2015高考数学一轮题组训练:12-2合情推理与演绎推理

合集下载

2015高考数学一轮精品课件:12.3 合情推理与演绎推理

2015高考数学一轮精品课件:12.3 合情推理与演绎推理

第四页,编辑于星期五:十三点 四分。
第十二章
12.3
合情推理与演绎推理
考纲要求
梳理自测
梳理自测
探究突破
巩固提升
想一想合情推理与演绎推理有什么联系与差异?
答案:总体来说,从推理形式和推理所得结论的正确性上讲,二者
有差异;从二者在认识事物的过程中所发挥的角度考虑,它们又是紧
密联系、相辅相成的.合情推理得到的结论需要演绎推理的验证,而
个区域,选
2
关闭
C.
解析
解析
考点二
考点三
答案
第十二页,编辑于星期五:十三点 四分。
第十二章
12.3
合情推理与演绎推理
考纲要求
考点二
梳理自测
探究突破
探究突破
巩固提升
类比推理
【例 2】给出下面类比推理命题(其中 Q 为有理数集,R 为实数集,C 为复数
集):
①“若 a,b∈R,则 a-b=0⇒ a=b”类比推出“若 a,b∈C,则 a-b=0⇒ a=b”;
b+b2.
其中结论正确的个数是(
A.0
B.1
)
C.2
D.3
关闭
B
关闭
只有③正确.
解析
Hale Waihona Puke 答案第八页,编辑于星期五:十三点 四分。
第十二章
12.3
合情推理与演绎推理
考纲要求
梳理自测
梳理自测
探究突破
巩固提升
4.在平面上,若两个正三角形的边长比为 1∶
2,则它们的面积比为 1∶
4.类似地,
在空间中,若两个正四面体的棱长比为 1∶
以省略.
考点一

高考数学(理科)一轮复习合情推理与演绎推理学案附答案

高考数学(理科)一轮复习合情推理与演绎推理学案附答案

高考数学(理科)一轮复习合情推理与演绎推理学案附答案本资料为woRD文档,请点击下载地址下载全文下载地址学案37 合情推理与演绎推理导学目标:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.自主梳理自我检测.观察′=2x,′=4x3,′=-sinx,由归纳推理可得:若定义在R上的函数f满足f=f,记g为f的导函数,则g等于A.fB.-fc.gD.-g2.给出下面类比推理命题:①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈c,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a =c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈c,则a-b>0⇒a>b”.其中类比结论正确的个数是A.0B.1c.2D.33.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.4.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.5.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为___________________________________________.探究点一归纳推理例1 在数列{an}中,a1=1,an+1=2an2+an,n∈N*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移 1 观察:①sin210°+cos240°+sin10°cos40°=34;②sin26°+cos236°+sin6°cos36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.探究点二类比推理例2 在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有paha+pbhb+pchc=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2 在Rt△ABc中,若∠c=90°,Ac=b,Bc =a,则△ABc的外接圆半径r=a2+b22,将此结论类比到空间有_______________________________________________.探究点三演绎推理例3 在锐角三角形ABc中,AD⊥Bc,BE⊥Ac,D、E是垂足.求证:AB的中点m到D、E的距离相等.变式迁移3 指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数..合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.2.归纳推理与类比推理都属合情推理:归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.一、选择题.定义A*B,B*c,c*D,D*A的运算分别对应下图中的、、、,那么下图中的、所对应的运算结果可能是A.B*D,A*DB.B*D,A*cc.B*c,A*DD.c*D,A*D2.设f=1+x1-x,又记f1=f,fk+1=f),k=1,2,…,则fXX等于A.-1xB.xc.x-1x+1D.1+x1-x3.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a•b=b•a”;②“t=mt+nt”类比得到“•c=a•c+b•c”;③“t=m”类比得到“•c=a•”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a•p=x•p⇒a=x”;⑤“|m•n|=|m|•|n|”类比得到“|a•b|=|a|•|b|”;⑥“acbc=ab”类比得到“a•cb•c=ab”.以上的式子中,类比得到的结论正确的个数是A.1B.2c.3D.44.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是A.289B.1024c.1225D.13785.已知整数的数对如下:,,,,,,,,,,,,…则第60个数对是A.B.c.D.二、填空题6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是___________________________________________________ _____________________.7.定义一种运算“*”:对于自然数n满足以下运算性质:8.观察下列等式=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为___________________________________________________ __.三、解答题9.(12分)已知数列{an}的前n项和为Sn,a1=-23,且Sn+1Sn+1+2=0.计算S1,S2,S3,S4,并猜想Sn的表达式.10.已知函数f=-aax+a,证明:函数y=f的图象关于点12,-12对称;求f+f+f+f+f+f的值.1.如图1,若射线om,oN上分别存在点m1,m2与点N1,N2,则=om1om2•oN1oN2;如图2,若不在同一平面内的射线oP,oQ和oR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.学案37 合情推理与演绎推理自主梳理归纳推理全部对象部分个别类比推理这些特征特殊到特殊①一般原理②特殊情况③特殊情况一般特殊自我检测.D [由所给函数及其导数知,偶函数的导函数为奇函数.因此当f是偶函数时,其导函数应为奇函数,故g=-g.] 2.c [①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.]3.1∶8解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.4.13+23+33+43+53+63=212解析由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.5.一切奇数都不能被2整除大前提2100+1是奇数小前提所以2100+1不能被2整除结论课堂活动区例1 解题导引归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.解在{an}中,a1=1,a2=2a12+a1=23,a3=2a22+a2=12=24,a4=2a32+a3=25,…,所以猜想{an}的通项公式为an=2n+1.这个猜想是正确的,证明如下:因为a1=1,an+1=2an2+an,所以1an+1=2+an2an=1an+12,即1an+1-1an=12,所以数列1an是以1a1=1为首项,2为公差的等差数列,所以1an=1+×12=12n+12,所以通项公式an=2n+1.变式迁移1 解猜想sin2α+cos2+sinαcos=34.证明如下:左边=sin2α+cos[cos+sinα]=sin2α+32cosα-12sinα32cosα+12sinα=sin2α+34cos2α-14sin2α=34=右边.例2 解题导引类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.解类比:从四面体内部任意一点向各面引垂线,其长度分别为pa,pb,pc,pd,且相应各面上的高分别为ha,hb,hc,hd.则有paha+pbhb+pchc+pdhd=1.证明如下:paha=13S△BcD•pa13S△BcD•ha=VP—BcDVA—BcD,同理有pbhb=VP—cDAVB—cDA,pchc=VP—BDAVc—BDA,pdhd=VP—ABcVD—ABc,VP—BcD+VP—cDA+VP—BDA+VP—ABc=VA—BcD,∴paha+pbhb+pchc+pdhd=VP—BcD+VP—cDA+VP—BDA+VP—ABcVA—BcD=1.变式迁移2 在三棱锥A—BcD中,若AB、Ac、AD两两互相垂直,且AB=a,Ac=b,AD=c,则此三棱锥的外接球半径R=a2+b2+c22例3 解题导引在演绎推理中,只有前提和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.证明因为有一个内角是直角的三角形是直角三角形,——大前提在△ABD中,AD⊥Bc,即∠ADB=90°,——小前提所以△ADB是直角三角形.——结论因为直角三角形斜边上的中线等于斜边的一半,——大前提而m是Rt△ADB斜边AB的中点,Dm是斜边上的中线,——小前提所以Dm=12AB.——结论同理Em=12AB,所以Dm=Em.变式迁移3 解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定.课后练习区.B [由图得A表示|,B表示□,c表示—,D表示○,故图表示B*D和A*c.]2.A [计算f2=f1+x1-x=1+1+x1-x1-1+x1-x =-1x,f3=f-1x=1-1x1+1x=x-1x+1,f4=1+x-1x+11-x-1x+1=x,f5=f1=1+x1-x,归纳得f4k+i=fi,k∈N*,i=1,2,3,4.∴fXX=f2=-1x.]3.B [只有①、②对,其余错误,故选B.]4.c [设图中数列1,3,6,10,…的通项公式为an,则a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n.故an-a1=2+3+4+…+n,∴an=nn+12.而图中数列的通项公式为bn=n2,因此所给的选项中只有1225满足a49=49×502=b35=352=1225.]5.D [观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n+1的数对有n个,多个数对的排序是按照横坐标依次增大的顺序来排的,由nn +12=60⇒n=120,n∈Z,n=10时,nn+12=55个数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是,,,,,∴第60个数对是.]6.空间正四面体的内切球的半径是高的14解析利用体积分割可证明.7.n8.n++…+=2解析∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n个等式为n++…+=2.9.解当n=1时,S1=a1=-23.当n=2时,1S2=-2-S1=-43,∴S2=-34.当n=3时,1S3=-2-S2=-54,∴S3=-45.当n=4时,1S4=-2-S3=-65,∴S4=-56.猜想:Sn=-n+1n+2.0.证明函数f的定义域为R,任取一点,它关于点12,-12对称的点的坐标为.由已知得y=-aax+a,则-1-y=-1+aax+a=-axax+a,f=-aa1-x+a=-aaax+a=-a•axa+a•ax=-axax+a,∴-1-y =f.即函数y=f的图象关于点12,-12对称.解由有-1-f=f,即f+f=-1.∴f+f=-1,f+f=-1,f+f=-1,则f+f+f+f+f+f=-3.1.解类似的结论为:Vo—P1Q1R1Vo—P2Q2R2=oP1oP2•oQ1oQ2•oR1oR2.这个结论是正确的,证明如下:如图,过R2作R2m2⊥平面P2oQ2于m2,连接om2.过R1在平面oR2m2作R1m1∥R2m2交om2于m1,则R1m1⊥平面P2oQ2.由Vo—P1Q1R1=13S△P1oQ1•R1m1=13•12oP1•oQ1•sin∠P1oQ1•R1m1=16oP1•oQ1•R1m1•sin∠P1oQ1,同理,Vo—P2Q2R2=16oP2•oQ2•R2m2•sin∠P2oQ2.所以=oP1•oQ1•R1m1oP2•oQ2•R2m2.由平面几何知识可得R1m1R2m2=oR1oR2.所以=oP1•oQ1•oR1oP2•oQ2•oR2.所以结论正确.。

2015高考数学一轮课件:12-2合情推理与演绎推理

2015高考数学一轮课件:12-2合情推理与演绎推理

第十页,编辑于星期五:十三点 十一分。
解析 由N(n,3)=12n2+12n, N(n,4)=22n2+02n, N(n,5)=32n2+-21n, N(n,6)=42n2+-22n, 推测N(n,k)=k-2 2n2+4-2 kn,k≥3. 从而N(n,24)=11n2-10n,N(10,24)=1 000. 答案 1 000
(×)
诊突培断破养基高解础频题
第五页,编辑于星期五:十三点 十一分。
(4)(教材习题改编)一个数列的前三项是1,2,3,那么这个数列 的通项公式是an=n(n∈N*).
(×) (5)(2014·安庆调研改编)在平面上,若两个正三角形的边长比 为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两 个正四面体的棱长比为1∶2,则它们的体积比为1∶8.
(2n-1).
答案
(1)
1+ 2
1+ 6
1+ 12
1+ 20
1< 30
5
(2)(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)
诊突培断破养基高解础频题
第十四页,编辑于星期五:十三点 十一分。
考点二 类比推理
【例 2】 在平面几何里,有“若△ABC 的三边长分别为 a,b,c,
内切圆半径为 r,则三角形面积为 S△ABC=12(a+b+c)r”,拓 展到空间,类比上述结论,“若四面体 ABCD 的四个面的面 积分别为 S1,S2,S3,S4,内切球的半径为 r,则四面体的体 积为________”. 审题路线 三角形面积类比为四面体的体积⇒三角形的边长
第2讲 合情推理与演绎推理
诊突培断破养基高解础频题
第一页,编辑于星期五:十三点 十一分。
知识梳理
1.归纳推理 (1)定义:根据一类事物中部分事物具有某种属性,推断 该类事物中 每一个事物都有这种属性的推理.或者由个

