陶瓷基复合材料分类及应用智能(复合)材料
浅谈陶瓷基复合材料的分类及性能特点
浅谈陶瓷基复合材料的分类及性能特点蒋永彪(贵州省机械工业学校,贵州贵阳550000)1陶瓷基复合材料分类陶瓷基复合材料,根据增强体分成两大类:连续增强的复合材料和不连续增强的复合材料,如表1所示。
其中,连续增强的复合材料包括一方向,二方向和三方向纤维增强的复合材料,也包括多层陶瓷复合材料;不连续增强的复合材料包括晶须、晶片和颗粒的第二组元增强体和自身增强体,如Si 3N 4中等轴晶的基体中分布一些晶须状β-Si 3N 4晶粒起到增韧效果。
纳米陶瓷既可以是添加纳米尺寸的增强体复合材料,也可以是自身晶粒尺寸纳米化及增强。
表1陶瓷基复合材料分类陶瓷基符合材料也可以根据基体分成氧化物基和非氧化物基符合材料。
氧化物基复合材料包括玻璃、玻璃陶瓷、氧化物、复合氧化物等,弱增强纤维也是氧化物,常称为全氧化物复合材料。
非氧化物基复合材料以SiC ,Si 3N 4,MoS 2基为主。
2陶瓷基复合材料的力学特性陶瓷本体具有耐高温、抗氧化、高温强度高、抗高温蠕变性好、高硬度、高耐磨损性、线膨胀系数小、耐化学腐蚀等优点,但也存在致命的弱点(脆性),它不能承受激烈的机械冲击和热冲击,这限制了它的应用。
可通过控制晶粒、相变韧化、纤维增强等手段制成复合材料,陶瓷基复合材料具有了更高的熔点、刚度、硬度和高温强度,并具有抗蠕变、疲劳极限好、高抗磨性,在高温和化学侵蚀的场合下能承受大的载荷等优点,使其在航空、航天等众多领域有着广泛的应用前景。
2.1陶瓷基复合材料的主要物理和化学性能(1)热膨胀。
复合材料有纤维、界面和基体构成,因此热膨胀的相容性是非常重要的。
虽然线膨胀系数彼此相同是最为理想的,但是几乎实现不了。
通常用线膨胀系数来表征材料的热膨胀,晶体的线膨胀系数存在各向异性,因此,线膨胀系数的各向异性造成的热应力常常是导致多晶体材料从烧结温度冷却下来即发生开裂的原因。
在陶瓷基复合材料里,一般希望增强体承压缩的残余应力,这样即使是弱界面,也不会发生界面脱黏。
陶瓷基复合材料的研究进展及应用
陶瓷基复合材料的研究进展及应用1. 引言陶瓷基复合材料是一种由陶瓷基体和强化相组成的复合材料。
近年来,随着科技的进步和材料技术的发展,陶瓷基复合材料在各个领域得到了广泛的应用。
本文将对陶瓷基复合材料的研究进展及其应用进行全面、详细、完整且深入地探讨。
2. 陶瓷基复合材料的分类根据强化相的不同,陶瓷基复合材料可以分为颗粒增强型、纤维增强型和层状增强型三种类型。
其中,颗粒增强型陶瓷基复合材料的强化相是以颗粒的形式分散在陶瓷基体中的;纤维增强型陶瓷基复合材料的强化相则是以纤维的形式存在;层状增强型陶瓷基复合材料的强化相是通过层状复杂结构实现的。
3. 陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法多种多样,常见的方法有以下几种:3.1 钎焊法钎焊法是将强化相和陶瓷基体通过钎料进行连接的方法。
钎料可以是金属或非金属,通过钎焊方法可以将两种材料牢固地连接在一起,形成复合材料。
3.2 熔融注射法熔融注射法是将强化相和陶瓷基体一起熔融,并通过注射成型的方法制备陶瓷基复合材料。
这种方法可以制备出形状复杂的复合材料,并且其性能均匀性较好。
3.3 助熔剂法助熔剂法是在陶瓷基体中添加助熔剂,使其在较低的温度下熔融并与强化相进行反应,从而制备出陶瓷基复合材料。
3.4 热压烧结法热压烧结法是将陶瓷粉末和强化相在高温高压下进行烧结,使其结合成复合材料。
这种方法可以制备出具有较高密度和优良性能的陶瓷基复合材料。
4. 陶瓷基复合材料的应用领域由于陶瓷基复合材料具有优异的力学性能、耐热性能和耐腐蚀性能,因此在许多领域得到了广泛的应用。
以下是陶瓷基复合材料的几个主要应用领域:4.1 航空航天领域陶瓷基复合材料具有轻质、高强度和耐高温的特点,因此在航空航天领域得到了广泛的应用。
它可以用于制造发动机叶片、航空航天结构件等,提高航空航天器的整体性能。
4.2 光电子领域陶瓷基复合材料具有优异的光学性能和电子性能,因此在光电子领域有着广泛的应用。
