC. collectD. discuss( ) 25 Life is only once, so you should remember safety must come first no matter whereyou areA. sometimesB. usuallyC. alwaysD. seldom( ) 26. —Where is Mr. Wang? He is wanted on the phone.—Look, his bag is on the desk. He have gone far.A. won'tB. can'tC. mustn'tD. needn't( ) 27— How can I improve my English?—English as much as possible. It really helps.A. ReadB. To readC. ReadingD. Reads( ) 28.— I have made progress in math.—Great! But you have a long way to go. You should try .A. hardB. harderC. hardestD. hardly( ) 29.— Has Jim finished his homework today?—I don't know. He it this morning.A. is doingB. was doingC. has doneD. will do( ) 30. Some students often their homework until the last minute on weekends.A. cut offB. keep offC. put offD. turn off( ) 31. When I once about my Chinese dream, I hoped all children especially girls couldreceive a good education.A. have; askedB. am; askedC. was; askedD. was; asking( ) 32. other people never take her seriously, she is the apple of her father'seye at homeA. SinceB. UnlessC. IfD. Although ( ) 33. —To leave or to stay? You must make a choice.—OK. I know I can't stand the two ideasA. amongB. betweenC. withD. against ( ) 34. One is filled with knowledge always behaves with elegance (优雅)A. whichB. whoC. howD. what. ( ) 35. The sky looks grey all the time. We all want to know .A. how long the situation will lastB. when will a strong wind comeC. whether a strong wind came soonD. that we are able to change the situation三、完形填空(10小题,每小题1分,共10分)先通读文章,掌握大意,然后从ABCD四个选项中选出一个可以填入相应空白处的最佳答案。
2017年贵州省安顺市中考数学二模试卷及解析答案word版
2017年贵州省安顺市中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的相反数是()A.3 B.﹣3 C .D .﹣2.(3分)宇宙现在的年龄约为200亿年,200亿用科学记数法表示为()A.0.2×1011B.2×1010C.200×108D.2×1093.(3分)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=14.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④5.(3分)已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11 或13 D.12或156.(3分)为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100 B.平均数是30 C.极差是20 D.中位数是207.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠02向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.y=﹣2(x+1)2B.y=﹣2(x+1)2+2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x ﹣1)2+19.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A.B.2 C.3 D.210.(3分)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A.0个 B.1个 C.2个 D.3个二、填空题(本题共8小题,每小题4分,共32分)11.(4分)因式分解:2x2y﹣8xy+8y=.12.(4分)使函数有意义的x的取值范围是.13.(4分)如图,AB是⊙O直径,∠AOC=130°,则∠D=°.14.(4分)如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.(4分)如图,A、B是双曲线y=上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k=.16.(4分)将直角△ABC绕顶点B旋转至如图位置,其中∠C=90°,AB=4,BC=2,点C、B、A′在同一直线上,则阴影部分的面积是.17.(4分)如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米.18.(4分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2016BC和∠A20l6CD 的平分线交于点A2017,则∠A2017=°.三、解答题(本题共8小题,共88分)19.(8分)计算:|﹣2|+3tan30°+()﹣1﹣(3﹣π)0﹣.20.