高考数学一轮复习专题训练—合情推理与演绎推理

高考数学一轮复习专题训练—合情推理与演绎推理

合情推理与演绎推理考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明.2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误.3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的.若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()答案(1)×(2)√(3)×(4)×解析(1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.如图,根据图中的数构成的规律,得a表示的数是()A.12 B.48 C.60 D.144答案 D解析由题干图中的数据可知,每行除首末两数外,其他数等于其上一行两肩上的数字的乘积.所以a=12×12=144.3.在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立.类比上述性质,在等比数列{b n}中,若b9=1,则存在的等式为________.答案b1b2…b n=b1b2…b17-n(n<17,且n∈N*)解析根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…b n=b1b2…b17-n(n<17,且n∈N*).4.(2020·贵阳一模)有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理()A.大前提错误B.小前提错误C.推理形式错误D.结论正确答案 A解析大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.5.(2021·郑州质检)某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上;丙说:丁竞选成功;丁说:丙竞选成功.若这四人中有且只有两人预测的正确,则成功竞选学生会主席职位的是()A.甲B.乙C.丙D.丁答案 D解析若成功竞选的是甲,则甲、乙、丙、丁四人的预测均错误,故不合题意;若成功竞选的是乙,则甲、丙、丁三人的预测错误,乙的预测正确,故不合题意;若成功竞选的是丙,则甲、乙、丁三人的预测正确,丙的预测错误,故不合题意;若成功竞选的是丁,则甲、丙两人的预测正确,乙、丁两人的预测错误,符合题意.故选D.6.(2020·桂林模拟)已知函数f(x)满足f(1)=f(2)=1,且对任意n∈N*恒有f(n+2)=f(n+1)+f(n),观察下列等式:f(1)+f(2)=2=3-1,f(1)+f(2)+f(3)=4=5-1,f(1)+f(2)+f(3)+f(4)=7=8-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=________.答案f(n+3)-1解析根据题意可得f(3)=2,f(4)=3,f(5)=5,f(6)=8,f(7)=13,因为f(1)+f(2)=2=3-1=f(4)-1,f(1)+f(2)+f(3)=4=5-1=f(5)-1,f(1)+f(2)+f(3)+f(4)=7=8-1=f(6)-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1=f(7)-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=f(n+3)-1.故答案为f(n+3)-1.考点一归纳推理角度1与图形变化有关的推理【例1】中国有句名言“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推.例如6 613用算筹表示就是,则8 335用算筹可表示为()答案 B解析各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,则8 335用算筹可表示为.故选B.角度2与数字或式子有关的推理【例2】 已知32+27=2327,33+326=33326,34+463=43463,……,3 2 021+mk=2 0213m k ,则k +1m 2=________.答案 2 021解析 由已知32+27=2327,33+326=33326,34+463=43463,……,可归纳出3n +n n 3-1=n 3nn 3-1, 又因为32 021+mk =2 0213m k,所以m =2 021,k =2 0213-1, 所以k +1m 2=2 0213-1+12 0212=2 021.感悟升华 归纳推理问题的常见类型及解题策略体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n =6时,该黑色三角形内去掉小三角形个数为( )A .81B .121C .364D .1 093(2)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2 =43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 答案 (1)C (2)4n n +13解析 (1)由图可知,每一个图形中去掉小三角形的个数等于前一个图形去掉小三角形个数的3倍加1,所以,n =1时,a 1=1; n =2时,a 2=3+1=4; n =3时,a 3=3×4+1=13; n =4时,a 4=3×13+1=40; n =5时,a 5=3×40+1=121; n =6时,a 6=3×121+1=364,故选C. (2)观察前4个等式,由归纳推理可知⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=43×n ×(n +1)=4n n +13.考点二 类比推理【例3】 (1)在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间中,则三棱锥中的类似结论为________.(2)已知命题:在平面直角坐标系xOy 中,椭圆x 2a 21+y 2b 21=1(a 1>b 1>0),△ABC 的顶点B 在椭圆上,顶点A ,C 分别为椭圆的左、右焦点,椭圆的离心率为e 1,则sin A +sin C sin B =1e 1,现将该命题类比到双曲线中,△ABC 的顶点B 在双曲线上,顶点A ,C 分别为双曲线的左、右焦点,设双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),双曲线的离心率为e 2,则有________.答案 (1)P a h a +P b h b +P c h c +P dh d =1(2)|sin A -sin C |sin B =1e 2解析 (1)设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.(2)因为△ABC 的顶点B 在双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)上,顶点A ,C 分别是双曲线的左、右焦点,所以有|BA -BC |=2a 2, 所以1e 2=2a 22c 2=|BA -BC |AC,由正弦定理可得BC sin A =AC sin B =AB sin C ,所以|sin A -sin C |sin B =1e 2.感悟升华 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;实数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】(2020·赣州一模)我们把平面内与直线垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3)且法向量为n=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0.类比以上方法,在空间直角坐标系中,经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为________.答案x+2y-z-4=0解析将平面中的运算类比到空间中的运算得:经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为(-1)×(x-2)+(-2)×(y-3)+1×(z-4)=0,化简得x+2y-z-4=0,即平面的方程为x+2y-z-4=0.考点三演绎推理【例4】(2020·河南六校联考)自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.调查某高中学校学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟;②报考“华约”联盟的学生,也报考了“京派”联盟;③报考“卓越”联盟的学生,都没报考“京派”联盟;④不报考“卓越”联盟的学生,就报考“华约”联盟.根据上述调查结果,下列结论错误的是()A.没有同时报考“华约”和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟答案 D解析设该校报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A,B,C,D,报考自主招生的总学生为U,则由题意,知A∩B=∅,B⊆C,D∩C=∅,∁U D=B,∴A⊆D,B=C,B∩D=∅.选项A,B∩D=∅,正确;选项B,B=C,正确;选项C,A⊆D,正确,故选D.感悟升华解决逻辑推理问题的两种方法:(1)假设反证法:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.(2)枚举筛选法:即不重复、不遗漏地将问题中的有限情况一一枚举,然后对各种情况逐个检验,排除一些不可能的情况,逐步归纳梳理,找到正确答案.【训练3】(1)(2019·全国Ⅱ卷)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙(2)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案(1)A(2)①6②12解析(1)由于三人成绩互不相同且只有一个人预测正确,故若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,又假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.故选A.(2)设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧x >y ,y >z ,2z >x ,且x ,y ,z 均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6. ②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.基础巩固一、选择题1.已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2 D .a n =3n -1答案 C解析 a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ) A .f (x ) B .-f (x ) C .g (x ) D .-g (x )答案 D解析 由已知得偶函数的导函数为奇函数,故g (-x )=-g (x ).3.(2020·合肥一模)2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”“国富民强”“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的.若三人的说法有且仅有一个是正确的,则“鸿福齐天”的制作者是()A.小明B.小红C.小金D.小金或小明答案 B解析依题意,三个人制作的所有情况如下所示:12345 6鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选B.4.(2021·安徽六校测试)如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析(1)由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断:第n个图形的顶点个数为(n+2)(n+3),故选D.5.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列{a n}的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1(a>b>0)的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇答案 B解析从S1,S2,S3猜想出数列{a n}的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.6.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C.7.若等差数列{a n}的前n项之和为S n,则一定有S2n-1=(2n-1)a n成立.若等比数列{b n}的前n项之积为T n,类比等差数列的性质,则有()A.T2n-1=(2n-1)+b n B.T2n-1=(2n-1)-b nC.T2n-1=(2n-1)b n D.T2n-1=b2n-1n答案 D解析 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n ,…,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n. 8.(2020·昆明质检)斐波那契数列,又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89,…,在数学上,斐波那契数列{a n }定义为:a 1=1,a 2=1,a n +2=a n +a n +1,斐波那契数列有种看起来很神奇的巧合,如根据a n +2=a n +a n +1可得a n =a n +2- a n +1,所以a 1+a 2+…+a n =(a 3-a 2)+(a 4-a 3)+…+(a n +2-a n +1)=a n +2-a 2=a n +2-1,类比这一方法,可得a 21+a 22+…+a 210=( )A .714B .1 870C .4 895D .4 896答案 C解析 将a n +1=a n +2-a n 两边同乘a n +1,可得a 2n +1=a n +2a n +1-a n +1a n ,则a 21+a 22+…+a 210=a 21+(a 2a 3-a 2a 1)+(a 3a 4-a 2a 3)+…+(a 10a 11-a 9a 10)=1-a 2a 1+a 10a 11=1-1+55×89=4 895.故选C. 二、填空题9.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0202<________. 答案4 0392 020解析 由题意得,不等式右边分数的分母是左边最后一个分数的分母的底数,分子是一个以3为首项,2为公差的等差数列中的项,可以推出1+122+132+…+1n 2<2n -1n ,所以1+122+132+…+12 0202<2 020×2-12 020=4 0392 020. 10.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.答案 55解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55.11.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线,则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 答案x 0x a 2-y 0y b 2=1 解析 类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb2=1.12.如下分组的正整数对:第1组为{(1,2),(2,1)},第2组为{(1,3),(3,1)},第3组为{(1,4),(2,3),(3,2),(4,1)},第4组为{(1,5),(2,4),(4,2),(5,1)},……,则第40组的第21个数对为________. 答案 (22,20)解析 由题意可得第1组数对中的各数的和为3,第2组数对中各数的和为4,第3组数对中各数的和为5,第4组数对中各数的和为6, ……第n 组数对中各数的和为n +2,且各个数对中无重复数字, 可得第40组数对中各数的和为42, 则第40组的第21个数对为(22,20).能力提升13.天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立70周年时为( ) A .“丙酉”年 B .“戊申”年 C .“己申”年 D .“己亥”年答案 D解析 中华人民共和国成立70周年时为2019年,从1949到2019共有71个数,若把天干排成一列,记为{a n },且a 1=“己”,则a 71=a 7×10+1=a 1=“己”;若把地支排成一列,记为{b n },且b 1=“丑”,则b 71=b 5×12+11=b 11=“亥”.所以中华人民共和国成立70周年时为“己亥”年,故选D.14.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”代表无数次重复,但原式却是个定值,它可以通过方程1+1x =x求得x =5+12.类比上述过程,3+23+2…=( ) A .3 B .13+12C .6D .2 2答案 A解析 由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根), 令3+23+2…=m (m >0),则两边平方得,3+23+23+2…=m 2,即3+2m =m 2,解得m =3或m =-1(舍去).故选A. 15.(2021·武汉模拟)观察下列数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …设数100为该数表中的第n 行,第m 列,则mn =________. 答案 114解析 观察数表可知第n 行的数的个数为a n =2n -1,则前n 行的所有数的个数之和S n =1-2n1-2=2n -1,数表中的数是由正偶数排列而成的,而数100是第50个数,令2n -1=50,解得5<n <6,则100在这个数表中的第6行,S 5=31,则100在这个数表中的第19列,即n =6,m =19,所以mn =6×19=114.16.(2021·豫南九校质量考评)已知函数f (x )=1x +1x +1+1x +2,由f (x -1)=1x -1+1x +1x +1是奇函数,可得函数f (x )的图象关于点(-1,0)对称,类比这一结论,可得函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点________对称.答案 ⎝⎛⎭⎫-72,6 解析 由题意得g (x )-6=x +2x +1-1+x +3x +2-1+x +4x +3-1+x +5x +4-1+x +6x +5-1+x +7x +6-1=1x +1+1x +2+1x +3+1x +4+1x +5+1x +6, 则g ⎝⎛⎭⎫x -72-6=1x -72+1+1x -72+2+1x -72+3+1x -72+4+1x -72+5+1x -72+6=1x -52+1x -32+1x -12+1x +12+1x +32+1x +52, 令g ⎝⎛⎭⎫x -72-6=h (x ), ∴h (-x )=1-x -52+1-x -32+1-x -12+1-x +12+1-x +32+1-x +52=-h (x ),∴h (x )是奇函数,∴函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点⎝⎛⎭⎫-72,6对称.。

核按钮(新课标)高考数学一轮复习 第十二章 算法初步、推理与证明 12.3 合情推理与演绎推理习题 理

核按钮(新课标)高考数学一轮复习 第十二章 算法初步、推理与证明 12.3 合情推理与演绎推理习题 理

§12.3 合情推理与演绎推理1.两种基本的推理推理一般包括__________和__________两类.2.合情推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由__________到整体、由__________到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由________到________的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行__________、__________,然后提出猜想的推理,我们把它们统称为合情推理.3.演绎推理(1)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由__________到__________的推理.(2)“__________”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.“三段论”可以表示为:大前提:M是P.小前提:S是M.结论:S是P.自查自纠1.合情推理演绎推理2.(1)部分个别(2)特殊特殊(3)归纳类比3.(1)一般特殊(2)三段论关于归纳推理,下列说法正确的是( )A.归纳推理是由一般到一般的推理B.归纳推理是由一般到特殊的推理C.归纳推理的结论一定是正确的D.归纳推理的结论不一定正确解:归纳推理是由特殊到一般的推理,但结论未必正确.故选D.下面几种推理是合情推理的是( )①由圆的性质类比出球的性质;②由等差数列的性质类比出等比数列的性质;③由三角形的面积公式类比出三棱锥的体积公式;④由直角三角形、等腰三角形、等边三角形的内角和为180°,归纳出所有三角形的内角和都是180°.A.仅①②是B.仅①②③是C.仅①②④是D.①②③④都是解:①②③是类比推理,④是归纳推理.它们都属于合情推理.故选D.(2015·烟台质检)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误解:三段论的大前提必须是全称命题,此推理过程是三段论,但大前提是特称命题.故选C.(2014·课标Ⅰ)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为____________.解:由题意可判断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A.故填A.如图是2015年武汉东湖灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是____________.(填写对应图形的序号)解:由前三个图形呈现出来的规律可知,下一个图形可视作上一图形顺时针旋转144°得到的,由第三个图形顺时针旋转144°得到的图形应为①.故填①.根据下列条件,写出数列中的前4项,并归纳猜想它的一个通项公式. (1)a 1=3,a n +1=2a n +1;(2)a 1=a ,a n +1=12-a n.解:(1)由已知有a 1=3=22-1,a 2=2a 1+1=2×3+1=7=23-1, a 3=2a 2+1=2×7+1=15=24-1, a 4=2a 3+1=2×15+1=31=25-1.由此猜想a n =2n +1-1,n ∈N *.(2)由已知有a 1=a ,a 2=12-a 1=12-a,a 3=12-a 2=2-a 3-2a ,a 4=12-a 3=3-2a 4-3a.由此猜想a n =(n -1)-(n -2)a n -(n -1)a,n ∈N *.【点拨】数列的通项公式表示的是数列{a n }的第n 项a n 与序号n 之间的对应关系,先根据已知的递推公式,算出数列的前几项,再通过观察,归纳得到关于数列通项公式的一个猜想,这种猜想是否正确还有待严格的证明.(1)下列由火柴杆拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有__________根;第n 个图形中,火柴杆有__________根.解:第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根,…,依次成等差数列,所以猜想第n 个图形有3n +1根.故填13;3n +1.(2)(2015·黑龙江模拟)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.据此猜想一个一般性的结论为__________(n ∈N *).解:因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n )≥n +22.在△ABC 中,若AB ⊥AC ,AD ⊥BC 于D ,则1AD2=1AB2+1AC 2.在四面体A ­BCD 中,若AB ,AC ,AD 两两垂直,AH ⊥底面BCD ,垂足为H ,则类似的结论是什么?并说明理由.解:如图,在四面体A ­BCD 中,若AB ,AC ,AD 两两垂直,AH ⊥底面BCD ,垂足为H ,则1AH2=1AB 2+1AC 2+1AD2.证明如下:连接BH 并延长交CD 于E ,连接AE . ∵AB ,AC ,AD 两两垂直,∴AB ⊥平面ACD . 又∵AE ⊂平面ACD ,∴AB ⊥AE .在Rt △ABE 中,有1AH 2=1AB 2+1AE2.①又易证CD ⊥AE ,∴在Rt △ACD 中,1AE2=1AC2+1AD 2.②将②式代入①式得1AH2=1AB2+1AC2+1AD 2.【点拨】本题考查的是平面到空间的推广类比,并且在推导空间的结论时用到了平面的结论.一般地,平面中的一些元素与空间中的一些元素可类比如下: 平面 点 线 圆 三角形 角 面积 周长 … 空间 线面球三棱锥二面角体积表面积…已知命题:平面直角坐标系xOy 中,△ABC 顶点A (-p ,0)和C (p ,0),顶点B 在椭圆x 2m 2+y 2n 2=1(m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e,试将该命题类比到双曲线中,给出一个结论.解:利用两种圆锥曲线元素之间的对应关系,类比可得:平面直角坐标系xOy 中,△ABC顶点A (-p ,0)和C (p ,0),顶点B 在双曲线x 2m 2-y 2n2=1(m >0,n >0,p =m 2+n 2)上,双曲线的离心率是e ,则|sin A -sin C |sin B =1e.类型三 演绎推理指出下面推理中的错误:(1)自然数是整数……………………………大前提 -5是整数…………………………………小前提 所以,-5是自然数…………………………结论 (2)指数函数y =a x是增函数………………大前提y =⎝ ⎛⎭⎪⎫12x是指数函数 ………………………小前提 所以,y =⎝ ⎛⎭⎪⎫12x是增函数 ……………………结论 (3)三角函数是周期函数 …………………大前提y =sin x (0<x <π)是三角函数 ………………小前提所以,y =sin x (0<x <π)是周期函数 …………结论解:(1)推理形式错误,自然数是整数为大前提,小前提应是判断某数为自然数,而不是某数为整数.(2)大前提错误,因为当0<a <1时,指数函数y =a x是减函数.(3)推理形式错误,大前提中的“三角函数”和小前提中的“三角函数”概念不同. 【点拨】演绎推理是一种必然性推理,只有前提和推理形式都是正确的,结论才一定是正确的,否则,不能保证结论的可靠性.(2015·保定期末)有一段“三段论”,推理是这样的:对于可导函数f (x ),如果f ′(x 0)=0,那么x =x 0是函数f (x )的极值点.因为f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.以上推理中( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解:对于可导函数f (x ),如果f ′(x 0)=0,那么x =x 0 不一定是函数f (x )的极值点,大前提错误,故选A .1.归纳推理的前提是一些特殊的情况,所以归纳推理要在观察、经验、实验的基础上进行;归纳推理是依据特殊现象推断出一般现象,因此所得结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以“前提真而结论假”的情况是有可能发生的.归纳推理的一般过程:(1)通过观察个别情况,发现相同的性质; (2)推出一个明确表述的一般性结论.2.在数学中,类比是发现概念、方法、定理、公式的重要手段,并且应用广泛,数与式、平面与空间、一元与多元、低次与高次、相等与不等、有限与无限等之间有不少结论都是先用类比的方法提出猜想,然后再加以证明的.进行类比推理,重要的是要找准合适的类比对象,如三棱锥、球、体积的类比对象一般分别为三角形、圆、面积;同时还要注意不仅可进行形式的类比,还可进行方法的类比.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想),但结论不一定正确,有待进一步证明.1.(2015·武汉华师一附中)下列推理是归纳推理的是( )A .由于f (x )=x cos x 满足:f (-x )=-f (x )对任意x ∈R 都成立,推断f (x )=x cos x 为奇函数B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜出数列{a n }的前n 项和的表达式C .由圆x 2+y 2=1的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1的面积S =πabD .由平面三角形的性质推测空间四面体的性质解:归纳推理是由某类事物的部分对象具有某些性质,推出该类事物的全部对象都具有这些特征的推理,只有B 是归纳推理,故选B .2.(2015·河北月考)下列推理中属于类比推理的是( ) A .一切偶数都能被2整除,2100是偶数,所以2100能被2整除 B .由a 1,a 2,a 3,…,归纳出数列的通项公式a n C .由平面三角形的性质,推测空间四边形的性质 D .如果a >b ,c >d ,则a -d >b -c解:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,只有C 选项符合概念,故选C .3.下面使用类比推理正确的是( )A .由“若a ·3=b ·3,则a =b ”类推出“a ·0=b ·0,则a =b ”B .由“(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .由“(a +b )c =ac +bc ”类推出“a +b c =a c +bc(c ≠0)”D .由“(ab )n =a n b n ”类推出“(a +b )n =a n+b n” 解:易知A ,B ,D 错误.故选C .4.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解:归纳推理:∵1+3=4,3+4=7,4+7=11,7+11=18,11+18=29,18+29=47,29+47=76,∴a 10+b 10=47+76=123,故选C .5.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解:以上各式不同整数解的个数按顺序构成首项为4,公差为4的等差数列,即当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,因此|x |+|y |=20的不同整数解(x ,y )的个数为4×20=80,故选B .6.如图,椭圆的中心在坐标原点,F 为其左焦点,当FB →⊥AB →时,椭圆的离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”可得“黄金双曲线”的离心率为( )A.5+12 B.5-12C.5-1D.5+1 解:设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),F (-c ,0),B (0,b ),A (a ,0),则FB →=(c ,b ),AB →=(-a ,b ).∵FB →⊥AB →,∴FB →·AB →=-ac +b 2=0. 又∵b 2=c 2-a 2,∴c 2-ac -a 2=0,即e 2-e -1=0.解得e =1±52.又e >1,∴e =1+52.故选A .7.(2015·西安市自主命题)已知:x ∈(0,+∞),观察下列式子:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,…,类比有x +ax n ≥n +1(n ∈N *),则a 的值为____________.解:根据题意,对给出的等式变形可得:x +1x ≥2,x +22x 2=x +4x 2=x 2+x 2+4x2≥3,类比有x +axn =+a x n ≥(n +1)n +1a nn =n +1,∴a =n n .故填n n. 8.(2013·陕西)观察下列等式: (1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5, ……照此规律,第n 个等式可为_________________.解:观察到等式左边依次是(n +1)(n +2)(n +3)…(n +n ),等式右边是2n与n 个奇数的乘积,(n +1)(n +2)…(n +n )=2n×1×3×5×…×(2n -1).故填(n +1)(n +2)…(n +n )=2n×1×3×5×…×(2n -1).9.先解答(1),再根据结构类比解答(2).(1)已知a ,b 为实数,且|a |<1,|b |<1,求证:ab +1>a +b ;(2)已知a ,b ,c 均为实数,且|a |<1,|b |<1,|c |<1,求证:abc +2>a +b +c . 证明:(1)ab +1-(a +b )=(a -1)(b -1)>0. (2)∵|a |<1,|b |<1,|c |<1,∴|ab |<1, 据(1)得(ab )·c +1>ab +c ,∴abc +2=[(ab )·c +1]+1>(ab +c )+1 =(ab +1)+c >a +b +c .10.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (Ⅰ)sin 213°+cos 217°-sin13°cos17°; (Ⅱ)sin 215°+cos 215°-sin15°cos15°; (Ⅲ)sin 218°+cos 212°-sin18°cos12°;(Ⅳ)sin 2(-18°)+cos 248°- sin(-18°)cos48°; (Ⅴ)sin 2(-25°)+cos 255°- sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解法一:(1)选择(Ⅱ)式,计算如下: sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =sin 2α+cos(30°-α)[cos(30°-α)-sin α]=sin 2α+cos(30°-α)(cos30°cos α+sin30°sin α-sin α) =sin 2α+cos(30°-α)(cos30°cos α-sin30°sin α)=sin 2α+(cos30°cos α+sin30°sin α)(cos30°cos α-sin30°sin α) =sin 2α+cos 230°cos 2α-sin 230°sin 2α=sin 2α+34cos 2α-14sin 2α=34sin 2α+34cos 2α=34. 解法二:(1)同解法一. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos (60°-2α)2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos 2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=34. 11.某少数民族的刺绣有着悠久的历史,如图①、②、③、④为她们刺绣中最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5);(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )的关系式,并根据你得到的关系式求f (n )的表达式.解:(1)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25, ∴f (5)=25+4×4=41. (2)∵f (2)-f (1)=4=4×1.f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,由上式规律得出f (n +1)-f (n )=4n . ∵f (2)-f (1)=4×1,f (3)-f (2)=4×2, f (4)-f (3)=4×3,……f (n -1)-f (n -2)=4(n -2), f (n )-f (n -1)=4(n -1).各式相加得f (n )-f (1)=4[1+2+…+(n -2)+(n -1)]=2(n -1)n ,∴f (n )=2n 2-2n +1.(2014·北京模拟)祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.可以用诗句“两个胖子一般高,平行地面刀刀切;刀刀切出等面积,可知必然同样胖”形象表示其内涵.利用祖暅原理可以推导几何体的体积公式,关键是要构造一个参照体.试用祖暅原理推导球的体积公式.(提示:利用等底等高的圆柱、圆锥与半球体积的关系构造参照体)解:我们先推导半球的体积.如图1,为了计算半径为R 的半球的体积,我们先观察V圆锥、V 半球、V 圆柱这三个量(等底等高)之间的不等关系,可以发现V 圆锥<V 半球<V 圆柱,即13πR 3<V 半球<πR 3,根据这一不等关系,我们可以猜测V 半球=23πR 3,并且由猜测可发现V 半球=V 圆柱-V 圆锥.下面进一步验证猜想的可靠性.关键是要构造一个参照体,这样的参照体我们可以用圆柱内挖去一个圆锥构造出,如图所示.下面利用祖暅原理证明猜想.证明:用平行于平面α的任意一个平面去截这两个几何体,截面分别为圆面和圆环面.如果截面与底平面α的距离为l ,那么圆面半径r =R 2-l 2,圆环面的大圆半径为R ,小圆半径为截面截圆锥面所得圆的半径,设为r 0,如图2,O 2A =l R×R 2+R 2=2l ,知OA2=r 20=(2l )2-l 2=l 2,因此S 圆=πr 2=π(R 2-l 2),S 环=πR 2-πr 20=π(R 2-l 2),∴S 圆=S 环.根据祖暅原理,这两个几何体的体积相等,即V 半球=πR 2×R -13πR 2×R =23πR 3,所以V 球=43πR 3.。