第七章 陶瓷基复合材料
航空航天领域,用陶瓷基复合材料制作
的导弹的头锥、火箭的喷管等也收到了
良好的效果。
法国已将长纤维增强碳化硅复合材 料应用于制作超高速列车的制动件, 具有优异的磨擦磨损特性。
HNUST Company Logo
普通使用的燃气轮机高温部件: 镍基台金或钴基合金 可使汽轮机的进口温度高达1400 ℃ ,但这些合金的耐高温极限受到了 其熔点的限制,因此采用陶瓷材料来代替高温合金已成了目前研究的 一个重点内容。
界面强度过低、则使晶须的拔出功减小,这对韧化和强化都不利,因
此界面强度存在一个最佳值。
有明显的锯齿效应,这是晶须拔出桥连机制作用的结果。
HNUST Company Logo
7.2 陶瓷基复合材料的成型加工
7.2.1 纤维增强陶瓷基复合材料的加工 基体方面:与气孔的尺寸及数量,裂纹的大小以及一些其它缺陷有关;
HNUST Company Logo
7.1.2 纤维增强陶瓷基复合材料
1、单向排布长纤维复合材料
单向排布纤维增韧陶瓷基复合材料的显著特点:各向异性,即沿纤维长
度方向上的纵向性能要大大高于其横向性能。 裂纹的扩展必须克服
由于纤维的加入而产
生的拔出功和纤维断 裂功,使得材料的断 裂更为困难,起到增 韧的作用。
纤维成一定角度,根据构件
的形状用纤维浸浆缠绕的方 法做成所需要形状的壳层状 构件。
增韧机理
HNUST Company Logo
三维多向排布纤维增韧陶瓷基复合材料
三维多向编织纤维增韧陶瓷是为了满足某些情况的性能要求而设计的。
这种材料最初是从宇航用三向C/C复合材料开始的,现已发展到三向石英/ 石英等陶瓷复合材料。 由于每束纤维呈直线伸展,不存在相 互交缠和绕曲,因而使纤维可以充分
陶瓷基复合材料(CMC)
第四节陶瓷基复合材料(CMC)1.1概述工程中陶瓷以特种陶瓷应用为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度高以及耐腐蚀件好等特点,已广泛用于制做剪刀、网球拍及工业上的切削刀具、耐磨件、发动机部件、热交换器、轴承等。
陶瓷最大的缺点是脆性大、抗热震性能差。
与金属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要目的之一就是提高陶瓷的韧性。
特别是纤维增强陶瓷复合材料在断裂前吸收了大量的断裂能量,使韧性得以大幅度提高。
表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺寸大小的比较。
很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。
无论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较大提高,而且也使临界裂纹尺寸增大。
陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物纳构远比金属与合金复杂得多。
使用最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
陶瓷材料中的化学键往注是介于离子键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维是用来制造陶瓷基复合材料最常用的纤维之一。
碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进行有效的保护以防止它在空气中或氧化性气氛中被腐蚀,只有这样才能充分发挥它的优良性能。
其它常用纤维是玻璃纤维和硼纤维。
陶瓷材料中另一种增强体为晶须。
晶须为具有一定长径比(直径o 3。
1ym,长30—lMy”)的小单晶体。
从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表面损伤等一类缺陷,而这些缺陷正是大块晶体中大量存在且促使强度下降的主要原因。