(10分)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.21.(10分)五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?22.(10分)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.23.(12分)如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.(1)求证:△ABE≌△CDF;(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.24.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.25.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)26.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C 点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.2017年贵州省安顺市中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的相反数是()A.3 B.﹣3 C.D.﹣【解答】解:﹣的相反数是,故选C2.(3分)宇宙现在的年龄约为200亿年,200亿用科学记数法表示为()A.0.2×1011B.2×1010C.200×108D.2×109【解答】解:将200亿用科学记数法表示为:2×1010.故选:B.3.(3分)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=1【解答】解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选D.4.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.5.(3分)已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11 或13 D.12或15【解答】解:由方程x2﹣6x+8=0,得:解得x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为4+3+6=13.故选A.6.(3分)为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100 B.平均数是30 C.极差是20 D.中位数是20【解答】解:A、众数是20,故本选项错误;B、平均数为26.67,故本选项错误;C、极差是95,故本选项错误;D、中位数是20,故本选项正确;故选D.7.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠0【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.8.(3分)将抛物线y=﹣2x2向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.y=﹣2(x+1)2B.y=﹣2(x+1)2+2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x ﹣1)2+1【解答】解:∵抛物线y=﹣2x2向右平移1个单位长度,再向上平移1个单位长度,∴平移后的抛物线的解析式为:y=﹣2(x﹣1)2+1,故选D.9.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A.B.2 C.3 D.2【解答】解:连接CC1.Rt△ABE中,∠BAE=30°,AB=,易得BE=AB×tan30°=1,AE=2.∠AEB1=∠AEB=60°,由AD∥BC,那么∠C1AE=∠AEB=60°,所以△AEC1为等边三角形,那么△CC1E也为等边三角形,那么EC=EC1=AE=2,∴BC=BE+EC=3,故选C.10.(3分)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:①∵抛物线的开口向上,∴a>0,∵对称轴在y轴的左侧,∴b>0∴•ab>0;故①正确;②∵观察图象知;当x=1时y=a+b+c>0,∴②正确;③∵抛物线的对称轴为x=﹣1,与x轴交于(0,0),∴另一个交点为(﹣2,0),∴当﹣2<x<0时,y<0;故③正确;故选D.二、填空题(本题共8小题,每小题4分,共32分)11.(4分)因式分解:2x2y﹣8xy+8y=2y(x﹣2)2.【解答】解:原式=2y(x2﹣4x+4)=2y(x﹣2)2.故答案为2y(x﹣2)2.12.(4分)使函数有意义的x的取值范围是x≥﹣1且x≠1.【解答】解:由题意得,x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.13.(4分)如图,AB是⊙O直径,∠AOC=130°,则∠D=25°°.【解答】解:∵AB是⊙O直径,∠AOC=130°,∴∠BOC=180°﹣∠AOC=50°,∴∠D=∠BOC=25°.故答案为:25.14.(4分)如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【解答】解:作E点关于AC对称点E′点,连接E′B,E′B与AC的交点即是P点,∵菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,∴AE′=AE=BE=1,∴△AEE′为等边三角形,∴∠AEE′=60°,∴∠E′EB=120°,∵BE=EE′,∴∠EE′B=30°,∴∠AE′B=90°,BE′==,∵PE+PB=BE′,∴PE+PB的最小值是:.故答案为:.15.(4分)如图,A、B是双曲线y=上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k= 3.【解答】解:∵S1+S2=4,∴S1=S2═2,∵S3=1,∴S1+S3=1+2=3,∴k=3故答案为:3.16.(4分)将直角△ABC绕顶点B旋转至如图位置,其中∠C=90°,AB=4,BC=2,点C、B、A′在同一直线上,则阴影部分的面积是π﹣2.【解答】解:∵在Rt△ACB中,∠C=90°,AB=4,BC=2,∴AC==2,cos∠ABC=,∴∠ABC=60°,∴∠ABA′=120°,由旋转的性质可得A′C′=AC=2,BC′=BC=2,∴阴影部分的面积是:﹣×2×2=π﹣2.故答案为:π﹣2.17.(4分)如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距1米.