2015届高考数学(文)一轮复习备选练习6-5《合情推理与演绎推理》(人教A版)word版含详析

2015届高考数学(文)一轮复习备选练习6-5《合情推理与演绎推理》(人教A版)word版含详析

[B 组 因材施教·备选练习]1.(2014年大同模拟)已知一个数列{a n }的各项是1或2,首项为1,且在第k 个1和第(k +1)个1之间有(2k -1)个2,即1,2,1,2,2,2,1,2,2,2,2,2,1,…,则前2 012项中1的个数为( )A .44B .45C .46D .47解析:依题意得,第k 个1和它后面(2k -1)个2的个数之和为2k ,按这个要求分组,每组数字的个数组成一个以2为首项、2为公差的等差数列,该数列的前n 项和等于n (2+2n )2=n (n +1).注意到2 012=44×45+32,因此在题中的数列中,前2 012项中共有45个1,选B.答案:B2.设函数f (x )=x x +2(x >0),观察: f 1(x )=f (x )=x x +2,f 2(x )=f (f 1(x ))=x 3x +4, f 3(x )=f (f 2(x ))=x 7x +8, f 4(x )=f (f 3(x ))=x 15x +16, ……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.解析:依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n -1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n .所以当n ≥2时,f n (x )=f (f n -1(x ))=x (2n -1)x +2n. 答案:x (2n -1)x +2n 3.(2014年南昌模拟)给出若干数字按下图所示排成倒三角形,其中第一行各数依次是1,2,3,…,2 014,从第二行起每一个数都等于它“肩上”两个数之和,最后一行只有一个数M ,则这个数M 是________.解析:观察数表,可以发现规律:每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,……,第2 010行公差为22 009,第2 014行只有M ,令每行首项组成新数列{a n },则a 1=1=1+12×20,a 2=2+12×21,a 3=3+12×22,a 4=4+12×23,…,a n =n +12×2n -1, ∴a 2 014=2 014+12×22 013 =2 015×22 012,得出M 是2 015×22 012. 答案:2 015×22 012。

2015年高考数学一轮复习课时训练第3节 合情推理与演绎推理

2015年高考数学一轮复习课时训练第3节 合情推理与演绎推理

第3节合情推理与演绎推理课时训练练题感提知能【选题明细表】A组一、选择题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( B )(A)① (B)② (C)③ (D)①和②解析:由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.(2013河南焦作二模)给出下面类比推理命题(其中Q为有理数集,R 为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a, b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;③若“a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比结论正确的个数是( C )(A)0 (B)1 (C)2 (D)3解析:①②正确,③错误,因为两个复数如果不是实数,不能比较大小.故选C.3.(2013上海闸北二模)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为( C )(A)n+1 (B)2n(C)(D)n2+n+1解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域; ……;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.4.定义A*B,B*C,C*D,D*A的运算分别对应图中的(1)(2)(3)(4),那么如图中(a)(b)所对应的运算结果可能是( B )(A)B*D,A*D (B)B*D,A*C(C)B*C,A*D (D)C*D,A*D解析:观察图形及对应运算分析可知,基本元素为A→|,B→□,C→—,D→○,从而可知图(a)对应B*D,图(b)对应A*C.故选B.5.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( B )(A)(7,5) (B)(5,7) (C)(2,10) (D)(10,1)解析:依题意,由和相同的整数对分为一组不难得知,第n组整数对的和为n+1,且有n个整数对.这样前n组一共有个整数对.注意到<60<.因此第60个整数对处于第11组的第5个位置,可得为(5,7).故选B.6.对于a、b∈(0,+∞),a+b≥2(大前提),x+≥2(小前提),所以x+≥2(结论).以上推理过程中的错误为( A )(A)小前提(B)大前提(C)结论 (D)无错误解析:大前提是a,b∈(0,+∞),a+b≥2,要求a、b都是正数;x+≥2是小前提,没写出x的取值范围,因此本题中的小前提有错误.故选A.二、填空题7.(2013山东实验中学一模)以下是对命题“若两个正实数a1,a2满足+=1,则a≤”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a 1+a2≤.根据上述证明方法,若n个正实数满足++…+=1时,你能得到的结论为.(不必证明)解析:由题意可构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+a n)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ=4(a1+a2+…+a n)2-4n≤0,即a 1+a2+…+a n≤.答案:a 1+a2+…+a n≤8.(2013茂名一模)已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,…依此类推,第n个等式为.解析:由前4个等式可归纳得出第n个等式为2n×1×3×5×…×(2n-1)=(n+1)(n+2)…(n+n).答案:2n×1×3×5×…×(2n-1)=(n+1)(n+2)…(n+n)9.(2013江西师大附中模拟)若数轴上不同的两点A,B分别与实数x1,x2对应,则线段AB的中点M与实数对应,由此结论类比到平面得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2), (x3,y3)对应,则△ABC的重心G与对应.解析:由类比推理得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2),(x3,y3)对应,则△ABC的重心G与(,)对应.答案:(,)10.设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{b n}的前n项积为T n,则T4, , ,成等比数列.解析:对于等比数列,通过类比等差数列的差与等比数列的商,可得T4,,,成等比数列.答案:11.用黑白两种颜色的正方形地砖依照如图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.解析:按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是.答案:503三、解答题12.在锐角三角形ABC中,求证:sin A+sin B+sin C>cos A+cos B+ cos C.证明:∵△ABC为锐角三角形,∴A+B>,∴A>-B,∵y=sin x在上是增函数,∴sin A>sin=cos B,同理可得sin B>cos C,sin C>cos A,∴sin A+sin B+sin C>cos A+cos B+cos C.B组13.在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质(1)对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.关于函数f(x)=(3x)*的性质,有如下说法①函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为,.其中所有正确说法的个数为( B )(A)0 (B)1 (C)2 (D)3解析:f(x)=f(x)*0=*0=0*+[(3x)*0]+-2×0=3x×+3x+=3x++1.当x=-1时,f(x)<0,故①错误;因为f(-x)=-3x-+1≠-f(x),所以②错误;令f'(x)=3->0,得x>或x<-,因此函数f(x)的单调递增区间为,,③正确.故选B. 14.(2013中山市高三期末)如图,对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:仿此,62的“分裂”中最大的数是;20133的“分裂”中最大的数是.解析:22的“分裂”中最大的数是3=2×2-1,32的“分裂”中最大的数是5=2×3-1,42的“分裂”中最大的数是7=2×4-1,…,由归纳推理可得62的“分裂”中最大的数是2×6-1=11;23的“分裂”中最大的数是5=22+1,33的“分裂”中最大的数是11=32+2,43的“分裂”中最大的数是19=42+3,…,由归纳推理可得20133的“分裂”中最大的数是20132+2012.答案:11 20132+201215.已知函数f(x)=,(1)分别求f(2)+f(),f(3)+f(),f(4)+f()的值;(2)归纳猜想一般性结论,并给出证明;(3)求值:f(1)+f(2)+f(3)+…+f(2013)+f()+f()+…+f().解:(1)∵f(x)=,∴f(2)+f()=+=+=1,同理可得f(3)+f()=1,f(4)+f()=1.(2)由(1)猜想f(x)+f()=1,证明:f(x)+f()=+=+=1.(3)f(1)+f(2)+f(3)+…+f(2013)+f()+f()+…+f() =f(1)+[f(2)+f()]+[f(3)+f()]+…+[f(2013)+f()] =+=+2012=.。