在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨氏模量),这已非常接近十理论上的理想拉伸强度o.2Z。
陶瓷基复合材料(CMC)
陶瓷基复合材料(CMC)第四节陶瓷基复合材料(CMC)1.1概述⼯程中陶瓷以特种陶瓷应⽤为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度⾼以及耐腐蚀件好等特点,已⼴泛⽤于制做剪⼑、⽹球拍及⼯业上的切削⼑具、耐磨件、发动机部件、热交换器、轴承等。
陶瓷最⼤的缺点是脆性⼤、抗热震性能差。
与⾦属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要⽬的之⼀就是提⾼陶瓷的韧性。
特别是纤维增强陶瓷复合材料在断裂前吸收了⼤量的断裂能量,使韧性得以⼤幅度提⾼。
表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺⼨⼤⼩的⽐较。
很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。
⽆论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较⼤提⾼,⽽且也使临界裂纹尺⼨增⼤。
陶瓷基复合材料的基体为陶瓷,这是⼀种包括范围很⼴的材料,属于⽆机化合物纳构远⽐⾦属与合⾦复杂得多。
使⽤最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐⾼温、耐腐蚀、⾼强度、重量轻和价格低等优点。
陶瓷材料中的化学键往注是介于离⼦键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从⼏何尺⼨上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维是⽤来制造陶瓷基复合材料最常⽤的纤维之⼀。
碳纤维主要⽤在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进⾏有效的保护以防⽌它在空⽓中或氧化性⽓氛中被腐蚀,只有这样才能充分发挥它的优良性能。
其它常⽤纤维是玻璃纤维和硼纤维。
陶瓷材料中另⼀种增强体为晶须。
晶须为具有⼀定长径⽐(直径o 3。
1ym,长30—lMy”)的⼩单晶体。
从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表⾯损伤等⼀类缺陷,⽽这些缺陷正是⼤块晶体中⼤量存在且促使强度下降的主要原因。
在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨⽒模量),这已⾮常接近⼗理论上的理想拉伸强度o.2Z。
陶瓷基复合材料
3、莫来石陶瓷(3Al2O3· 2SiO2, mullite)
莫来石一般是由人工合成的。工业上多用天然高铝矾土、粘土或工 业氧化铝等为原料,常用烧结或电熔法合成莫来石熔块,然后破碎成各 种粒度的莫来石粉料。一般合成温度高于1700℃。
实验室一般用化学法(如Sol-gel法)合成高纯、超细的莫来石粉体。
晶须
(陶瓷)
纤维
(连续、短纤维) (陶瓷、高熔点金属)
1650
结构复合式
(叠层、梯度) (按设计要求选择材料)
水泥
硅酸盐化合物、铝酸盐化合物等
叠层式(叠层、梯度)
(按设计要求选择材料)
二、原材料及其特性
陶瓷基复合材料是由基体材料和增强体材料组成。
基体材料有氧化物陶瓷、非氧化物陶瓷、水泥、玻璃等。 增强体材料主要以不同形态来区分,有颗粒状、纤维状、 晶须、晶板等。
表面强化增韧
陶瓷材料的断裂往往是从表面拉应力超过断裂 应力开始的。由于ZrO2陶瓷烧结体表面存在基 体的约束较少,t-ZrO2容易转变为m-ZrO2,而 内部t-ZrO2由于受基体各方向的压力保持亚稳 定状态。因此表面的m-ZrO2比内部的多,而转 变产生的体积膨胀使材料表面产生残余的压应 力,可以抵消一部分外加的拉应力,从而造成 表面强化增韧。