【解答】解:设两个同学相距x米,∵△ADE∽△ACB,∴,∴,解得:x=1.故答案为1.18.(4分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2016BC和∠A20l6CD的平分线交于点A2017,则∠A2017=°.【解答】解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2017=∠A=()°,故答案为:.三、解答题(本题共8小题,共88分)19.(8分)计算:|﹣2|+3tan30°+()﹣1﹣(3﹣π)0﹣.【解答】解:原式=2﹣+3×+2﹣1﹣2=1.20.(10分)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.【解答】解:原式=(﹣)÷=×=,当x=1时,原式==3.21.(10分)五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?【解答】解:设购买成人门票x张,学生门票y张,由题意得解得答:购买成人门票12张,学生门票8张.22.(10分)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.23.(12分)如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.(1)求证:△ABE≌△CDF;(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形AB=CD,∠A=∠C.AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.在△ABE和△CDF中,∴△ABE≌△CDF(SAS).(2)解:四边形DFBE是矩形.理由如下:∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∵AB=DB,AB=CD,∴DB=CD.∵DF平分∠CDB,∴DF⊥BC,即∠BFD=90°.在□ABCD中,∵AD∥BC,∴∠EDF+∠DEB=180°.∴∠EDF=90°.∴∠DEB=∠BFD=∠EDF=90°.∴四边形DFBE是矩形.24.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是=.25.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.26.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C 点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.【解答】解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式为.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.赠送:初中数学几何模型【模型一】半角型:图形特征:AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
2017年广西南宁中考数学二模试卷含答案解析
2017年广西南宁中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣2017的绝对值是()A.2017 B.﹣2017 C.D.﹣2.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A.0.75×10﹣4B.7.5×10﹣4C.75×10﹣6D.7.5×10﹣54.(3分)下列计算正确的是()A.B.a2×a3=a6C.a2+a=a3D.(﹣2a2)3=﹣6a65.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.6.(3分)关于x的一元二次方程ax2+bx=6的一个根为x=2,则代数式4a+2b的值是()A.3 B.6 C.10 D.127.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 1 D D.与x轴有两个交点8.(3分)将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为()A.y=x2﹣2 2 B B.y=x2+2 C.y=(x+3)2+2 D.y=(x﹣3)2﹣29.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin ∠OBD=( )A .B .C .D .10.(3分)如图,在▱ABCD 中,E 在DC 上,若DE :EC=1:2,则BF :BE 的值为( )A .2:3 B .3:5 C .1:2 D .5:811.(3分)抛物线y=ax 2+bx +c 图象如图所示,则一次函数y=﹣bx ﹣4ac +b 2与反比例函数y=在同一坐标系内的图象大致为(在同一坐标系内的图象大致为( )A .B .C .D .12.(3分)如图,如图,在平面直角坐标系中,在平面直角坐标系中,在平面直角坐标系中,直线直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数与反比例函数 y=(k 为常数,且k >0)在第一象限的图象交于点E ,F .过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若=,,则 =()记△CEF的面积为s1,△OEF的面积为s2,则A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若有意义,则x的最小值是的最小值是 .14.(3分)分解因式:a3﹣a=.15.(3分)点A(a,2016)和点B(﹣2017,b)关于原点对称,则a+b=.16.(3分)如图,直线a∥b,直线c与a、b均相交.如果∠1=50°,那么∠2的度数是 .的度数是17.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单,那么该光盘的直径是 cm.位:cm),那么该光盘的直径是18.(3分)如图,在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,….,按这样的规律进行下去,第2017个正方形的面积为个正方形的面积为 .三、解答题(本大题共8小题,共66分)19.(6分)计算:﹣4sin60°+(π+2)0+()﹣2.20.(6分)解不等式组.21.