【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)合情推理与演绎推理 理 北师大版

【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)合情推理与演绎推理 理 北师大版

第五节合情推理与演绎推理【考纲下载】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理方式.(2)特点:①是由部分到整体,由个别到一般的推理.②利用归纳推理得出的结论不一定是正确的.2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理过程.(2)特点:①是两类事物特征之间的推理.②利用类比推理得出的结论不一定是正确的.3.合情推理(1)定义:是根据实验和实践的结果,个人的经验和直觉,已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)分类:归纳推理与类比推理.4.演绎推理演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.1.归纳推理的结论一定正确吗?提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验.2.演绎推理所获得的结论一定可靠吗?提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③ B.②③④C.②④⑤ D.①③⑤解析:选D 由归纳推理、类比推理及演绎推理的特征可知①③⑤正确.2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④解析:选C ①是类比推理,②④是归纳推理,③是非合情推理.3.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x 是增函数(结论)”,上面推理的错误在于( ) A .大前提错误导致结论错 B .小前提错误导致结论错 C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析:选A 当a >1时,y =a x 为增函数;当0<a <1时,y =a x为减函数.故大前提错误. 4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:因为两个正四面体的棱长的比为1∶2,则底面积之比为1∶4,底面对应的高之比是1∶2,所以体积之比为1∶8.答案:1∶85.(教材习题改编)在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A+1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想,在n 边形A 1A 2…A n 中,成立的不等式为________.解析:∵9=32,16=42,25=52,且1=3-2,2=4-2,3=5-2,…,故在n 边形A 1A 2…A n中,有不等式1A 1+1A 2+…+1A n ≥n 2n -2 π成立.答案:1A 1+1A 2+…+1A n ≥n 2n -2 π(n ≥3)1.归纳推理是每年高考的常考内容,题型多为选择题和填空题,难度稍大,属中高档题. 2.高考对归纳推理的考查常有以下几个命题角度: (1)归纳推理与等式或不等式“共舞”问题; (2)归纳推理与数列“牵手”问题; (3)归纳推理与图形变化“相融”问题.[例1] (1)(2013·陕西高考)观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, ……照此规律,第n 个等式可为________.(2)(2013·湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为n n +1 2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.(3)(2014·青岛模拟)某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n级分形图.一级分形图 二级分形图 三级分形图 ①n 级分形图中共有________条线段;②n 级分形图中所有线段长度之和为________.[自主解答] (1)观察规律可知,第n 个式子为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n n +12. (2)N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列;数列{b k }是以12为首项,-12为公差的等差数列.所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.(3)①分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n 级分形图中的线段条数a n =(3×2n -3)(n ∈N *).②分形图的每条线段的末端出发再生成两条长度为原来13的线段,∴n 级分形图中第n 级的所有线段的长度为b n =3×⎝ ⎛⎭⎪⎫23n -1(n ∈N *),∴n 级分形图中所有线段长度之和为S n =3×⎝ ⎛⎭⎪⎫230+3×⎝ ⎛⎭⎪⎫231+…+3×⎝ ⎛⎭⎪⎫23n -1=3×1-⎝ ⎛⎭⎪⎫23n 1-23=9-9×⎝ ⎛⎭⎪⎫23n.[答案] (1)12-22+32-42+…+(-1)n +1n 2=(-1)n +1n n +1 2(2)1 000 (3)①3×2n-3 ②9-9×⎝ ⎛⎭⎪⎫23n归纳推理问题的常见类型及解题策略(1)与等式或不等式“共舞”问题.观察所给的几个等式或不等式两边式子的特点,注意是纵向看,发现隐含的规律.(2)与数列“牵手”问题.先求出几个特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围,从而由特殊的结论推广到一般结论.(3)与图形变化“相融”问题.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.1.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4,f 3(x )=f (f 2(x ))=x7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…,可知f n (x )的分母中常数项为2n,分母中x 的系数为2n-1,故f n (x )=f (f n -1(x ))=x2n -1 x +2n .答案:x2n -1 x +2n2.如图的倒三角形数阵满足:①第1行的n 个数,分别是1,3,5,…,2n -1;②从第2行起,各行中的每一个数都等于它肩上的两数之和;③数阵共有n 行.当n =2 012时,第32行的第17个数是________.1 3 5 7 9 11 ……4 8 12 16 20 ……12 20 28 36 …………解析:每行的第1个数分别是1,4,12,32,…,记为数列{a n },它的通项公式为a n =n ×2n-1,则第32行的第1个数为a 32=32×232-1=236,而在第32行的各个数成等差数列,且公差为232,所以第17个数是236+(17-1)×232=236+24×232=2×236=237.答案:2373.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析:进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n n +32,易知f (14)=119,f (15)=135,故n =14.答案:14[例2]如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则1×h 1+2×h 2+3×h 3+4×h 4=2Sk.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=k ,则H 1+2H 2+3H 3+4H 4值为( )A.4V kB.3V kC.2V kD.V k[自主解答]在平面凸四边形中,连接P 点与各个顶点,将其分成四个小三角形,根据三角形面积公式,得S =12(a 1h 1+a 2h 2+a 3h 3+a 4h 4)=12(kh 1+2kh 2+3kh 3+4kh 4) =k 2(h 1+2h 2+3h 3+4h 4).所以h 1+2h 2+3h 3+4h 4=2S k. 类似地,连接Q 点与三棱锥的四个顶点,将其分成四个小三棱锥,则有 V =13(S 1H 1+S 2H 2+S 3H 3+S 4H 4)=13(kH 1+2kH 2+3kH 3+4kH 4)=k3(H 1+2H 2+3H 3+4H 4), 所以H 1+2H 2+3H 3+4H 4=3Vk.[答案] B【方法规律】类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.解析:法一:设数列{a n }的公差为d 1,则d 1=a n -a m n -m =b -a n -m .所以a m +n =a m +nd 1=a +n ·b -an -m=bn -am n -m.类比推导方法可知:设数列{b n }的公比为q ,由b n =b m q n -m ,可知d =cq n -m,所以q =n -m d c ,所以b m +n =b m q n =c ·n -m ⎝ ⎛⎭⎪⎫d c n=n -m d nc m . 法二:(直接类比)设数列{a n }的公差为d 1,数列{b n }的公比为q ,因为等差数列中a n =a 1+(n -1)d 1,等比数列中b n =b 1q n -1,因为a m +n =nb -man -m ,所以b m +n =n -m d nc m.答案:n -m d nc m[例3] 已知函数f (x )=a x+bx ,其中a >0,b >0,x ∈(0,+∞),试确定f (x )的单调区间,并证明在每个单调区间上的增减性.[自主解答] 法一:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a x 1+bx 1-⎝ ⎛⎭⎪⎫a x 2+bx 2=(x 2-x 1)·⎝⎛⎭⎪⎫a x 1x 2-b .当0<x 1<x 2≤a b 时,∵a >0,b >0,∴x 2-x 1>0,0<x 1x 2<a b ,ax 1x 2>b , ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在⎝⎛⎦⎥⎤0, a b 上是减函数;当x 2>x 1≥ a b >0时,x 2-x 1>0,x 1x 2>a b ,ax 1x 2<b ,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增函数.法二:∵a >0,b >0,x ∈(0,+∞),∴令f ′(x )=-a x 2+b =0(x >0),得x = ab,当0<x ≤ a b 时,-a x 2≤-b ,∴-ax2+b ≤0,即f ′(x )≤0,∴f (x )在⎝ ⎛⎦⎥⎤0, a b 上是减函数;当x ≥ a b 时,-a x 2+b ≥0,即f ′(x )≥0,∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增函数.【方法规律】应用演绎推理应注意的问题演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.已知函数f (x )=2x-12x +1(x ∈R ).(1)判定函数f (x )的奇偶性;(2)判定函数f (x )在R 上的单调性,并证明.解:(1)对任意x ∈R ,有-x ∈R ,并且f (-x )=2-x -12-x +1=1-2x 1+2x =-2x-12x+1=-f (x ),所以f (x )是奇函数.(2)f (x )在R 上单调递增,证明如下: 任取x 1,x 2∈R ,并且x 1>x 2,f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1= 2x 1-1 2x 2+1 - 2x 2-1 2x 1+12x 1+1 2x 2+1=2 2x 1-2x 22x 1+1 2x 2+1.∵x 1>x 2,∴2x 1>2x 2>0,即2x 1-2x 2>0.又∵2x 1+1>0,2x 2+1>0,∴2 2x 1-2x 22x 1+1 2x 2+1>0.∴f (x 1)>f (x 2).∴f (x )在R 上为单调递增函数.———————————[课堂归纳——通法领悟]———————————————— 1个区别——合情推理与演绎推理的区别 (1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理; (3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.2个步骤——归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:实验、观察→概括、推广→猜测一般性结论 (2)类比推理的一般步骤:观察、比较→联想、类推→猜想新结论3个注意点——应用合情推理与演绎推理应注意的问题(1)在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(2)合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.(3)演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.前沿热点(十一)与归纳推理有关的创新交汇题1.归纳推理主要有数与式的归纳推理、图形中的归纳推理、数列中的归纳推理;类比推理主要有运算的类比、性质的类比、平面与空间的类比,题型多为客观题.2.解决此类问题首先要通过观察特例发现某些相似性(特例的共性或一般规律);然后把这种相似性推广到一个明确表述的一般命题(猜想);最后对所得的一般性命题进行检验.[典例] (2013·新课标全国卷Ⅰ)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则 ( )A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列[解题指导] 先确定三角形的一边长不变及周长不变,利用另两边最接近的时候面积最大等知识求解.[解析] 在△A 1B 1C 1中,b 1>c 1,b 1+c 1=2a 1,∴b 1>a 1>c 1.在△A 2B 2C 2中,a 2=a 1,b 2=c 1+a 12,c 2=b 1+a 12,b 2+c 2=2a 1,∴c 1<b 2<a 1<c 2<b 1.在△A 3B 3C 3中,a 3=a 2=a 1,b 3=c 2+a 22=c 2+a 12,c 3=b 2+a 22=b 2+a 12,b 3+c 3=2a 1,∴a 1<b 3<c 2,b 2<c 3<a 1,∴c 1<b 2<c 3<a 1<b 3<c 2<b 1.由归纳知,n 越大,两边c n ,b n 越靠近a 1且c n +b n =2a 1,此时面积S n 越来越大,当且仅当c n =b n =a 1时,△A n B n C n 的面积最大.[答案] B[名师点评] 解决本题的关键有以下几点:(1)由条件a n +1=a n ,确定三角形的一边为固定值.(2)由条件可推出b 1+c 1=b 2+c 2=b 3+c 3=2a 1,进而得出△A n B n C n 的周长为定值.(3)利用“若三角形的一边不变及周长不变,则另外两边越接近,面积越大”推得结论.在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析:(1)由定义知,四边形DEFG 由一个等腰直角三角形和一个平行四边形构成,其内部格点有1个,边界上格点有6个,S 四边形DEFG =3.(2)由待定系数法可得,⎩⎪⎨⎪⎧ 12=a ·0+b ·3+c ,1=a ·0+b ·4+c ,3=a ·1+b ·6+c⇒⎩⎪⎨⎪⎧a =1,b =12,c =-1,当N =71,L =18时,S =1×71+12×18-1=79.答案:(1)3,1,6 (2)79[全盘巩固]1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )解析:选D 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).2.观察下式:1+3=221+3+5=321+3+5+7=421+3+5+7+9=52…据此你可归纳猜想出一般结论为( )A .1+3+5+…+(2n -1)=n 2(n ∈N *)B .1+3+5+…+(2n +1)=n 2(n ∈N *)C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *)D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *)解析:选D 观察可见第n 行左边有n +1个奇数,右边是(n +1)2.3.已知数列a n :11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为( )A.3724B.76C.1115D.715解析:选A 通过将数列的前10项分组得到第一组有一个数:11,分子、分母之和为2;第二组有两个数:21,12,分子、分母之和为3;第三组有三个数:31,22,13,分子、分母之和为4;第四组有四个数,依次类推,a 99,a 100分别是第十四组的第8个数和第9个数,分子、分母之和为15,所以a 99=78,a 100=69.故a 99+a 100=3724.4.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b”.以上的式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 解析:选B ①②正确,③④⑤⑥错误.5.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.6.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体S ­ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为R ,四面体S ­ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4 解析:选C 设三棱锥的内切球球心为O ,那么由V =V O ­ABC +V O ­SAB +V O ­SAC +V O ­SBC ,即V =13S 1R +13S 2R +13S 3R +13S 4R ,可得R =3V S 1+S 2+S 3+S 4.7.观察下列几个三角恒等式:①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1;②tan 5°tan 100°+tan 100°tan(-15°)+tan(-15°)tan 5°=1; ③tan 13°tan 35°+tan 35°tan 42°+tan 42°tan 13°=1.一般地,若tan α,tan β,tan γ都有意义,你从这三个恒等式中猜想得到的一个结论为________________________________________________________________________.解析:所给三角恒等式都为tan αtan β+tan βtan γ+tan γtan α=1的结构形式,且α、β、γ之间满足α+β+γ=90°,所以可猜想当α+β+γ=90°时,tan αtan β+tan βtan γ+tan γtan α=1.答案:当α+β+γ=90°时,tan αtan β+tan βtan γ+tan γtan α=1 8.对大于或等于2的正整数的幂运算有如下分解方式: 22=1+3 32=1+3+5 42=1+3+5+7 … 23=3+5 33=7+9+11 43=13+15+17+19 …根据上述分解规律,若m 2=1+3+5+…+11,p 3的分解中最小的正整数是21,则m +p =________.解析:由22=1+3,32=1+3+5,42=1+3+5+7,…,可知n 2=1+3+5+…+(2n -1).由m 2=1+3+5+…+11,可知m =6.易知53=21+23+25+27+29,则21是53的分解中最小的正整数,可得p =5.故m +p =11.答案:119.我国的刺绣有着悠久的历史,如图所示中的(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.则f (n )的表达式为________________.(1) (2) (3) (4)解析:我们考虑f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1.答案:f (n )=2n 2-2n +1 10.给出下面的数表序列: 表1 表2 表31 1 3 1 3 5 4 4 8 12其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解:表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=34. (2)归纳三角恒等式sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos 60°-2α 2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34. 12.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{a n }是等和数列,且a 1=2,公和为5.求:(1)a 18的值;(2)该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n )=52n ; 当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12. 综上所述,S n =⎩⎪⎨⎪⎧ 52n ,n 为偶数,52n -12,n 为奇数.[冲击名校]1.如图,一个粒子在第一象限运动,在第一秒内它从原点运动到(0,1),然后它按图示在x 轴、y 轴的平行方向运动,且每秒移动一个单位长度,则在第12秒时,这个粒子所处的位置是( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)解析:选C 第一层有(0,1),(1,1),(1,0)三个整点(除原点),共用3秒;第二层有五个整点(2,0),(2,1),(2,2),(1,2),(0,2),共用5秒;第三层有七个整点(0,3),(1,3),(2,3),(3,3),(3,2),(3,1),(3,0),共用7秒.则在第12秒时,这个粒子所处的位置是(3,3).2.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2 907B .2 111C .2 012D .2 090解析:选C 依题意,设位于三角形内的最小数是n ,其中n 被8除后的余数必是3,4,5,6之一,则这九个数的和等于n +3(n +8)+5(n +16)=9n +104.令9n +104=2 012,得n =212,且n =212被8除后的余数是4.[高频滚动]1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0解析:选B 可行域为直角三角形ABC (如图),由z =2x +y ,得y =-2x +z ,由图象可知,当直线y =-2x +z 过点B (2,0)和点A (1,0)时,z 分别取到最大值4和最小值2.2.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +2y -5>0,2x +y -7>0,x ≥0,y ≥0.若x ,y 为整数,则3x +4y 的最小值是( )A .14B .16C .17D .19解析:选B 画出可行域如图.其最优解是点M(3,1)附近的整点.考虑到线性目标函数,只要横坐标增加1即可.故最优点为整点(4,1),其最小值为16.。