莫来石质陶瓷通常是在1550~1600℃下常压烧结而成,纯莫来石陶 瓷通常要在1750℃左右才能烧结。
加入适量的稳定剂后,t相可以部分或全部以亚稳定状态存在于室 温,分别称为部分稳定氧化锆(PSZ)或四方相氧化锆多晶体(TZP)。
利用t-ZrO2m-ZrO2的马氏体相变,可以用来增韧陶瓷材料,即 氧化锆增韧陶瓷材料(ZTC)。 ZrO2陶瓷的特点是呈弱酸性或惰性,导热系数小(在100~1000℃ 范围内,导热系数=1.7~2.0W/(mK),其推荐使用温度为2000~2200℃, 主要用于耐火坩埚、炉子和反应堆的绝热材料、金属表面的热障涂层等。
陶瓷基复合材料
陶瓷基复合材料综述引言:陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。
因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。
如航空发动机的推重比为10时,涡轮前进口温度达1650C, 在这样高的温度下,传统的高温合金材料已经无法满足要求【11,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。
研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既有效的增强了材料的强度和韧性,又保持了基体材料低膨胀、低密度的特点。
摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的性能、分类及其应用,以及各类陶瓷基复合材料的优点、缺点。
重点介绍了陶瓷基复合材料的增韧机理、制备工艺(包括粉末冶金法、浆体法、反应烧结法、液态浸渍法、直接氧化法等)。
最后对陶瓷复合基材料的发展前景及发展方向做了展望。
1、陶瓷基复合材料概述陶瓷分为普通陶瓷和特种陶瓷。
普通陶瓷就是我们日常用的陶瓷、建筑陶瓷、化学陶瓷、电瓷及其他工业用瓷。
虽然陶瓷外表美观,耐腐蚀,但是它塑性差,易碎,是其致命缺点。
而另一种陶瓷:特种陶瓷则刚好解决了这个缺点,让陶瓷的发展有了无限的空间。
特种陶瓷包括功能陶瓷和结构陶瓷。
是一种复合材料。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展从而得到有优良韧性的纤维增强陶瓷基复合材料。
2、陶瓷基基复合材料的基体与增强体(2) 增强体:陶瓷基复合材料中的增强体,通常也称为增韧体。
陶瓷及复合材料知识点
11. 界面结合类型:机械结合:组元间无任何化学反应,由纯粹的机械互锁而形成的结合;化学结合:组元间元素发生相互扩散、溶解及化学反应形成的结合
12. 界面功能:有效传递载荷.调节应力分布:
13. CVI特点:①适用面广②工艺温度低③对纤维机械损伤小③净成型⑤多孔性; CVI技术不能产生完全致密的陶基复材
1. 陶瓷基复合材料(CMC)定义:陶瓷基体中引入第二项材料,使之增强增韧的多项材料。
2. 陶瓷基复材包括:纤维(晶须)增韧(增强)~;异相颗粒弥散强化复相~;原位生长~;梯度功能~;纳米陶瓷复合材料;
3. SIC晶须/Si3N4复合材料有极好的:高温强度,断裂韧性.
4. 陶瓷脆性本质:结构中原子排列性状决定其缺乏像金属那样的塑性变形能力,在断裂过程中了产生新断裂表面所需表面能外,几乎没有其他吸取能量的机制.
14. 晶须(短切纤维)分散方法:球磨\超声振动\溶胶-凝胶法
15. JC/SIC比碳化硅纤维性能:①Hi-Nicalon纤维直径较粗②基体成分与纤维成分基本相同,组元元素间相互扩散速率小③纤维的纵向热膨胀系数(约0)比基体的(4.35*10^-6)小.
16. 晶须增强陶基复材制备中,晶须为何要分散,有哪些分散方法?为了消除晶须的团聚和族簇.;有 球磨\超声振动\溶胶-凝胶法
5. 纤维增强聚合物/金属,纤维承受较大比例载荷
6. 纤维复材断裂模式:纤维/基体界面结合弱,基体出现裂纹,界面局部解离,纤维在裂纹面间将破碎基体桥联起来,使复合材料继续承担载荷..