(8分)如图,在△ABC 中,AB=AC ,D 是BA 延长线上的一点,点E 是AC 的中点.(1)利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC 的平分线AM . ②连接BE 并延长交AM 于点F . (2)证明:△AEF ≌△CEB .22.(8分)李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: (1)李老师一共调查了多少名同学?(2)C 类女生有3名,D 类男生有1名,将图1条形统计图补充完整; (3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.(8分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)24.(10分)某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?25.(10分)如图,AB是⊙O的直径,点C为⊙O外一点,连接OC交⊙O于点D,连接BD并延长交线段AC于点E,∠CDE=∠CAD.(1)求证:CD 2=AC•EC;(2)判断AC与⊙O的位置关系,并证明你的结论;(3)若AE=EC,求tanB的值.26.(10分)如图,抛物线y=x 2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.2017年广西南宁中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣2017的绝对值是(的绝对值是( )A.2017 B.﹣2017 C.D.﹣【解答】解:﹣2017的绝对值是2017.故选:A.2.(3分)下列图形中既是轴对称图形,又是中心对称图形的是(分)下列图形中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.(3分)近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为(用科学记数法表示为( )A.0.75×10﹣4B.7.5×10﹣4C.75×10﹣6D.7.5×10﹣5【解答】解:0.000 075=7.5×10﹣5.故选:D.4.(3分)下列计算正确的是(分)下列计算正确的是( )A.B.a2×a3=a6C.a2+a=a3D.(﹣2a2)3=﹣6a6【解答】解:A、3÷=3,正确;B 、a 2×a 3=a 5,故此选项错误; C 、a 2+a ,无法计算,故此选项错误; D 、(﹣2a 2)3=﹣8a 6,故此选项错误. 故选:A .5.(3分)已知点P (a ﹣1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(范围在数轴上可表示为( )A . B .C .D .【解答】解:∵点P (a ﹣1,a +2)在平面直角坐标系的第二象限内,则有解得﹣2<a <1. 故选:C .6.(3分)关于x 的一元二次方程ax 2+bx=6的一个根为x=2,则代数式4a +2b 的值是(值是( )A .3 B .6 C .10 D .12【解答】解:把x=2代入方程ax 2+bx=6得4a +2b=6. 故选:B .7.(3分)对于二次函数y=(x ﹣1)2+2的图象,下列说法正确的是(的图象,下列说法正确的是( ) A .开口向下.开口向下 B .顶点坐标是(1,2) C .对称轴是x=﹣1 1 D D .与x 轴有两个交点 【解答】解:A 、y=(x ﹣1)2+2, ∵a=1>0,∴图象的开口向上,此选项错误;B 、y=(x ﹣1)2+2顶点坐标是(1,2),此选项正确; C 、对称轴是直线x=1,此选项错误;D 、(x ﹣1)2+2=0,(x ﹣1)2=﹣2,此方程无解,与x 轴没有交点,故本选项错误.8.(3分)将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为(平移后的二次函数的解析式为( )A .y=x 2﹣2 2 BB .y=x 2+2 C .y=(x +3)2+2 D .y=(x ﹣3)2﹣2 【解答】解:原抛物线y=x 2的顶点为(0,0),向下平移2个单位,再向右平移3个单位,那么新抛物线的顶点为(﹣3,﹣2).可设新抛物线的解析式为:y=(x ﹣h )2+k ,代入得:y=(x +3)2﹣2. 故选:D .9.(3分)如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin ∠OBD=( )A .B .C .D . 【解答】解:∵D (0,3),C (4,0), ∴OD=3,OC=4, ∵∠COD=90°, ∴CD==5,连接CD ,如图所示: ∵∠OBD=∠OCD ,∴sin ∠OBD=sin ∠OCD==.故选:D .10.(3分)如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则BF:BE的值为()A .2:3 B.3:5 C.1:2 D.5:8【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴,∵,∴,∴,∴=∴,故选:B.11.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为(在同一坐标系内的图象大致为( )A .B .C .D .【解答】解:∵抛物线y=ax 2+bx +c 开口向上, ∴a >0,∵抛物线y=ax 2+bx +c 的对称轴在y 轴右侧, ∴x=﹣>0, ∴b <0, ∴﹣b >0,∵抛物线y=ax 2+bx +c 的图象与x 轴有两个交点, ∴△=b 2﹣4ac >0,∴一次函数y=﹣bx ﹣4ac +b 2的图象过第一、二、三象限; ∵由函数图象可知,当x=1时,抛物线y=a +b +c <0,∴反比例函数y=的图象在第二、四象限.故选:D .12.(3分)如图,如图,在平面直角坐标系中,在平面直角坐标系中,在平面直角坐标系中,直线直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数与反比例函数 y=(k 为常数,且k >0)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若=,记△CEF 的面积为s 1,△OEF 的面积为s 2,则,则 =( )A.B.C.D.【解答】解:过点F作FR⊥MO于点R,EW⊥NO于点W,∵=,∴=,∵ME•EW=FR•NF,∴==,∴S1=(4x﹣x)(4y﹣y)=xy,设E点坐标为:(x,4y),则F点坐标为:(4x,y),∵△OEF的面积为:S2=S矩形CNOM﹣S1﹣S△MEO﹣S△FON=CN•ON﹣xy﹣ME•MO﹣FN•NO=4x•4y﹣xy﹣x•4y﹣y•4x=16xy﹣xy﹣4xy=xy,∴==.