高考数学理科一轮复习合情推理与演绎推理学案附答案

高考数学理科一轮复习合情推理与演绎推理学案附答案

合用精选文件资料分享高考数学(理科)一复合情推理与演推理教课方案附答案教课方案 37 合情推理与演推理学目: 1. 认识合情推理的含,能利用和比等行的推理,认识合情推理在数学中的作用.2. 认识演推理的重要性,掌握演推理的基本模式,并能运用它行一些推理.3.认识合情推理和演推理之的系和差异.自主梳理自我1.(2010?山 ) 察 (x2) ′= 2x,(x4) ′= 4x3,(cos x) ′=- sin x,由推理可得:若定在 R上的函数 f(x)足 f( -x) =f(x) ,g(x) f(x)的函数, g( -x) 等于() A.f(x) B.-f(x) C.g(x) D.- g(x) 2.(2010?珠海 ) 出下边比推理命 ( 此中 Q有理数集, R数集, C复数集 ) :①“若 a,b∈R, a-b=0? a =b” 比推出“若 a,b∈C, a-b=0? a=b”;②“若 a,b,c,d∈R,复数 a+bi =c+di ? a= c,b=d” 比推出“若 a,b,c,d∈Q, a+b2=c+d2? a=c,b=d”;③“若 a,b∈R, a- b>0? a>b” 比推出“若 a,b∈C, a-b>0? a>b”.此中比正确的个数是 () A .0 B.1 C.2 D.3 3 .(2009?江 ) 在平面上,若两个正三角形的比 1∶2,它的面比 1∶4,似地,在空中,若两个正四周体的棱比 1∶2,它的体比 ________. 4 .(2010?西) 察以低等式: 13+23=32,13 +23+33=62,13 +23+33+43=102,⋯,依据上述律,第五个等式. 5 .(2011?州月考 ) 全部奇数都不可以被 2 整除, 2100+1 是奇数,所以 2100+1 不可以被 2 整除,其演推理的“三段”的形式.研究点一推理例 1 在数列 {an} 中,a1= 1,an+1=2an2+an,n∈N*,猜想个数列的通公式,个猜想正确?明理由.式迁徙 1察:① sin210°+cos240°+sin 10°cos 40°=34;②sin26 °+ cos236°+ sin 6 °cos 36 °= 34. 由上边两的构律,你能否提出一个猜想?并明你的猜想.研究点二比推理例 2 (2011?川月考 ) 在平面内,可以用面法明下边的:从三角形内部任意一点,向各引垂,其长度分别为 pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有 paha+pbhb+pchc=1. 请你运用类比的方法将此结论推行到四周体中并证明你的结论.变式迁徙 2 在 Rt△ABC中,若∠ C=90°, AC=b,BC=a,则△ ABC的外接圆半径 r =a2+b22,将此结论类比到空间有.研究点三演绎推理例3在锐角三角形ABC中, AD⊥BC,BE⊥AC,D、E 是垂足.求证: AB的中点 M到 D、E的距离相等.变式迁徙 3指出对结论“已知 2 和 3 是无理数,证明2+3 是无理数”的下述证明能否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而 2 与 3 都是无理数,∴ 2+ 3 也是无理数. 1 .合情推理是指“符合情理”的推理,数学研究中,获取一个新结论以前,合情推理常常能帮助我们猜想和发现结论;证明一个数学结论以前,合情推理常常能为我们供给证明的思路和方向.合情推理的过程概括为:从详尽问题出发? D→观察、解析、比较、联想? D→概括、类比 ? D→提出猜想 . 一般来说,由合情推理所获取的结论,但是是一种猜想,其靠谱性还需进一步证明. 2 .概括推理与类比推理都属合情推理:(1) 概括推理:由某类事物的部分对象拥有某些特色,推出该类事物的全部对象都拥有这些特色的推理,或由个别事实概括出一般结论的推理,称为概括推理.它是一种由部分到整体,由个别到一般的推理. (2)类比推理:由两类对象拥有某些近似特色和此中一类对象的某些已知特色,推出另一类对象也拥有这些特色的推理称为类比推理,它是一种由特别到特其余推理. 3 .从一般性的原理出发,推出某个特别状况下的结论,把这类推理称为演绎推理,也就是由一般到特其余推理,三段论是演绎推理的一般模式,包含大前提,小前提,结论. ( 满分: 75 分)一、选择题 ( 每题 5 分,共 25 分) 1 .(2011?福建厦门华侨中学模拟) 定义 A*B,B*C,C*D,D*A 的运算分别对应以以下图中的 (1) 、(2) 、(3) 、(4) ,那么以以下图中的 (A) 、(B) 所对应的运算结果可能是() A.B*D,A*D B.B*D,A*C C.B*C,A*D D.C*D,A*D 2.(2011?厦门模拟 )设 f(x) =1+x1-x,又记 f1(x) =f(x) ,fk +1(x) =f(fk(x)) ,k=1,2 ,⋯, f2 010(x)等于() A .- 1x B .x C.x -1x++x1-x 3.由代数式的乘法法比推向量的数目的运算法:①“ mn=nm” 比获取“ a?b=b?a”;②“ (m+n)t =mt+nt ” 比获取“ (a +b)?c =a?c+b?c”;③“ (m?n)t=m(n?t)” 比获取“(a?b)?c =a?(b?c) ”;④“ t ≠0,mt=xt ? m=x” 比获取“ p≠0,a?p=x?p? a=x”;⑤“ |m?n|=|m|?|n|” 比获取“ |a?b|=|a|?|b|”;⑥“ acbc=ab” 比获取“ a?cb?c=ab”.以上的式子中,比获取的正确的个数是() A .1 B.2 C.3 D.4 4.(2009?湖北 ) 古希腊人常用小石子在沙上成各种形状来研究数,比方:他研究 (1) 中的 1,3,6,10 ,⋯,因为些数能表示成三角形,将其称三角形数;似的,称 (2) 中的 1,4,9,16 ,⋯的数正方形数.以下数中既是三角形数又是正方形数的是() A.289 B.1 024 C .1 225 D .1 378 5 .已知整数的数如下: (1,1),(1,2) ,(2,1) ,(1,3) ,(2,2) ,(3,1) ,(1,4), (2,3),(3,2),(4,1) ,(1,5) ,(2,4) ,⋯第 60 个数是 ()A.(3,8) B.(4,7)C.(4,8) D.(5,7) 二、填空 ( 每小 4 分,共 12分) 6.已知正三角形内切的半径是高的 13,把个推行到空正四周体,似的是___________________________________________________________ _____________. 7 .(2011?广深圳高中学模) 定一种运算“* ”:于自然数 n 足以下运算性: 8 .(2011?西) 察以低等式 1 =1 2 +3+4=9 3 +4+5+6+7=25 4 +5+6+7+8+9+10=49 ⋯照此律,第n 个等式.三、解答 ( 共 38 分) 9 .(12 分)已知数列 {an} 的前 n 和 Sn,a1=-23,且 Sn+1Sn+1+2=0(n ≥2) .算 S1,S2,S3,S4,并猜想Sn 的表达式.10.(12 分)(2011? 杭州研 ) 已知函数 f(x) =- aax+a (a>0 且 a≠1) ,(1)明:函数 y=f(x) 的象关于点 12,-12 称; (2) 求 f( -2)+f( -1) +f(0) +f(1) +f(2) +f(3) 的. 11 .(14 分) 如 1,若射 OM,ON上分存在点 M1,M2与点 N1,N2,=OM1OM2?ON1ON2;如2,若不在同一平面内的射 OP,OQ和 OR上分存在点 P1,P2,点 Q1,Q2和点 R1,R2,似的是什么?个正确?明原由.教课方案37合情推理与演推理自主梳理推理全部象部分个比推理些特色特别到特别①一般原理②特别状况③特别状况一般特别自我 1 .D[ 由所函数及其数知,偶函数的函数奇函数.所以当f(x)是偶函数,其函数奇函数,故 g( -x) =- g(x) .] 2.C[ ①②正确,③ .因两个复数假如不全部是数,不可以比大小.] 3.1∶8 解析∵两个正三角形是相似的三角形,∴它的面之比是相似比的平方.同理,两个正四周体是两个相似几何体,体之比相似比的立方,所以它的体比 1∶8. 4 .13+23+ 33+43+53+63=212 解析由前三个式子可以得出以下律:每个式子等号的左是从 1 开始的正整数的立方和,且个数挨次多 1,等号的右是一个正整数的平方,后一个正整数挨次比前一个大 3,4 ,⋯,所以,第五个等式13+23+33+43+53+63=212. 5.全部奇数都不可以被 2 整除大前提2100 +1 是奇数小前提所以 2100+1 不可以被 2 整除堂活区例 1 解引分完满和不完满,由推理所得的然未必是靠谱的,但它由特别到一般、由详尽到抽象的功能,科学的是十分合用的,察、,有限的料作整理,提出律性的法是科学研究的最基本的方法之一.解在{an} 中, a1=1,a2=2a12+a1=23, a3 =2a22+a2=12=24,a4=2a32+a3=25,⋯,所以猜想 {an} 的通公式 an=2n+1. 个猜想是正确的,明以下:因 a1=1,an+1=2an2+a n,所以 1an+1=2+an2an=1an+12,即 1an+1-1an=12,所以数列 1an 是以 1a1=1 首, 12 公差的等差数列,所以 1an=1+(n -1) ×12= 12n+12,所以通公式 an=2n+1. 式迁徙 1解猜想 sin2 α+cos2( α+30°) + sin αcos( α+30°) = 34. 明以下:左= sin2 α+cos( α+30°)[cos( α+30°) + sin α] =sin2 α+32cos α -12sin α32cos α+12sin α=sin2 α+34cos2α-14sin2 α=34=右侧.例 2 解题导引类比推理是依据两个对象有一部分属性近似,推出这两个对象的其余属性亦近似的一种推理方法,比方我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必然清楚类比其实不是论证,它可以帮助我们发现真谛.类比推理应从详尽问题出发,经过观察、解析、联想进行比较、概括、提出猜想.解类比:从四周体内部任意一点向各面引垂线,其长度分别为 pa,pb,pc,pd,且相应各面上的高分别为 ha,hb,hc,hd. 则有 paha+pbhb+pchc+pdhd=1. 证明以下:paha=13S△BCD?pa13S△BCD?ha=VP―BCDVA―BCD,同理有 pbhb=VP―CDAVB―CDA, pchc=VP―BDAVC―BDA, pdhd=VP―ABCVD―ABC,VP―BCD+VP―CDA+VP―BDA+VP―ABC=VA―BCD,∴paha+ pbhb+pchc+pdhd =VP―BCD+VP―CDA+VP―BDA+VP―ABCVA―BCD= 1.变式迁徙 2 在三棱锥 A―BCD中,若 AB、AC、AD两两相互垂直,且AB=a,AC=b,AD=c,则此三棱锥的外接球半径 R=a2+b2+c22 例3解题导引在演绎推理中,只有前提( 大前提、小前提) 和推理形式都是正确的,结论才是正确的,不然所得的结论可能就是错误的.推理时,要清楚大前提、小前说起两者之间的逻辑关系.证明(1)因为有一个内角是直角的三角形是直角三角形,――大前提在△ ABD 中,AD⊥BC,即∠ ADB=90°,――小前提所以△ ADB是直角三角形.――结论 (2) 因为直角三角形斜边上的中线等于斜边的一半,――大前提而 M是 Rt△ADB斜边 AB的中点, DM是斜边上的中线,――小前提所以 DM=12AB.――结论同理 EM=12AB,所以 DM=E M. 变式迁徙 3 解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不用然是无理数,所以原理的真实性仍没法判断.课后练习区1.B[ 由(1)(2)(3)(4)图得A表示|,B表示□, C表示―, D表示○,故图 (A)(B) 表示 B*D 和 A*C.] 2.A [ 计算 f2(x) =f1 +x1-x=1+1+x1-x1-1+x1-x=- 1x, f3(x) =f-1x=1-1x1+1x=x-1x+1, f4(x) =1+x-1x+11-x-1x+1=x,f5(x) =f1(x) =1+x1-x,概括得 f4k +i(x) =fi(x) ,k∈N*, i =1,2,3,4. ∴f2 010(x) = f2(x) =- 1x.] 3 .B [ 只有①、②对,其余,故 B.] 4 .C [ (1) 中数列 1,3,6,10 ,⋯的通公式 an, a2 -a1=2,a3-a2=3,a4-a3=4,⋯, an-an-1=n. 故 an-a1=2+3+4+⋯+ n,∴an=+而 (2) 中数列的通公式 bn =n2,所以所的中只有 1 225 足 a49=49×502= b35=352=1 225.] 5.D [ 察可知横坐和坐之和2 的数有 1 个,和3 的数有 2 个,和4 的数有 3 个,和5 的数有 4个,挨次推和 n+1 的数有 n 个,多个数的排序是依据横坐挨次增大的序来排的,由+=60? n(n +1) =120,n∈Z, n=10 ,+=55 个数,差 5 个数,且 5 个数的横、坐之和 12,它挨次是 (1,11) ,(2,10),(3,9),(4,8) ,(5,7) ,∴第 60 个数是 (5,7) .] 6 .空正四周体的内切球的半径是高的 14 解析利用体切割可明. 7 .n 8.n +(n +1) +⋯+ (3n -2) =(2n -1)2解析∵1=12,2 +3+4=9=32,3+4+5+6+7=25=52,∴第 n 个等式 n+(n +1) +⋯+ (3n-2)=(2n -1)2. 9.解当 n=1 ,S1=a1=- 23.(2 分) 当 n=2, 1S2=- 2-S1=- 43,∴S2=- 34.(4 分)当n=3,1S3=-2-S2=- 54,∴S3=- 45.(6 分) 当 n=4 , 1S4=- 2-S3=-65,∴S4=- 56.(8 分) 猜想:Sn=- n+1n+2 (n ∈N*) .(12 分) 10.(1) 明函数f(x)的定域R,任取一点(x,y),它关于点12,- 12 称的点的坐 (1 -x,- 1-y) .(2 分) 由已知得 y=-a ax+a,- 1-y=- 1+aax+a=- axax+a,(4 分) f(1 -x)=- aa1-x+a=- aaax+a =- a?axa+a?ax=- axax+a,∴- 1-y=f(1 -x) .即函数 y=f(x) 的象关于点 12,-12 称.(6 分)(2) 解由(1) 有- 1-f(x) =f(1 -x) ,即 f(x) +f(1 -x) =- 1.(9分) ∴f( - 2) +f(3) =- 1,f( -1) +f(2) =- 1, f(0)+f(1)=-1,f( -2) +f( -1) +f(0) +f(1) +f(2) +f(3) =- 3. (12 分) 11.解似的: VO―P1Q1R1VO―P2Q2R2=OP1OP2?OQ1OQ2?OR1OR2(4.分) 个是正确的,明以下:如, R2 作 R2M2⊥平面 P2OQ2于 M2,接 OM2. R1在平面 OR2M2作 R1M1∥R2M2交 OM2于 M1,R1M1⊥平面 P2OQ2. 由 VO―P1Q1R1=13S△P1OQ1?R1M1=13?12OP1?OQ1?sin∠P1OQ1?R1M1=16OP1?OQ1?R1M1?sin∠P1OQ1,(8分) 同理, VO―P2Q2R2=16OP2?OQ2?R2M2?sin∠P2OQ2. 所以=OP1?OQ1?R1M1OP2?OQ2?R2M2分.(10)由平面几何知识可得R1M1R2M2=O R1OR2.(12分) 所以=OP1?OQ1?OR1OP2?OQ2?OR2所以.结论正确. (14 分)。

复习演绎推理

复习演绎推理

用符号表示这两步都遵守如下推理规则:“如果b⇒c, a⇒b,则a⇒c”,这种推理规则叫做三段论推理.
演绎推理在代数中的应用
用三段论证明函数f(x)=x3+x在(-∞,+∞)
上是增函数. 分析:证明本题所依据的大前提是增函数的定义,
即函数y=f(x)满足:在给定区间内任取自变量的两个值x1,
x2,若有x1<x2,则有f(x1)<f(x2).小前提是函数y=f(x), x∈(-∞,+∞)上满足增函数的定义,这是证明本题的关
(3)通项公式an=2n+3表示的数列{an}为等差数列.
(4)Rt△ABC的内角和为180°. 解析:(1)平行四边形的对角线互相平分; …大前提 菱形是平行四边形; … … … … … … 小前提
菱形的对角线互相平分. … … … … …结论
(2)等腰三角形两底角相等; … … … … …大前提 ∠A,∠B是等腰三角形的两底角; … … …小前提
解析:演绎推理的结论正确与否与前提、推理形式 有关,不一定正确,故②不正确.
答案:C
3.三段论:“某年份若能被4整除,但不能被100整 除,或者能被400整除,则该年份为闰年.”现已知某年 份不能被400整除,则该年份不是闰年.上述推理( ) A.小前提与结论都错 C.只有大前提错 B.只有小前提错 D.只有结论错
∠A=∠B. … … … … … … … … … … … …结论
(3)数列{an}中,如果当n≥2时,an-an-1为常数,则{an} 为等差数列; … … … … … … … … … … … …大前提 通项公式an=2n+3时,若n≥2,则an-an-1=2n+3- [2(n-1)+3]=2(常数); … … … … … … … … …小前提 通项公式an=2n+3表示的数列为等差数列. … …结论 (4)三角形的内角和是180°; … … … … … …大前提 Rt△ABC是三角形; … … … … … … … … …小前提

【高考领航】2015高考数学(理)一轮配套课件12-3 第3课时 合情推理与演绎推理

【高考领航】2015高考数学(理)一轮配套课件12-3 第3课时 合情推理与演绎推理

(2)(2014· 江西八所重点高中模拟 ) 半 径为 r 的圆的面积 S(r) =
π·r2 ,周长 C(r) = 2π·r ,若将 r 看作 (0 ,+ ∞ ) 上的变量,则
时,过原点作倾斜角为 30°的直线与⊙ Mn 交于 An , Bn. 考
察下列论断:
当 n=1 时, |A1B1|=2; 当 n=2 时, |A2B2|= 15; 当 n=3 时, |A3B3| 35×42+23-1 = ;当 n=4 时,|A4B4|=________;当 n=5 时, 3 35×44+25-1 |A5B5|= ;……,则推测一个一般的结论:对于 n 3 ∈N*,|AnBn|=________________.
(2)归纳推理是一种重要的思维方法,但结果的正确性还需进
一步证明,一般地,考查的个体越多,归纳的结论可靠性越
大.因此在进行归纳推理时,当规律不明显时,要尽可能多 地分析特殊情况,由此发现其中的规律,从而获得一般结 论.
针对训练 1.(2013·陕西)观察下列等式 (1+1)=2×1
(2+1)(2+2)=22×1×3
③结论——根据一般原理,对特殊情况做出的判断.
(2)“三段论”可以表示为 ①大前提:M是P;
②小前提:S是M;
③结论:S是P.
对点演练
推理“①矩形是平行四边形;②三角形不是平行四边形;③
三角形不是矩形”中的小前提是 ( A.① C.③ B.② D.①和② )
答案:C
1.合情推理的过程
2.合情推理仅是“合乎情理”的推理,它得到的结论不一
中归纳推理与数列结合的问题是考查的热点. 2 .从考查形式看,三种题型都可能出现,常以选择题、填 空题的形式考查合情推理;以选择题或解答题的形式考查 演绎推理,题目多属中低档题.