7. 裂纹偏转机制,纤维拔出机制:其中以纤维断头克服摩擦力从基体断裂面拔出消耗能量效果最为显著
陶瓷基复合材料
陶瓷基复合材料陶瓷基复合材料是一种由陶瓷基体和其他添加剂组成的复合材料。
其综合性能优异,因此在航空航天、电子器件、能源领域等多个领域得到广泛应用。
本文将介绍陶瓷基复合材料的制备方法、性能及应用,并对其未来发展进行展望。
一、制备方法陶瓷基复合材料的制备方法多种多样,主要包括烧结法、溶胶-凝胶法、机械合金化法等。
首先,烧结法是最常用的制备陶瓷基复合材料的方法之一。
该方法将陶瓷粉末与其他添加剂混合,并通过高温下的烧结过程将其烧结成坚固的材料。
这种方法制备的复合材料具有较高的结晶度和致密性。
其次,溶胶-凝胶法是一种制备陶瓷基复合材料的新方法。
该方法通过将金属盐、有机物等混合,形成胶体溶胶,然后通过热处理使其成为凝胶,并进一步高温热处理得到致密材料。
这种方法制备的复合材料具有较高的纯度和均匀性。
最后,机械合金化法是一种通过粉末冶金技术制备陶瓷基复合材料的方法。
该方法将陶瓷颗粒与添加剂一起经过球磨、混合等机械处理,使其均匀分散,并通过热处理得到复合材料。
这种方法制备的复合材料具有较高的强度和断裂韧性。
二、性能陶瓷基复合材料具有一系列优异的性能,主要包括高温稳定性、硬度高、抗腐蚀性好等。
首先,陶瓷基复合材料具有较好的高温稳定性。
由于陶瓷基复合材料的陶瓷基体具有较高的熔点和热稳定性,因此能够在高温环境下保持较好的性能,不易发生烧结变形等问题。
其次,陶瓷基复合材料具有较高的硬度。
陶瓷基体的硬度往往比金属基体或聚合物基体要高,因此陶瓷基复合材料在硬度方面具有优势。
这使得该材料在需要高硬度的应用中表现出色,如切割工具、磨料等领域。
再次,陶瓷基复合材料具有良好的抗腐蚀性。
由于陶瓷基体的本身特性,该材料在酸碱等腐蚀性环境中有很好的稳定性,不易受到腐蚀侵蚀。
这使得陶瓷基复合材料在化工、生物医药等领域得到广泛应用。
三、应用陶瓷基复合材料在很多领域都有广泛的应用。
下面将介绍几个典型的应用领域。
首先,陶瓷基复合材料在航空航天领域具有重要应用。
陶瓷基复合材料在飞机上的应用
陶瓷基复合材料在飞机上的应用答案:陶瓷基复合材料在飞机上的应用非常广泛,主要涉及航空航天领域,包括飞机发动机、航天飞机等。
陶瓷基复合材料(CMC)以其优异的耐高温性能、高强度、硬度大、耐磨、抗高温蠕变、低热导率、低热膨胀系数、耐化学腐蚀等特点,在航空领域得到了广泛应用。
例如,美国NASA在航天飞机上采用了碳化硅陶瓷基复合材料制造燃料泵的泵壳,显著提高了耐高温性能和使用寿命。
波音公司也成功地将陶瓷基复合材料应用于飞机发动机的制造中,有效提升了发动机的性能和可靠性。
此外,陶瓷基复合材料还用于制造航天飞机的鼻锥、机翼前缘及其他高温部件,以及飞机上的制动器,显著减轻了飞机的重量。
为了防止氧化,可采用涂层陶瓷对航天飞机上的CMC施加保护或用浸喷法使CMC防氧化寿命大大提高。
在航空发动机方面,陶瓷基复合材料具有巨大的应用潜力。
它们能够承受1000°~1500℃的高温,且结构耐久性更好。
CMC的固有断裂韧性和损伤容限高,适用于燃气涡轮发动机热端部件,能在较高的涡轮进口温度和较少的冷却空气下运行,显著改善发动机效率和耗油率。
目前,陶瓷基复合材料在航空发动机中的应用主要集中在发动机燃烧室及内衬、涡轮外环、涡轮转子叶片、导向叶片、喷管鱼鳞片、加力燃烧室等热端部件。
其中,CMC高压涡轮转子叶片的研制代表了当前CMC技术发展与应用的最高水平。
国外在陶瓷基复合材料在航空发动机上的研究时间较长,成果较多。
美、俄、英等国投入巨大人力物力,力争占领以SiC/SiC复合材料为代表的先进武器装备材料技术制高点。
例如,美国航空航天局(NASA)在“超高效发动机技术”(UEET)项目下,开发了能承受涡轮进口温度1649℃的CMC发动机热端结构,冷却需求量比同类高温合金部件减少15%~25%。
这表明CMC在航空发动机热端部件的应用取得了新突破,展现了其在未来军民用航空发动机的广泛应用前景。