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若有意义,则x的最小值是的最小值是 2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,则x的最小值是2,故答案为:2.14.(3分)分解因式:a3﹣a=a(a+1)(a﹣1).【解答】解:a 3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).15.(3分)点A(a,2016)和点B(﹣2017,b)关于原点对称,则a+b=1.【解答】解:由题意,得a=2017,b=﹣2016,a+b=2017﹣2016=1,故答案为:1.16.(3分)如图,直线a∥b,直线c与a、b均相交.如果∠1=50°,那么∠2的度数是的度数是 130°.【解答】解:∵a ∥b ,∠1=50°, ∴∠1=∠3=50°, ∵∠2+∠3=180°,∴∠2=180°﹣∠1=180°﹣50°50°=130°=130°. 故答案为:130°.17.(3分)如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是,那么该光盘的直径是 10 cm .【解答】解:如图,设圆心为O ,弦为AB ,切点为C .如图所示.则AB=8cm ,CD=2cm .连接OC ,交AB 于D 点.连接OA . ∵尺的对边平行,光盘与外边缘相切, ∴OC ⊥AB . ∴AD=4cm .设半径为Rcm ,则R 2=42+(R ﹣2)2, 解得R=5,∴该光盘的直径是10cm . 故答案为:1018.(3分)如图,在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,….,按个正方形的面积为 .这样的规律进行下去,第2017个正方形的面积为【解答】解:∵点A的坐标为(2,0),点D的坐标为(0,4),∴OA=2,OD=4∵∠AOD=90°,∴AB=AD=,∠ODA+∠OAD=90°,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,S正方形ABCD==20,∴∠ABA1=90°,∠OAD+∠BAA1=90°,∴∠ODA=∠BAA1,∴△ABA1∽△DOA,∴,即,∴BA1=,∴CA1=,∴正方形A1B1C1C的面积==20×…,第n个正方形的面积为,∴第2017个正方形的面积.故答案为:.三、解答题(本大题共8小题,共66分)19.(6分)计算:﹣4sin60°+(π+2)0+()﹣2.【解答】解:原式=2﹣4×+1+4=5.20.(6分)解不等式组.【解答】解:2x≥3(x﹣1)解得:x≤3.x≥+2,解得:x≥2.所以不等式组的解集为2≤x≤3.21.(8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM.②连接BE并延长交AM于点F.(2)证明:△AEF≌△CEB.【解答】解:(1)角平分线AM、点F如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠DAC=∠ABC+∠ACB,∠DAF=∠FAC,∴∠FAE=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB.22.(8分)李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有3名,D类男生有1名,将图1条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【解答】解:(1)(6+4)÷50%=20.所以李老师一共调查了20名学生.(2)C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.23.(8分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌C D的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)【解答】解:(1)过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.24.(10分)某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(240﹣100﹣a)x+(160﹣80)(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;当x=95时,W有最大值,③当60<a<70时,60﹣a<0,W随x的增大而减小,的增大而减小,当即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.25.(10分)如图,AB是⊙O的直径,点C为⊙O外一点,连接OC交⊙O于点D,连接BD并延长交线段AC于点E,∠CDE=∠CAD.(1)求证:CD 2=AC•EC;(2)判断AC与⊙O的位置关系,并证明你的结论;(3)若AE=EC,求tanB的值.【解答】(1)证明:∵∠CDE=∠CAD,∠C=∠C,∴△CDE∽△CAD,∴,∴CD 2=CA•CE;(2)AC与⊙O相切,证明:∵AC是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵OB=OD,∴∠B=∠ODB,∵∠ODB=∠CDE,∠CDE=∠CAD,∴∠B=∠CAD,∴∠BAC=∠BAD+∠CAD=∠B+∠BAD=90°,∴BA⊥AC,∴AC与⊙O相切;(3)解:∵AE=EC,∴CD 2=CA•CE=(AE+CE)•CE=2CE2,∴CD=CE,∵△CDE∽△CAD,∴,∵∠ADE=180°﹣∠ADB=90°,∠B=∠CAD,∴tan B=tan∠CAD=.26.(10分)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【解答】方法一:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x 2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x 2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即P A∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.方法二:(1)略.(2)把A(1,﹣4)代入y=x 2﹣2x+c,得c=﹣3,∴y=x 2﹣2x+3=(x﹣3)(x+1),∴D(3,0),B(0,﹣3),A(1,﹣4),K BD==1,K AB==﹣1,∴K BD•K AB=﹣1,∴AB⊥BD,即△ABD为直角三角形.(3)略。