【锁定高考】2015高考数学(文)一轮总复习训练手册:11.2 合情推理与演绎推理]

【锁定高考】2015高考数学(文)一轮总复习训练手册:11.2 合情推理与演绎推理]

训练手册A组基础达标(时间:30分钟满分:50分)若时间有限,建议选讲3,5,8一、选择题(每小题5分,共20分)下面几种推理过程是演绎推理的是(C)A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B. 由三角形的性质,推测空间四面体的性质C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D. 在数列{a n}中,a1=1,a n=12⎝⎛⎭⎪⎪⎫a n-1+1a n-1,由此归纳出{a n}的通项公式A,D是归纳推理,B是类比推理;C运用了“三段论”,是演绎推理.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是(C)A. ①B. ②C. ③D. ①和②由三段论可知,①是大前提;③是小前提;②是结论.故选C.给出下面类比推理命题(其中Q为有理数,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“a,c∈C,则a-c=0⇒a=c”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数有(B)A. 1B. 2C. 3D. 4类比结论正确的只有①②.(2013·九江质检)观察下列事实:|x|+|y|=1的不同整数解(x ,y)的个数为4,|x|+|y|=2的不同整数解(x ,y)的个数为8,|x|+|y|=3的不同整数解(x ,y)的个数为12,…,则|x|+|y|=20的不同整数解(x ,y)的个数为(B)A. 76B. 80C. 86D. 92由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n 的不同整数解的个数为4n ,故|x|+|y|=20的不同整数解的个数为80.故选B.二、 填空题(每小题5分,共15分)(2013·山东一模)以下是对命题“若两个正实数a1,a 2满足a 21+a 22=1,则a 1+a 2≤2”的证明过程:证明:构造函数f(x)=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f(x)≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤2. 根据上述证明方法,若n 个正实数满足a 21+a 22+…+a 2n =1时,你能得到的结论为不必证明). 依题意,构造函数f(x)=(x -a1)2+(x -a 2)2+…+(x -a n )2,则有f(x)=nx 2-2(a 1+a 2+…+a n )x +1,Δ=[-2(a 1+a 2+…+a n )]2-4n =4(a 1+a 2+…+a n )2-4n≤0,即有a 1+a 2+…+a n ≤n.对于命题:若O 是线段AB 上一点,则有|OB→|·OA →+|OA →|·OB →=0.将它类比到平面中的情形是:若O 是△ABC 内一点,则有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0,将它类比到空间中的情形应该是:若O 是四面体ABCD 内一点,则有__V O -BCD ·OA→+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0__.将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0. (2013·陕西高考)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,……照此规律,第n 个等式可为__12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2__. 结合已知所给几项的特点,可知式子左边共n 项,且正负交错,奇数项为正,偶数项为负,右边的绝对值为左边底数的和,系数和最后一项正负保持一致,故表达式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2.三、 解答题(共15分)给出下面的数表序列:表1 表2 表31 1 3 1 3 54 4 812 …其中表n(n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).表4为1 3 5 74 8 1212 2032(6分)它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.(10分)将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.(15分)B 组 提优演练(时间:30分钟 满分:50分)若时间有限,建议选讲3,6,8一、 选择题(每小题5分,共15分)把正奇数数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号一个数,…,依次循环的规律分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为 (D)A. 98B. 197C. 390D. 392将三个括号作为一组,则由50=16×3+2,知第50个括号应为第17组的第二个括号,即第50个括号中应是两个数.又每组中含有6个数,∴第48个括号的最末一个数为数列{2n -1}的第16×6=96(项),第50个括号的第一个数应为数列{2n -1}的第16×6+2=98(项),即为2×98-1=195,第二个数为2×99-1=197,故第50个括号内各数之和为195+197=392.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f(n)=p q ,例如f(12)=34.关于函数f(n)有下列叙述:①f(7)=17;②f(24)=34;③f(28)=47;④f(144)=916.其中所有正确叙述的序号为(B) A. ①② B. ①③C. ①②④ D . ①③④利用题干中提供的新定义信息可得,对于①,∵7=1×7,∴f(7)=17,①正确;对于②,∵24=1×24=2×12=3×8=4×6,∴f(24)=46=23,②不正确;对于③,∵28=1×28=2×14=4×7,∴f(28)=47,③正确;对于④,∵144=1×144=2×72=3×48=4×36=6×24=8×18=9×16=12×12,∴f(144)=1212=1,④不正确.(2013·肇庆模拟)定义全集U 的子集M 的特征函数为fM (x)=⎩⎪⎨⎪⎧1,x ∈M ,0,x ∈∁U M ,这里∁U M 表示集合M 在全集U 中的补集,已知M ⊆U ,N ⊆U ,给出以下结论:①若M ⊆N ,则对于任意x∈U,都有f M (x)≤f N (x);②对于任意x∈U 都有f ∁U M(x)=1-f M (x);③对于任意x∈U,都有f M ∩N (x)=f M (x)·f N (x);④对于任意x∈U,都有f M ∪N (x)=f M (x)·f N (x).则结论正确的是(A)A. ①②③B. ①②④C. ①③④D. ②③④利用特殊值法进行求解.设U ={1,2,3},M ={1},N ={1,2}.对于①有f M (1)=1=f N (1),f M (2)=0<f N (2)=1,f M (3)=f N (3)=0,可知①正确;对于②有f M (1)=1,f M (2)=0,f M (3)=0,f ∁U M(1)=0,f ∁U M(2)=1,f ∁U M(3)=1,可知②正确;对于③和④有f M (1)=1,f M (2)=0,f M (3)=0,f N (1)=1,f N (2)=1,f N (3)=0,f M ∩N (1)=1,f M ∩N (2)=0,f M ∩N (3)=0,f M ∪N (1)=1,f M ∪N (2)=1,f M ∪N (3)=0,可知③正确,④错误.二、 填空题(每小题5分,共20分)(2013·山西四校联考)已知x∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +a x n ≥n +1(n∈N *),则a =__n n __.第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .(2013·武汉武昌联考)给出若干数字按下图所示排成倒三角形,其中第一行各数依次是1,2,3,…,2 013,从第二行起每一个数都等于它“肩上”两个数之和,最后一行只有一个数M ,则这个数M 是__1_007×22_012__观察数表,可以发现规律:每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第n 行公差为2n -1(n∈N *且n <2 013),第2 013行只有M ,令每行首项组成新数列{a n },则a 1=1=1+12×20,a 2=2+12×2,a 3=3+12×22,a 4=4+12×23,…,a n =n +12×2n -1,∴a 2 013=2 013+12×22 012=1 007×22 012,得出M 是1 007×22 012.(2013·福州模拟)对一个边长为1的正方形进行如下操作:第一步,将它分割成3×3个小正方形,接着用中心和四个角的5个小正方形,构成如图①所示的几何图形,其面积S 1=59;第二步,将图①的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图②;依此类推,到第n 步,所得图形的面积S n =⎝ ⎛⎭⎪⎪⎫59n .若将以上操作类比推广到棱长为1的正方体中,则到第n 步,所得几何体的体积V n =__⎝ ⎭⎪⎪13n __. 对一个棱长为1的正方体进行如下操作:第一步,将它分割成3×3×3个小正方体,接着用中心和8个角的9个小正方体,构成新1几何体,其体积V 1=927=13; 第二步,将新1几何体的9个小正方体中的每个小正方体都进行与第一步相同的操作,得到新2几何体,其体积V 2=⎝ ⎛⎭⎪⎪⎫132;…; 依此类推,到第n 步,所得新n 几何体的体积V n =⎝ ⎛⎭⎪⎪⎫13n . 两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a 1=1,第2个五角形数记作a 2=5,第3个五角形数记作a 3=12,第4个五角形数记作a 4=22,…,若按此规律继续下去,则a 5=__35__;若a n =145,则n =__10__.∵a2-a1=4,a3-a2=7,a4-a3=10,由归纳猜想得a5-a4=13,∴a5=35.a n-a n-1=3n-2,应用累加法得a n-a1=4+7+10+…+(3n-2)=(n-1)(3n+2)2,∴a n=(n-1)(3n+2)2+1,当a n=145时,(n-1)(3n+2)2+1=145,解得n=10.三、解答题(共15分)(2013·南昌二模)将各项均为正数的数列{a n}中的所有项按每一行比上一行多一项的规则排成数表,如图所示.记表中各行的第一个数a1,a2,a4,a7,…构成数列{b n},各行的最后一个数a1,a3,a6,a10,…构成数列{c n},第n行所有数的和为S n(n=1,2,3,4,…).已知数列{b n}是公差为d的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数q,且a1=a13=1,a31=53.求数列{c n},{S n}的通项公式.b n=dn-d+1,前n行共有1+2+3+…+n=n(n+1)2(个)数,∵13=4×52+3,∴a13=b5·q2,即(4d+1)q2=1,(2分)又31=7×82+3,∴a31=b8·q2,即(7d+1)q2=53,(6分)解得d=2,q=13,∴b n=2n-1,(8分)c n=b n⎝⎛⎭⎪⎪⎫13n-1=2n-13n-1,(12分)S n=(2n-1)⎝⎛⎭⎪⎪⎫1-13n1-13=12(2n-1)·3n-13n-1.(15分)。

2015高考数学合情推理与演绎推理一轮复习测试

2015高考数学合情推理与演绎推理一轮复习测试

2015高考数学合情推理与演绎推理一轮复习测试2015高考数学合情推理与演绎推理一轮复习测试【选题明细表】知识点、方法题号归纳推理3、5、9、11、13、15类比推理2、4、8、10、12演绎推理1、6、7、14一、选择题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是(B)(A)①(B)②(C)③(D)①和②解析:由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.(2013河南焦作二模)给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;③若“a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比结论正确的个数是(C)(A)0(B)1(C)2(D)3解析:①②正确,③错误,因为两个复数如果不是实数,不能比较大小.故选C.3.(2013上海闸北二模)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为(C)(A)n+1(B)2n(C)(D)n2+n+1解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.4.定义A*B,B*C,C*D,D*A的运算分别对应图中的(1)(2)(3)(4),那么如图中(a)(b)所对应的运算结果可能是(B)(A)B*D,A*D(B)B*D,A*C(C)B*C,A*D(D)C*D,A*D解析:观察图形及对应运算分析可知,基本元素为A→|,B→□,C→—,D→⚫,从而可知图(a)对应B*D,图(b)对应A*C.故选B.5.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是(B)(A)(7,5)(B)(5,7)(C)(2,10)(D)(10,1)解析:依题意,由和相同的整数对分为一组不难得知,第n组整数对的和为n+1,且有n个整数对.这样前n组一共有个整数对.注意到因此第60个整数对处于第11组的第5个位置,可得为(5,7).故选B.6.对于a、b∈(0,+∞),a+b≥2(大前提),x+≥2(小前提),所以x+≥2(结论).以上推理过程中的错误为(A)(A)小前提(B)大前提(C)结论(D)无错误解析:大前提是a,b∈(0,+∞),a+b≥2,要求a、b都是正数;x+≥2是小前提,没写出x的取值范围,因此本题中的小前提有错误.故选A.7.在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质(1)对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.关于函数f(x)=(3x)*的性质,有如下说法①函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为,.其中所有正确说法的个数为(B)(A)0(B)1(C)2(D)3解析:f(x)=f(x)*0=*0=0*+(3x)*0]+-2×0=3x×+3x+=3x++1.当x=-1时,f(x)因为f(-x)=-3x-+1≠-f(x),所以②错误;令f'(x)=3->0,得x>或x因此函数f(x)的单调递增区间为,,③正确.故选B.二、填空题8.(2013山东实验中学一模)以下是对命题“若两个正实数a1,a2满足+=1,则a1+a2≤”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤.根据上述证明方法,若n个正实数满足++…+=1时,你能得到的结论为.(不必证明)解析:由题意可构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+1,因对一切实数x,恒有f(x)≥0,所以Δ=4(a1+a2+…+an)2-4n≤0,即a1+a2+…+an≤.答案:a1+a2+…+an≤9.(2013山东莱芜模拟)容易计算2×5=10,22×55=1210,222×555=123210,2222×5555=12343210.根据此规律猜想×所得结果由左向右的第八位至第十位的三个数字依次为.解析:由2×5,22×55,222×555的结果可知×的结果共18位,个位为0,其他数位从左向右为连续的自然数且左右对称,即×=123456789876543210,所得结果由左向右的第八位至第十位的三个数字依次为898.答案:89810.(2013江西师大附中模拟)若数轴上不同的两点A,B分别与实数x1,x2对应,则线段AB的中点M与实数对应,由此结论类比到平面得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2),(x3,y3)对应,则△ABC的重心G与对应.解析:由类比推理得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2),(x3,y3)对应,则△ABC的重心G与,对应.答案:,11.观察下列几个三角恒等式①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.一般地,若tanα,tanβ,tanγ都有意义,你从这三个恒等式中猜想得到的一个结论为.解析:所给三角恒等式都为tanαtanβ+tanβtanγ+tanγtanα=1的结构形式,且α、β、γ之间满足α+β+γ=90°,所以可猜想当α+β+γ=90°时,tanαtanβ+tanβtanγ+tanγtanα=1.答案:当α+β+γ=90°时,tanαtanβ+tanβtanγ+tanγtanα=112.设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,,,成等比数列. 解析:对于等比数列,通过类比等差数列的差与等比数列的商,可得T4,,,成等比数列.答案:13.用黑白两种颜色的正方形地砖依照如图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.解析:按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是.答案:503三、解答题14.在锐角三角形ABC中,求证:sinA+sinB+sinC>cosA+cosB+cosC.证明:∵△ABC为锐角三角形,∴A+B>,∴A>-B,∵y=sinx在上是增函数,∴sinA>sin=cosB,同理可得sinB>cosC,sinC>cosA,∴sinA+sinB+sinC>cosA+cosB+cosC. 15.已知函数f(x)=,(1)分别求f(2)+f,f(3)+f,f(4)+f的值;(2)归纳猜想一般性结论,并给出证明;(3)求值:f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.解:(1)∵f(x)=,∴f(2)+f=+=+=1,同理可得f(3)+f=1,f(4)+f=1.(2)由(1)猜想f(x)+f=1,证明:f(x)+f=+=+=1.(3)f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f=f(1)+f(2)+f+f(3)+f+…+f(2013)+f=+=+2012 =.。