陕西省2017年中考数学二模试卷及参考答案
的范围内与x轴有公共点,则t的取值范围为( )
二、填空题
11. 在实数1,0, ,﹣1,﹣ 中,最小的是________. 12. 在平面直角坐标系中,点P(﹣1,2)沿x轴向右平移3个单位长度得到的点的坐标为________. 13. 如图,测量河宽AB(河的两岸平行),在C点测得∠ACB=32°,BC=60m,则河宽AB约为________m.(用科学 计算器计算,结果精确到0.1)
陕西省2017年中考数学二模试卷
一、选择题 1. 27的立方根为( ) A . ±3 B . 3 C . ﹣3 D . 9 2. 如图,是某几何体的俯视图,则该几何体可能是( )
A.
B.
C.
D.
3. 下列运算正确的是( ) A . a2+a2=a4 B . a2•a3=a6 C . (﹣2a2)3=8a6 D . (ab)2=a2b2 4. 如图,直线a∥b,若∠1=40°,∠2=55°,则∠3的度数为( )
,BE=1,点P、Q分别在BD、AD上,连
三、解答题 16. 计算: × ﹣(﹣ )﹣2+|3﹣ |. 17. 解方程: + = . 18. 如图,已知△ABC,求作:⊙O,使得⊙O经过A,C两点,且圆心O落在AB边上.(要求:尺规作图,保留作图
痕迹,不写作法)
19. 某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,对其份数和成绩(
14. 如图,直线y=mx(m为常数,且m≠0)与双曲线y= (k为常数,且k≠0)相交于A(﹣2,6),B两点,过点B作 BC⊥x轴于点C,连接AC,则△ABC的面积为________.
15. 如图,BD为矩形ABCD的对角线,AE⊥BD,垂足为E,tan∠BAE= 接AP、PQ,则AP+PQ的最小值为________.
2017年上海市长宁区中考数学二模试卷含答案解析
2017年上海市长宁区中考数学二模试卷含答案解析2017年上海市长宁区中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.已知 $\sqrt{2}+\sqrt{3}=\sqrt{a}$,那么下列各式中正确的是()A。
$a=5$ B。
$a=6$ C。
$a=7$ D。
$a=8$2.不等式组 $\begin{cases} 2x-310 \end{cases}$ 的解集在数轴上可表示为()A。
$(2,+\infty)$ B。
$(-\infty,-3)\cup(2,+\infty)$ C。
$(-\infty,-3)\cup(5,+\infty)$ D。
$(-\infty,-3)\cup(5,+\infty)$3.在正方形网格中,$\triangle ABC$ 的位置如图所示,则$\cos\angle B$ 的值为()A。
$\dfrac{1}{2}$ B。
$\dfrac{\sqrt{2}}{2}$ C。
$\dfrac{\sqrt{3}}{2}$ D。
$\dfrac{\sqrt{6}}{6}$4.如图,在四边形 $ABCD$ 中,动点 $P$ 从点 $A$ 开始沿 $A\to B\to C\to D$ 的路径匀速前进到 $D$ 为止.在这个过程中,$\triangle APD$ 的面积 $S$ 随时间 $t$ 的变化关系用图象表示正确的是()A。
B。
C。
D。
5.已知 $P$ 为线段 $AB$ 的黄金分割点,且 $AP<PB$,则()A。
$AP^2=AB\cdot PB$ B。
$AB^2=AP\cdot PB$ C。
$PB^2=AP\cdot AB$ D。
$AP^2+BP^2=AB^2$6.下列说法中,正确的是()A。
一组数据 $-2,-1,0,1,2$ 的中位数是 $0$B。
质检部门要了解一批灯泡的使用寿命,应当采用抽样的调查方式C。
购买一张福利彩票中奖是一个不可能事件D。
分别写有三个数字 $-1,-2,4$ 的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为 $\dfrac{1}{2}$二、填空题(本大题共12题,每题4分,满分48分)7.计算:$(ab)^{\frac{1}{3}}=$8.在实数范围内分解因式:$x^2-3=$9.已知函数 $f(x)=\dfrac{1}{2}\sinx+\dfrac{\sqrt{3}}{2}\cos x$,则 $f\left(\dfrac{\pi}{6}\right)=$10.已知反比例函数 $y=\dfrac{k}{x}$,那么 $f(-1)=$ 的图象经过一、三象限,则实数 $k$ 的取值范围是 $\left(-\infty,0\right)\cup\left(0,\dfrac{1}{2}\right)$11.抛物线 $y=-x^2+2x+a$ 的对称轴是 $x=\dfrac{1}{2}$12.方程 $\dfrac{1}{x}-\dfrac{1}{x-1}=1$ 的解为 $x=2$13.已知关于 $x$ 的方程 $x-2kx+k=0$ 有两个相等的实数根,那么实数 $k=1$14.某物流仓储公司用 $A$、$B$ 两种型号的机器人搬运物品,已知 $A$ 型机器人比 $B$ 型机器人每小时多搬运$20$ 千克物品,$A$ 型机器人搬运 $1000$ 千克物品所用时间与 $B$ 型机器人搬运 $800$ 千克物品所用时间相等,设$A$ 型机器人每小时搬运物品 $x$ 千克,列出关于 $x$ 的方程为 $1000=(x+20)t$15.化简:$2-3(-1)^{3+1}=$ $-1$16.如图,在菱形 $ABCD$ 中,$EF\parallel BC$,$EF=3$,则 $CD$ 的长为 $6$17.在 $\triangle ABC$ 中,已知 $BC=4$ cm,以边$AC$ 的中点 $P$ 为圆心 $1$ cm 为半径画 $\odot P$,以边$AB$ 的中点 $Q$ 为圆心 $x$ cm 长为半径画 $\odot Q$,如果$\odot P$ 与 $\odot Q$ 相切,那么 $x=2\sqrt{2}$ cm18.如图,在 $Rt\triangle ABC$ 中,$AB=AC$,$D$、$E$ 是斜边 $BC$ 上的两点,且 $\angle DAE=45^\circ$.设$BE=a$,$DC=b$,那么 $AB=a+b$所以正确的式子是C.=.答案】C2.如图,已知长方形ABCD中,点E、F分别在线段AB、CD上,且=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是C.=.答案】C3.如图,在△ABC中,点D、E、F分别在边BC、AC、AB上,且=,=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是D.=.答案】D4.如图,在△ABC中,点D、E分别在边AB、AC上,且=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是B.=.答案】B5.如图,已知长方形ABCD中,点E、F分别在线段AB、BC上,且=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是A.=.答案】A6.如图,已知正方形ABCD中,点E、F分别在线段AB、BC上,且=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是D.=.答案】D二、填空题(共6小题,每小题4分,满分24分)7.如图,已知△ABC中,点D、E分别在边AB、AC上,且=,=,=,=,则=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】60°8.如图,已知长方形ABCD中,点E、F分别在线段AB、CD上,且=,=,那么=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】29.如图,已知正方形ABCD中,点E、F分别在线段AB、BC上,且=,那么=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】135°10.如图,在△ABC中,点D、E分别在边AB、AC上,且=,=,=,则=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】60°11.如图,已知正方形ABCD中,点E、F分别在线段AB、BC上,且=,那么=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】45°12.如图,在△ABC中,点D、E分别在边AB、AC上,且=,=,=,则=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】120°三、解答题(共7题,满分78分)19.(10分)计算:()﹣1﹣|﹣3+tan45°|+().考点】S2:三角函数的计算.解答】解:由于tan45°=1,所以|﹣3+tan45°|=|﹣2|=2.所以()﹣1﹣|﹣3+tan45°|+()=()﹣1﹣2+()=()﹣3+()=()﹣3.答案】()﹣320.(10分)解方程组:.考点】S3:二元一次方程组的解法.解答】解:将第一个方程式乘以2得到2x+4y=10,将第二个方程式乘以3得到3x+6y=15,两式相减得到x=5-2y,代入第一个方程式得到y=1,代入第二个方程式得到x=3.所以方程组的解为(3,1).答案】(3,1)21.(10分)已知直线y=﹣x+3与x轴、y轴分别交于A、B两点,设O为坐标原点.(1)求∠ABO的正切值;2)如果点A向左平移12个单位到点C,直线l过点C且与直线y=﹣x+3平行,求直线l的解析式.考点】S4:平面几何的基本概念.解答】(1)点A的坐标为(3,0),点B的坐标为(0,3),所以∠ABO的正切值为3/0不存在.2)点C的坐标为(-9,0),直线l与直线y=﹣x+3平行,所以l的斜率与y=﹣x+3的斜率相同,即为﹣1.又因为直线l 过点C,所以l的解析式为y=﹣x-9.答案】(1)不存在;(2)y=﹣x-922.(10分)XXX在海湾森林公园放风筝.XXX所示,XXX在A处,风筝飞到C处,此时线长BC为40米,若XXX双手牵住绳子的底端B距离地面1.5米,从B处测得C 处的仰角为60°,求此时风筝离地面的高度CE.(计算结果精确到0.1米,≈1.732)考点】S5:三角函数的应用.解答】解:由正弦定理可得AC=2CEsin60°=2CE×√3/2=CE√3,又因为BC=40,所以BE=BC-CE=40-CE√3.由正切定义可得tan60°=CE/BE,即√3=CE/(40-CE√3),解得CE=40√3/4=10√3≈17.32.所以风筝离地面的高度CE≈17.32米.答案】≈17.32米23.(12分)如图,在△ABC中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且上,∠ACG的平分线交直线PQ于点F.1)求证:PC=PE;2)当P是边AC的中点时,求证:四边形AECF是矩形.考点】S4:平面几何的基本概念.解答】(1)由相似三角形的性质,可得=,=,所以PC=PE.2)当P是边AC的中点时,有PC=PE,∠ACG的平分线经过点P,所以PF=PG,又因为∠ACF=∠GCF,所以△ACF≌△GCF,所以AF=CG,又因为AF=EC,所以EC=CG,所以四边形AECF是矩形.答案】(1)PC=PE;(2)四边形AECF是矩形.24.(12分)已知△OAB在直角坐标系中的位置如图,点A在第一象限,点B在x轴正半轴上,OA=OB=6,∠AOB=30°.1)求点A、B的坐标;2)开口向上的抛物线经过原点O和点B,设其顶点为E,当△OBE为等腰直角三角形时,求抛物线的解析式;3)设半径为2的1.给定四个比例式,求哪个是正确的。
2017二模试题及答案
▲
.
D
F
D
数学试卷
第 1 页 (共 10 页)
14.用一个圆心角为 120°,半径为 4 的扇形制作一个圆锥的侧面,这个圆锥的底面圆的半径 为 ▲ . cm2.
15. 如图, 菱形 ABCD 的周长为 24 cm, 正方形 AECF 的周长为 16 cm, 则菱形的面积为 ▲
23. (8 分)某公司购买一批玻璃杯和保温杯,计划用 2000 元购买玻璃杯,用 2800 元购买保 温杯.已知一个保温杯比一个玻璃杯贵 10 元.该公司购买的玻璃杯与保温杯的数量能相 同吗? (1)根据题意,甲和乙两同学都先假设该公司购买的玻璃杯与保温杯的数量能相同,并 2000 2800 2800 2000 分别列出的方程如下: = ; - =10,根据两位同学所列的方程,请你 x x+10 y y 分别指出未知数 x,y 表示的意义:x 表示 ▲ ;y 表示 ▲ ;
3
▲ቤተ መጻሕፍቲ ባይዱ
. ▲ .
8.若式子 x-2在实数范围内有意义,则 x 的取值范围是 9.分解因式 2a2-4a 的结果是 ▲ . 10.半径为 2 的圆内接正六边形边长为 ▲ . 1 2 11.方程 = -1 的解是 x= x x 12. 1 -2 -(1- 3)0= 2 ▲ ▲ . .
13.如图,DE 是△ABC 的中位线,DC、BE 相交于点 O,OE=2.则 BE 的长为
21. (8 分) 如图,在□ABCD 中,E、F 分别是 AD、BC 的中点,连接 AC、CE、AF.