高考数学第一轮复习强化训练 20.1《合情推理与演绎推理》新人教版选修12

高考数学第一轮复习强化训练 20.1《合情推理与演绎推理》新人教版选修12

【考纲要求】1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2、了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3、了解合情推理和演绎推理之间的联系和差异.【基础知识】1.推理一般包括合情推理和演绎推理.2..合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳、类比是合情推理常用的思维方法.3..归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.4..归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想).5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理.【例题精讲】例已知等差数列{a n}的公差d=2,首项a1=5.(1)求数列{a n}的前n项和S n;(2)设T n=n(2a n-5),求S1,S2,S3,S4,S5;T1,T2,T3,T4,T5,并归纳出S n与T n的大小规律.解:(1)S n=5n+n(n-1)2×2=n(n+4).(2) T n=n(2a n-5)=n[2(2n+3)-5],∴T n=4n2+n.∴T1=5,T2=4×22+2=18,T3=4×32+3=39,T4=4×42+4=68,T5=4×52+5=105S1=5,S2=2×(2+4)=12,S3=3×(3+4)=21,S4=4×(4+4)=32,S5=5×(5+4)=45.由此可知S1=T1,当n≥2时,S n<T n.归纳猜想:当n≥2,n∈N时,S n<T n.20.1合情推理与演绎推理强化训练【基础精练】1.下列表述正确的是 ( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.下面使用类比推理恰当的是 ( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”C .“(a +b )c =ac +bc ”类推出“a +bc =a c +b c (c ≠0)” D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”3.由710>58,911>810,1325>921,…若a >b >0且m >0,则b +m a +m 与b a之间大小关系为( ) A .相等 B .前者大 C .后者大 D .不确定4.如图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青蛙按顺时针方向绕圆从一个点跳到另一点.若它停在奇数点上,则下一次只能跳一个点;若停在偶数点上,则下一次跳两个点.该青蛙从5这点跳起,经2008次跳后它将停在的点是 ( )A .1B .2C .3D .45.下列推理是归纳推理的是 ( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab D .科学家利用鱼的沉浮原理制造潜艇6.定义集合A ,B 的运算:A ⊗B ={x |x ∈A 或x ∈B 且x ∉A ∩B },则A ⊗B ⊗A =____________.7.在平面内有n(n∈N*,n≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(5)的值是________.f(n)的表达式是________.8.有如下真命题:“若数列{a n}是一个公差为d的等差数列,则数列{a n+a n+1+a n+2}是公差为3d的等差数列.”把上述命题类比到等比数列中,可得真命题是“________________.”(注:填上你认为可以成为真命题的一种情形即可)9.方程f(x)=x的根称为f(x)的不动点,若函数f(x)=x a(x+2)有唯一不动点,且x1=1000,x n+1=1f⎝⎛⎭⎪⎫1x n(n∈N*),则x2011=________.10.已知:sin230°+sin290°+sin2150°=32,sin25°+sin265°+sin2125°=32.通过观察上述两等式的规律,请你写出一般性的命题,并给出证明.【拓展提高】已知函数f(x)=-aa x+a(a>0且a≠1),(1)证明:函数y=f(x)的图象关于点(12,-12)对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值【基础精练参考答案】4.A解析:a n表示青蛙第n次跳后所在的点数,则a1=1,a2=2,a3=4,a4=1,a5=2,a6=4,…,显然{a n}是一个周期为3的数列,故a2008=a1=1.5.B解析:从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以B是归纳推理.6.B 解析:如图,A ⊗B 表示的是阴影部分,设A ⊗B =C ,运用类比的方法可知,C ⊗A =B ,所以A ⊗B ⊗A =B .7. 16 n 2+n +22解析:本题是一道推理问题.通过动手作图,可知f (3)=7,f (4)=11,f (5)=16,从中可归纳推理,得出f (n )=f (n -1)+n ,则f (n )-f (n -1)=n , f (n -1)-f (n -2)=n -1,f (n -2)-f (n -3)=n -2,f (5)-f (4)=5,f (4)-f (3)=4,将以上各式累加得:f (n )-f (3)=n +(n -1)+(n -2)+…+5+4=(4+n )(n -3)2, 则有f (n )=(4+n )(n -3)2+f (3)=(4+n )(n -3)2+7 =n 2+n +228.答案:若数列{b n }是公比为q 的等比数列,则数列{b n ·b n +1·b n +2}是公比为q 3的等比数列;或填为:若数列{b n }是公比为q 的等比数列,则数列{b n +b n +1+b n +2}是公比为q 的等比数列.9. 2005解析:由x a (x +2)=x 得ax 2+(2a -1)x =0. 因为f (x )有唯一不动点,所以2a -1=0,即a =12. 所以f (x )=2x x +2.所以x n +1=1f ⎝ ⎛⎭⎪⎫1x n =2x n +12=x n +12. 所以x 2011=x 1+12×2010=1000+20102=2005. 10.解:一般性的命题为sin 2(α-60°)+sin 2α+sin 2(α+60°)=32. 证明如下:左边=1-cos(2α-120°)2+1-cos2α2+1-cos(2α+120°)2=32-12[cos(2α-120°)+cos2α+cos(2α+120°)] =32=右边. ∴结论正确.【拓展提高参考答案】解:(1)证明:函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-aa x +a,则 -1-y =-1+aa x +a =-a x a x +a , f (1-x )=-a a 1-x +a =-a a ax +a =-a ·a xa +a ·a x =-a xa x +a ,∴- 1-y =f (1-x ),即对称点(1-x ,-1-y )也满足函数y =f (x ).∴函数y =f (x )的图象关于点(12,-12)对称.。

2015高考数学一轮总复习课件:6.43 合情推理与演绎推理

2015高考数学一轮总复习课件:6.43 合情推理与演绎推理
第二十页,编辑于星期五:十二点 三十五分。
【解析】(1)用三段论方式进行说明.
∵y=x+ax有如下性质:如果常数 a>0,那么该函 数在(0, a]上是减函数,在( a,+∞)上是增函数.
又 y=x+2xb(x>0)中 2b>0 为常数. ∴y=x+2xb是“y=x+ax(a>0)型”函数, ∴y=x+2xb在(0, 2b]上是减函数,在( 2b,+∞) 上是增函数,
先研究 x>0 时的单调性,然后根据偶函数的性质 求 x<0 时的单调性.
当 x>0 时,令 t=x2,则 y=t+ct(c>0), 则 y=t+ct在(0, c)上是减函数,在[ c,+∞)上 是增函数.
∴y=x2+xc2(x>0,c>0)在(0,4 c]上是减函数,在
4 [
c,+∞)上是增函数,根据偶函数性质,得
广的不等式为_a_m_n __b_m_n __a_m_bn__a_n_b_m (_a__0_,_b __0_,m___0_,n__0_,_a__b.)
【解析】依题意得,推广的不等式为 am+n+bm+ n>ambn+anbm(a>0,b>0,a≠b,m>0,n>0).
第八页,编辑于星期五:十二点 三十五分。
设等比数列{bn}的公比为 q,首项为 b1, 则 T4=b14q6,T8=b18q1+2+…+7=b18q28,T12=b112q1+2+…+11= b112q66, ∴TT84=b14q22,TT182=b14q38,即TT842=TT182·T4,故 T4,TT84,TT182 成等比数列.
第十六页,编辑于星期五:十二点 三十五分。
②2n+1(n∈N*)位回文数有___9___1_0_n___个.

2015届高考数学第一轮大复习(基础+思想典型题+题组专练)7.4合情推理与演绎推理档专练(新人教A版)文

2015届高考数学第一轮大复习(基础+思想典型题+题组专练)7.4合情推理与演绎推理档专练(新人教A版)文

§7.4 合情推理与演绎推理1.推理根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理.推理一般分为合情推理与演绎推理两类. 2.合情推理3.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理; (2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确. ( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × )(4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ ) (5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N +).( × )(6)2+23=223, 3+38=338, 4+415=4415,…, 6+b a =6ba(a ,b 均为实数),则可以推测a =35,b =6. ( √ ) 2.数列2,5,11,20,x,47,…中的x 等于( )A.28B.32C.33D.27答案 B解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32.3.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的后四位数字为 ( ) A.3 125 B.5 625 C.0 625 D.8 125答案 D解析 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,可得59与55的后四位数字相同,…,由此可归纳出5m+4k与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 011=4×501+7,所以52 011与57后四位数字相同为8125,故选D. 4.(2013·陕西)观察下列等式 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2. 5.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.答案T 8T 4 T 12T 8解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n , 则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12, T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.题型一 归纳推理例1 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.思维启迪 解题的关键是由f (x )计算各式,利用归纳推理得出结论并证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均为f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1,∵f (x 1)+f (x 2)=131x +3+132x +3=(31x+3)+(32x+3)(31x+3)(32x+3)=31x+32x+23321xx++3(31x+32x)+3=31x+32x+233(31x+32x)+2×3=31x+32x+233(31x+32x+23)=33.思维升华(1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.(3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.(1)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第五个等式应为________________________.(2)已知f(n)=1+12+13+…+1n(n∈N*),经计算得f(4)>2,f(8)>52,f(16)>3,f(32)>72,则有______.答案(1)5+6+7+8+9+10+11+12+13=81(2)f(2n)>n+22(n≥2,n∈N*)解析(1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.(2)由题意得f(22)>42,f(23)>52,f(24)>62,f(25)>72,所以当n≥2时,有f(2n)>n+22.故填f(2n)>n+22(n≥2,n∈N*).题型二类比推理例2已知数列{a n}为等差数列,若a m=a,a n=b(n-m≥1,m,n∈N*),则a m+n=nb-man-m.类比等差数列{a n}的上述结论,对于等比数列{b n}(b n>0,n∈N*),若b m=c,b n=d(n-m≥2,m,n∈N*),则可以得到b m+n=________.思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算. 答案 n -m d nc m解析 设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -ma n -m ,所以类比得b m +n =n -m d nc m思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.(3)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(1)给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( )A.0B.1C.2D.3(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22(其中a ,b 为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a ,b ,c 且两两垂直的三棱锥的外接球半径R =________. 答案 (1)B (2)a 2+b 2+c 22解析 (1)①②错误,③正确.(2)由平面类比到空间,把矩形类比为长方体,从而得出外接球半径. 题型三 演绎推理例3 已知函数f (x )=-aa x +a(a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.思维启迪 证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a (a >0且a ≠1)的图象关于点(12,-12)对称.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ), 它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x +a =-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y =f (x ),满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). 所以y =f (x )为R 上的单调增函数.高考中的合情推理问题典例:(1)(5分)(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.思维启迪 从已知的部分k 边形数观察一般规律写出N (n ,k ),然后求N (10,24).解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. 答案 1 000(2)(5分)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 思维启迪 直接类比可得. 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是 x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb2=1.答案x 0x a 2-y 0y b 2=1 (3)(5分)在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项: k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…,n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)·(n +2).类比上述方法,请你计算“1×2×3+2×3×4+…+n (n +1)·(n +2)”,其结果为________. 思维启迪 根据两个数积的和规律猜想,可以利用前几个式子验证.解析 类比已知条件得k (k +1)(k +2)=14[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)],由此得1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),…,n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)].以上几个式子相加得:1×2×3+2×3×4+…+n (n +1)(n +2) =14n (n +1)(n +2)(n +3). 答案 14n (n +1)(n +2)(n +3)温馨提醒 (1)合情推理可以考查学生的抽象思维能力和创新能力,在每年的高考中经常会考到;(2)合情推理的结论要通过演绎推理来判断是否正确.方法与技巧1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.失误与防范1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A组专项基础训练(时间:40分钟)一、选择题1.(2012·江西)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于() A.28 B.76 C.123 D.199答案 C解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.2.定义一种运算“*”:对于自然数n满足以下运算性质:(1)1*1=1,(2)(n+1)*1=n*1+1,则n*1等于()A.nB.n+1C.n-1D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.4.已知△ABC 中,∠A =30°,∠B =60°,求证:a <b . 证明:∵∠A =30°,∠B =60°,∴∠A <∠B . ∴a <b ,其中,画线部分是演绎推理的( )A.大前提B.小前提C.结论D.三段论答案 B解析 由三段论的组成可得画线部分为三段论的小前提.5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a n n )也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n = n c n 1+c n 2+…+c n nnD.d n =n c 1·c 2·…·c n答案 D解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d , ∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2, ∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D.二、填空题6.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2, 易知f (14)=119,f (15)=135,故n =14.7.若函数f (x )=x x +2(x >0),且f 1(x )=f (x )=xx +2,当n ∈N *且n ≥2时,f n (x )=f [f n -1(x )],则f 3(x )=________,猜想f n (x )(n ∈N *)的表达式为________. 答案x 7x +8 x (2n -1)x +2n解析 ∵f 1(x )=xx +2,f n (x )=f [f n -1(x )](n ≥2),∴f 2(x )=f (x x +2)=x x +2(x x +2+2)=x3x +4.f 3(x )=f [f 2(x )]=f (x 3x +4)=x 3x +4(x 3x +4+2)=x7x +8.由所求等式知,分子都是x ,分母中常数项为2n ,x 的系数比常数项少1,为2n -1, 故f n (x )=x(2n -1)x +2n.8.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC ,把这个结论类比到空间:在三棱锥A -BCD 中(如图所示),平面DEC 平分二面角A -CD -B 且与AB 相交于点E ,则类比得到的结论是________.答案BE EA =S △BCDS △ACD解析 易知点E 到平面BCD 与平面ACD 的距离相等, 故V E -BCD V E -ACD =BE EA =S △BCD S △ACD . 三、解答题9.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律.解 (1)由于a 1=5,d =2, ∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n .∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39, T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45. 由此可知S 1=T 1,当n ≥2时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由. 解 如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC , ∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD , 则1AE 2=1AB 2+1AC 2+1AD2. 证明:如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD . ∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2,∴1AE 2=1AB 2+1AC 2+1AD2. B 组 专项能力提升 (时间:30分钟)1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是( )A.0B.1C.2D.3答案 C解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小. 2.设是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有ab ∈A ,则称A 对运算封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) A.自然数集 B.整数集 C.有理数集D.无理数集答案 C解析 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭. 3.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________. 答案 n 2+n +22解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列{S nn }是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S n n ,(小前提) 故{S nn }是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, (小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)5.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013).解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1).(2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2.故f (12 013)+f (2 0122 013)=2,f (22 013)+f (2 0112 013)=2, f (32 013)+f (2 0102 013)=2, …f (2 0122 013)+f (12 013)=2. 所以f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013)=12×2×2 012=2 012.。

高考数学一轮复习学案:13.1 合情推理与演绎推理(含答案)

高考数学一轮复习学案:13.1 合情推理与演绎推理(含答案)

高考数学一轮复习学案:13.1 合情推理与演绎推理(含答案)13.1合情推理与演绎推理合情推理与演绎推理最新考纲考情考向分析1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理3.了解合情推理和演绎推理之间的联系和差异.以理解类比推理.归纳推理和演绎推理的推理方法为主,常以演绎推理的方法根据几个人的不同说法作出推理判断进行命题注重培养学生的推理能力;在高考中以填空题的形式进行考查,属于中.高档题.1合情推理1归纳推理定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理简称归纳特点由部分到整体.由个别到一般的推理2类比推理定义由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理简称类比特点由特殊到特殊的推理3合情推理归纳推理和类比推理都是根据已有的事实,经过观察.分析.比较.联想,再进行归纳.类比,然后提出猜想的推理,我们把它们统称为合情推理2演绎推理1演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理简言之,演绎推理是由一般到特殊的推理2“三段论”是演绎推理的一般模式,包括大前提已知的一般原理;小前提所研究的特殊情况;结论根据一般原理,对特殊情况做出的判断题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1归纳推理得到的结论不一定正确,类比推理得到的结论一定正确2由平面三角形的性质推测空间四面体的性质,这是一种合情推理3在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适4“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的5一个数列的前三项是1,2,3,那么这个数列的通项公式是annnN*6在演绎推理中,只要符合演绎推理的形式,结论就一定正确题组二教材改编2P71例1已知在数列an中,a11,当n2时,anan12n1,依次计算a2,a3,a4后,猜想an的表达式是Aan3n1Ban4n3Cann2Dan3n1答案C解析a2a134,a3a259,a4a3716,a112,a222,a332,a442,猜想ann2.3P84A组T5在等差数列an中,若a100,则有a1a2ana1a2a19nnafbbfa,试证明fx为R上的单调增函数证明设x1,x2R,取x1x1fx2x2fx1,x1fx1fx2x2fx2fx10,fx2fx1x2x10,x10,fx2fx1yfx为R上的单调增函数高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择.填空题,难度为中档解决此类问题的注意事项与常用方法1解决归纳推理问题,常因条件不足,了解不全面而致误应由条件多列举一些特殊情况再进行归纳2解决类比推理问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题典例1传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数他们研究过如图所示的三角形数将三角形数1,3,6,10,记为数列an,将可被5整除的三角形数按从小到大的顺序组成一个新数列bn,可以推测b2018是数列an的第________项;b2k1________.用k表示2设S,T是R的两个非空子集,如果存在一个从S到T的函数yfx满足Tfx|xS;对任意x1,x2S,当x1x2时,恒有fx1fx2那么称这两个集合“保序同构”以下集合对不是“保序同构”的是________AN*,BN;Ax|1x3,Bx|x8或0x10;Ax|0x1,BR;AZ,BQ.解析1an12nnn12,b1452a4,b2562a5,b39252a9,b425112a10,b514352a14,b635162a15,b201820182520182512a5045.由知b2k12k112512k112525k5k12.2对于,取fxx1,xN*,所以AN*,BN是“保序同构”的,故排除;对于,取fx8,x1,x1,1x0,x21,0x3,所以Ax|1x3,Bx|x8或0x10是“保序同构”的,故排除;对于,取fxtanx20x1,所以Ax|0x1,BR是“保序同构”的,故排除.不符合,故填.答案150455k5k122。