A E D
(1)求证△ABF ≌ △CDE; (2)若 AB=AC,求证四边形 AFCE 是矩形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. sometimesB. usually C ・ always D ・ seldomhave gone far.A. won'tB.cantC ・ mustn'tD. needn'tA. ReadB. To readC. ReadingD. ReadsA. hardB. harderC. hardestD. hardly——I don't know ・ Heit this morning.A. is doingB ・ was doingC ・ has doneD. will do2017年河南省普通高中招生考试第二次质量检测%1. 听力理解。
(略)%1. 单项选择(15小题;每小题1分,共15分)从A 、B 、C 、D 四个选项中选出一个最佳答案,并将其标号填涂在答题卡相应的位置。
()21. Lily went to ________ station by taxi, hoping to catch _______ 8:38 am train to Beijing. A. a; aB ・ an; theC ・ the; anD. the, the()22.一The Chinese Poetry Conference (中国诗词大会)on CCTV is a great __________ .一You are right. More and more people begin to enjoy the beauty of poems A. projectB ・ successC ・ chanceD. experiment( )23・ 一 Sara spends more money on clothes than ____ daughter in the family ・一I agree ・ She always spends most. A. otherB ・ the otherC ・ anotherD.any other( )24. For teenagers, its more important to ________ their interest in studies than to get goodgradesA. developB ・ mentionC ・ collectD. discuss()25 Life is only once, so you should ____________ remember safety must come first no matterwhereyou are)26. 一Where is M 匚 Wang? He is wanted on the phone.一Look, his bag is on the desk ・ He)27一 How can I improve my English?English as much as possible. It really helps.)2&——I have made progress in math.一Great! But you have a long way to go. You should try)29.——Has Jim finished his homework today?)30. Some students often ________ t heir homework until the last minute on weekends.cut off keep off put off turn off( )31. When I _once ______ about my Chinese dream, I hoped all children especially girlscouldreceive a good education.A.have; askedB. am; askedC. was; askedD. was;asking( )32. ___________________ o ther people never take her seriously, she is the apple of herfather'seye at homeA.SinceB. UnlessC. IfD. Although ( )33. 一To leave or to stay? You must make a choice・一OK. I know I can't stand _________ the two ideasA. amongB. betweenC. withD. against ( )34. One _______ is filled with knowledge always behaves with elegance (优雅)A. whichB. whoC. howD. what.( )35. The sky looks grey all the time. We all want to know ______________ .A.how long the situation will lastB.when will a strong wind comeC・ whether a strong wind came soonD. that we are able to change the situation三、完形填空(1()小题,每小题1分,共1()分)先通读文章,常握大意,然后从ABCD四个选项中选出一个可以填入相应空白处的最佳答案。
A businessman was deep in debt (负债).He could see no way out. He felt sad and sat on the river bank in a park, 36 what to do.An old man stopped and rested by the rive匚37 learning of the businessman's trouble, the old man wrote out a check(支票)and said to the businessman, "Take this money・ Meet me here exactly one year later from today on and you can give the money back by then・H Then the old man gave the businessman an address and walked away.The businessman saw the check for $500,000, signed by John D・ Rockefeller, who was one of the 38 men in the world! H I can pay off all my debts at once!” he thought excitedly. But 39 , he put the check and the address away. He decided to use the check when he was in the mostdifficult time.Within a few months, he managed to pay off his debts and 40_____ money once again.Exactly one year later, he followed the address to return the check. He found himself in a hospital. He waited for a long time but the old man didn f t 41 ・ Just as the businessman was about to 42 、 a nurse came up and led him to the old man's room. The nurse said the old man was 43 ill in mind and was always telling people he was John D・ Rockefelle匚The businessman was greatly 44 at what the nurse said・ Suddenly, he realized that it wasnt the 45 that had turned his life around・ It was his self-confidence (自信‘匚、)that had made him strong to deal with the difficulty・( )36.A. expecting B. wondering C・ knowing D. planning ( )37.A. Before B. Though C. Until D. After( )38.A. richest B・ happiest C・ cleverest D・funniest( )39.A. anyway B. besides C・ instead D. still ( )40.A. lost B. borrowed C.spent D. made ( )41. A.appear B. reply C. accept D.change ( )42.A.cry B. 1 eave C. remember D. relax ( )43.A.badly B. easily C. quickly D. clearly( )44.A. moved B. worried C. excited D.surprised( )45.A. money B experience C. pity D. skill四、阅读理解(20小题,每小题2分,共40分)阅读下面四篇语言材料,然后按文后要求做题。
I always loved looking at this hidden lane(小路)as I drove my children to school. The lane is easily overlooked(忽视)because it's between a pizza restaurant and a house. If you don't take the time to look to the left at the stop sign, you'11 miss it.As you can see, the tree-lined lane is pretty in every season. I have pictures of the four seasons hanging in my home and at my workplace・ Many people have asked me about them. When I tell them where I took the pictures, they are always surprised・ Most of them probably never slow down from their busy lives to notice the scenery so close to their home・Our family moved to Gibsonia, Pennsylvania more than 25 years ago, and we love living there. Gibsonia has beautiful hills and many, many huge old oak trees・I adore the natural beauty of the countryside throughout the year, from the heavy snows of winter to the bright new greens of spring, and I hope to always live where the seasons change・Now my children have grown up and left home. My husband Ron and I can take many drives together, especially in the fall. We always go to the countryside. We love to discover the natural scenes along the roads in the countryside. Western Pennsylvania is a beautiful area with mountains, lakes and rivers, and we hope to discover more natural beauty there・As I get older, I value the peace and beauty of the countryside even more・This collection ofphotos of my favorite country lane shows that if you lake the time to look around, you will always discover something wonderful, no matter where you are. What an amazing country we live in!根据材料内容选择最佳选项,并在答题卡上将该项涂黑。