高考数学一轮复习 81合情推理与演绎推理检测试题(2)文

高考数学一轮复习 81合情推理与演绎推理检测试题(2)文

【状元之路】(新课标,通用版)2015 届高考数学一轮复习 8-1 合情推理与演绎推理检测试题(2)文一、选择题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是()A.①B.②C.③D.①和②解析:由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选 B.答案:B2.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此 f(x)=sin(x2+1)是奇函数,以上推理( )A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:因为 f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.答案:C3.在平面几何中有如下结论:正三角形 ABC 的内切圆面积为 S1,外接圆面积为 S2,则SS12=14,推广到空间可以得到类似结论;已知正四面体 P­ABC 的内切球体积为 V1,外接球体积为 V2,则VV12=()11A.8B.9C.614D.217解析:正四面体的内切球与外接球的半径之比为 1∶3,故VV12=217.答案:D4.观察如图所示的正方形图案,每条边(包括两个端点)有 n(n≥2,n∈N*)个圆点,第 n 个图案中圆点的总数是 Sn.按此规律推断出 Sn 与 n 的关系式为( )1A.Sn=2nB.Sn=4nC.Sn=2nD.Sn=4n-4解析:由 n=2,n=3,n=4 的图案,推断第 n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有 n 个圆点,则圆点的个数为 Sn=4n-4. 答案:D5.下列推理中属于归纳推理且结论正确的是( )A.设数列{an}的前 n 项和为 Sn.由 an=2n-1,求出 S1=12,S2=22,S3=32,…,推断:Sn=n2 B.由 f(x)=xcosx 满足 f(-x)=-f(x)对∀ x∈R 都成立,推断:f(x)=xcosx 为奇函数 C.由圆 x2+y2=r2 的面积 S=πr2,推断:椭圆xa22+yb22=1(a>b>0)的面积 S=πabD.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切 n∈N*,(n+1)2>2n解析:选项 A 由一些特殊事例得出一般性结论,且注意到数列{an}是等差数列,其前 n 项和等于 Sn=n1+2n-1 2=n2,选项 D 中的推理属于归纳推理,但结论不正确.因此选 A.答案:A6.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则第 n个式子是( ) A.n+(n+1)+(n+2)+…+(2n-1)=n2 B.n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2解析:方法一:由已知得第 n 个式子左边为 2n-1 项的和且首项为 n,以后是各项依次加 1,设最后一项为 m,则 m-n+1=2n-1,∴m=3n-2.方法二:特值验证法.n=2 时,2n-1=3,3n-1=5,都不是 4,故只有 3n-2=4,故选 C.答案:C7.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;2②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒ m=x”类比得到“p≠0,a·p=x·p⇒ a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;ac aa·c a⑥“bc=b”类比得到“b·c=b”.以上式子中,类比得到的结论正确的个数是( )A.1 个B.2 个C.3 个D.4 个解析:①②正确;③④⑤⑥错误.答案:B8.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在 R 上的函数f(x)满足 f(-x)=f(x),记 g(x)为 f(x)的导函数,则 g(-x)等于( )A.f(x)B.-f(x)C.g(x)D.-g(x)解析:由所给函数及其导数知,偶函数的导函数为奇函数.因此当 f(x)是偶函数时,其导函数应为奇函数,故 g(-x)=-g(x).答案:D9.已知222+3=2 3,333+8=3 8,444+15=4 15,…,若a+7t=a7 t(a,t 均为正实数),类比以上等式,可推测 a,t 的值,则 t-a=( )A.31B.41C.55D.71解析:观察所给的等式,等号左边是23422+3, 3+8, 4+15,…,等号的右边是 2 3,3 38,…,则第 n 个式子的左边是n+1+n+1 n+12-1,右边是(n+1)·故 a=7,t=72-1=48.t-a=41,选 B.n+1 n+1 2-1,答案:B10.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则 a10+b10=( )A.28B.76C.123D.199解析:记 an+bn=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11;f(6)=3f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10) =f(8)+f(9)=123.即 a10+b10=123. 答案:C 二、填空题 11.设 n 为正整数,f(n)=1+12+13+…+1n,计算得 f(2)=32,f(4)>2,f(8)>52,f(16)>3,观 察上述结果,可推测一般的结论为__________. 解析:由前四个式子可得,第 n 个不等式的左边应当为 f(2n),右边应当为n+2 2,即可得一般的 结论为 f(2n)≥n+2 2. 答案:f(2n)≥n+2 2 12.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…… 照此规律,第 n 个等式为__________. 解析:每行最左侧数分别为 1、2、3、…,所以第 n 行最左侧的数为 n;每行数的个数分别为 1、 3、5、…,则第 n 行的个数为 2n-1.所以第 n 行数依次是 n、n+1、n+2、…、3n-2.其和为 n+ (n+1)+(n+2)+…+(3n-2)=(2n-1)2. 答案:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 13.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图 所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正 方体上截下三条侧棱两两垂直的三棱锥 O­LMN,如果用 S1,S2,S3 表示三个侧面面积,S4 表示截面面 积,那么类比得到的结论是__________.4解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得 S21+ S22+S23=S24.答案:S21+S22+S23=S24 14.对于命题:若 O 是线段 AB 上一点,则有|→OB|·O→A+|O→A|·→OB=0.将它类比到平面的情形是: 若 O 是△ABC 内一点,则有 S△OBC·O→A+S△OCA·O→B+S△OBA·O→C=0,将它类比到空间情形应该是: 若 O 是四面体 ABCD 内一点,则有__________. 解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体 的体积,因此依题意可知若 O 为四面体 ABCD 内一点,则有 VO­BCD·O→A+VO­ACD·O→B+VO­ABD·O→C+VO­ABC·→OD =0. 答案:VO­BCD·→OA+VO­ACD·→OB+VO­ABD·→OC+VO­ABC·O→D=0 三、解答题 15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin213°+cos217°-sin13°cos17°; ②sin215°+cos215°-sin15°cos15°; ③sin218°+cos212°-sin18°cos12°; ④sin2(-18°)+cos248°-sin(-18°)cos48°; ⑤sin2(-25°)+cos255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数; (2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解析:方法一: (1)选择②式,计算如下: sin215°+cos215°-sin15°cos15°=1-12sin30°=1-14=34. (2)三角恒等式为 sin2α+cos2(30°-α)-sinαcos(30°-α)=34. 证明如下: sin2α+cos2(30°-α)-sinαcos(30°-α) =sin2α+(cos30°cosα+sin30°sinα)2- sinα(cos30°cosα+sin30°sinα) =sin2α+34cos2α+ 23sinαcosα+14sin2α- 23sinαcosα-12sin2α5=34sin2α+34cos2α=34.方法二: (1)同解法一. (2)三角恒等式为 sin2α+cos2(30°-α)-sinαcos(30°-α)=34.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=1-c2os2α+1+cos60°-2α 2-sinα(cos30°cosα+sin30°sinα)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)- 23sinαcosα-12sin2α=12-12cos2α+12+14cos2α+ 43sin2α- 43sin2α-14(1-cos2α)=1-14cos2α-14+14cos2α=34.答案:(1)34;(2)三角恒等式为 sin2α+cos2(30°-α)-sinαcos(30°-α)=34,证明略.16.某少数民族的刺绣有着悠久的历史,如图①②③④所示为她们刺绣的最简单的四个图案, 这些图案都是由小正方形构成,小正方形数越多,刺绣越漂亮.现按同样的规律刺绣(小正方形的摆 放规律相同),设第 n 个图形包含 f(n)个小正方形.①②③④(1)求出 f(5)的值;(2)利用合情推理的“归纳推理思想”,归纳出 f(n+1)与 f(n)之间的关系式,并根据你得到的关系式求出 f(n)的表达式;(3)求f1 1+f1 2-1+f1 3-1+…+f1 n-1的值.6解析:(1)f(5)=41.(2)f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,…由上式规律,得 f(n+1)-f(n)=4n.∴f(n+1)=f(n)+4n,f(n)=f(n-1)+4(n-1)=f(n-2)+4(n-1)+4(n-2)=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4=2n2-2n+1.(3)当 n≥2 时,f1 n-1=2n1 n-1=12n-1 1-1n,1111∴f 1 +f 2 -1+f 3 -1+…+f n -1=1+121-12+12-13+31-41+…+n-1 1-n1 =1+121-1n=32-21n. 答案:(1)f(5)=41;(2)f(n+1)=f(n)+4n,f(n)=2n2-2n+1;(3)32-21n.创新试题 教师备选教学积累 资源共享教师用书独具1.某同学在电脑上打上了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第 36 个圆的颜色应是( )A.白色B.黑色C.白色可能性大D.黑色可能性大解析:由题干图知,图形是三白二黑的圆周而复始相继排列,是一个周期为 5 的三白二黑的圆7列,因为 36÷5=7 余 1,所以第 36 个圆应与第 1 个圆颜色相同,即白色.答案:A 2.观察下列各式:55=3125,56=15625,57=78125,…,则 52011 的末四位数字为( )A.3125B.5625C.0625D.8125解析:5n(n≥5 且 n∈Z)的后两位数字一定为 25,区别在于通过对其后三四位数的观察,55、56、57 的后三四位数 31、56、81 为等差数列,公差为 25,由此推{5n}的后两位前的数是以 25 为公差的等差数列.由公式 d=ann- -amm得2a0- 113-15=25(其中 a 为 52011 的后两位前的数),∴a=50181.故选 D.答案:D3.[2014·广西月考]下列推理是归纳推理的是( )A.由于 f(x)=xcosx 满足 f(-x)=-f(x)对∀ x∈R 都成立,推断 f(x)=xcosx 为奇函数 B.由 a1=1,an=3n-1,求出 S1,S2,S3,猜出数列{an}的前 n 项和的表达式 C.由圆 x2+y2=1 的面积 S=πr2,推断:椭圆xa22+yb22=1 的面积 S=πabD.由平面三角形的性质推测空间四面体的性质解析:由特殊到一般的推理过程,符合归纳推理的定义;由特殊到与它类似的另一个特殊的推理过程,符合类比推理的定义;由一般到特殊的推理符合演绎推理的定义.A 是演绎推理,C、D 为类比推理,只有 B,从 S1,S2,S3 猜想出数列的前 n 项和 Sn 是从特殊到一般的推理,所以 B 是归纳推 理.答案:B4.[2014·银川质检]当 x∈(0,+∞)时可得到不等式 x+1x≥2,x+x42=x2+x2+2x2≥3,由此可以推广为 x+xpn≥n+1,取值 p 等于()A.nnB.n2C.nD.n+1解析:∵x∈(0,+∞)时可得到不等式 x+1x≥2,x+x42=x2+x2+2x2≥3,∴在 p 位置出现的数 恰好是不等式左边分母 xn 的指数 n 的指数次方,即 p=nn.答案:A5.[2014·宝鸡检测]考察下列一组不等式:823+53>22×5+2×52, 24+54>23×5+2×53,252+525>22×512+221×52, …将上述不等式在左、右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为__________. 解析:依题意得,推广的不等式为 am+n+bm+n>ambn+anbm(a>0,b>0,a≠b,m>0,n>0).答案:am+n+bm+n>ambn+anbm(a>0,b>0,a≠b,m>0,n>0)6.[2014·淮北模拟]在计算“1×1 2+2×1 3+…+n1 n+1(n∈N*)”时,某同学学到了如下一种方法:先改写第 k 项:k1 k+1=1k-k+1 1,1 11 1 11111由此得1×2=1-2,2×3=2-3,…,n n+1 =n-n+1,相加,得1×1 2+2×1 3+…+n1 n+1=1-n+1 1=n+n 1.类比上述方法,请你计算“1×12×3+2×13×4+…+n1 n+1n+2 (n∈N*)”,其结果为__________.解析:先改写第 n 项,n1 n+1n+2=1 n+1×n1 n+2=1 2×1 n+11n-n+1 2=1 2×n1 n+1-1 n+1 n+2,所以1×12×3+2×13×4+…+n1 n+1n+2=121×1 2-2×1 3+2×1 3-3×1 4+…+n1 n+1-n+1 1 n+2 =121×1 2-1 n+1 n+2=4n n+3 n+1 n+2.n n+3 答案:4 n+1 n+27.[2014·张家界模拟]观察:①sin210°+cos240°+sin10°cos40°=34; ②sin26°+cos236°+sin6°cos36°=34.9由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想. 解析:猜想:sin2α+cos2(α+30°)+sinαcos(α+30°)=34.证明:左边=sin2α+cos(α+30°)[cos(α+30°)+sinα]=sin2α+ 23cosα-12sinα 23cosα+12sinα=sin2α+34cos2α-14sin2α=34=右边.所以,猜想是正确的.8.[2013·广东中山模拟]设 f(x)=3x+1,先分别求 f(0)+f(1),f(-1)+f(2),f(-2)+ 3f(3),然后归纳猜想一般性结论,并给出证明.解析:f(0)+f(1)=30+11 3+31+3=1+1 1+ 3 3+ 33-1 3- 3 =2+63 =3,同理可得:f(-1)+f(2)=3 3,f(-2)+f(3)=3 3 ,并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=3 3.证明:设 x1+x2=1,f(x1)+f(x2)=3x1+11 + 3 3x2+3= 3x1+ 3 + 3x2+ 3 3x1+ 3 3x2+ 3=3x1+3x2+2 33x1+x2+ 3 3x1+3x2 +3= 3x1+3x2+2 3 3 3x1+3x2 +2×3= 3x1+3x2+2 3 3 3x1+3x2+2 310=33.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 合情推理与演绎推理基础巩固题组(建议用时:40分钟)一、填空题1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理________.①结论正确;②大前提不正确;③小前提不正确;④全不正确.解析 f (x )=sin(x 2+1)不是正弦函数而是复合函数,所以小前提不正确. 答案 ③2.(2014·西安五校联考)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出第n 个式子的结论:________. 解析 各等式的左边是第n 个自然数到第3n -2个连续自然数的和,右边是中间奇数的平方,故得出结论:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 答案 n +(n +1)+(n +2)+…+(3n -2)=(2n -1)23.若等差数列{a n }的首项为a 1,公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,且通项为S n n =a 1+(n -1)·d 2,类似地,请完成下列命题:若各项均为正数的等比数列{b n }的首项为b 1,公比为q ,前n 项的积为T n ,则________.答案 数列{n T n }为等比数列,且通项为n T n =b 1(q )n -14.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=________. 解析 由已知得偶函数的导函数为奇函数,故g (-x )=-g (x ).答案 -g (x )5.(2012·江西卷改编)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于________.解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.答案1236.(2014·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是________.①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).解析经验证易知①②错误.依题意,注意到2S(x+y)=2(a x+y-a-x-y),S(x)C(y)+C(x)S(y)=2(a x+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x -y)=S(x)C(y)-C(x)S(y).答案③④7.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“acbc=ab”类比得到“a·cb·c=ab”.以上式子中,类比得到的结论正确的是________.解析①②正确;③④⑤⑥错误.答案①②8.(2014·南京一模)给出下列等式:2=2cos π4,2+2=2cosπ8,2+2+2=2cos π16,请从中归纳出第n个等式:=________.答案2cosπ2n+1二、解答题9.给出下面的数表序列:其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.10.f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得:f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想f(x)+f(1-x)=3 3.证明:f(x)+f(1-x)=13x+3+131-x+3=13x+3+3x3+3·3x=13x+3+3x3(3+3x)=3+3x3(3+3x)=33.能力提升题组(建议用时:25分钟)一、填空题1.(2012·江西卷改编)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为________. 解析 由|x |+|y |=1的不同整数解的个数为4,|x |+|y |=2的不同整数解的个数为8,|x |+|y |=3的不同整数解的个数为12,归纳推理得|x |+|y |=n 的不同整数解的个数为4n ,故|x |+|y |=20的不同整数解的个数为80.答案 802.观察下列各式9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为________. 解析 9-1=(1+2)2-12=4(1+1),16-4=(2+2)2-22=4(2+1),25-9=(3+2)2-32=4(4+1),36-16=(4+2)2-42=4×(5+1),…,一般地,有(n +2)2-n 2=4(n +1)(n ∈N *).答案 (n +2)2-n 2=4(n +1)(n ∈N *)3.(2013·湖北卷)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L=18,则S =________(用数值作答).解析 (1)四边形DEFG 是一个直角梯形,观察图形可知:S =(2+22)×2×12=3,N =1,L =6.(2)由(1)知,S 四边形DEFG =a +6b +c =3.S△ABC=4b+c=1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S=4,N=1,L=8.则S=a+8b+c=4.联立解得a=1,b=12.c=-1.∴S=N+12L-1,∴若某格点多边形对应的N=71,L=18,则S=71+12×18-1=79.答案(1)3,1,6(2)79二、解答题4.(2012·福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-12sin 30°=1-1 4=3 4.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin2α+34cos2α+32sin αcos α+14sin2α-3212sin 2α=34sin2α+34cos2α=34.sin αcos α-。

相关文档
最新文档