陶瓷基复合材料
陶瓷基复合材料江雪玲(重庆师范大学化学学院,2011级材料化学,20110513423)摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的分类及其应用,以及各类陶瓷基复合材料的优点、缺点。
最后,综合了陶瓷基复合材料的优点、缺点,并对未来陶瓷基复合材料的发展提出了期许以及发展方向。
关键词:陶瓷基复合材料、氧化物基透波材料、磷酸盐基透波材料、氮化物基透波材料、连续纤维增强陶瓷基复合材料。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
1、陶瓷基复合材料由于陶瓷本身存在韧性和可靠性不足的缺点,因此人们对各种陶瓷材料进行优化设计,制备出整体性能更为优异的陶瓷基透波复合材料。
陶瓷基透波复合材料按基体的成分不同可主要分为氧化物基、磷酸盐基及氮化物基等系列。
下表为部分陶瓷基透波复合材料的基本性能。
表:部分陶瓷基透波复合材料的基本性能性能2D 3D 2.5D 2.5DSiO2f/SiO2 SiO2/SiO2 Q/NCMCs Q/磷酸盐折弯强度/Mpa 97.0 Z:14.0X:13.2117.5 40~110介电常数 2.61 2.8 3.24 3.2~3.4损耗角正切0.0016 0.008 0.004 0.007~0.008热导率w/(m.k)0.35 0.838(270℃) 1.1 /2、氧化物基透波材料虽然石英陶瓷具有优异的介电性能,但其也存在抗雨蚀性能、力学性能较差的缺点,为此人们通过各种增强方式来提高石英陶瓷材料的断裂韧性和可靠性。
连续纤维增强陶瓷基复合材料具有强度高、韧性好、密度低等特点,因而收到了广泛关注。
陶瓷基复合材料
陶瓷基复合材料的复合机理、制备、生产、应用及发展前景摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。
其中复合材料是是最新发展地来的一大类,发展非常迅速。
最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。
随后发展起来的是微观复合材料,它的组元肉眼看不见。
由于复合材料各方面优异的性能,因此得到了广泛的应用。
复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。
本文从纤维增强陶瓷基复合材料C f/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC的的研究现状、未来发展进行了展望。
正文1、陶瓷基复合材料的定义与特性陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。
一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。
陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。
因此,近几十年来,陶瓷基复合材料的研究有了较快发展。
目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。
复合材料学(第七章 陶瓷基复合材料)
并导致性能的下降。为了克服这一弱点,可 采用颗粒来代替晶须制成复合材料,这种复 合材料在原料的混合均匀化及烧结致密化方 面均比晶须增强陶瓷基复合材料要容易。
当所用的颗粒为SiC,TiC时,基体材料 采用最多的是A12O3,Si3N4。目前,这些复 合材料已广泛用来制造刀具。
陶瓷材料中另一种增强体为晶须。晶须 为 具 有 一 定 长 径 比 ( 直 径 0.3-lμm , 长 30100μm)的小单晶体。从结构上看,晶须的特 点是没有微裂纹、位错、孔洞和表面损伤等 一类缺陷,而这些缺陷正是大块晶体中大量 存在且促使强度下降的主要原因。在某些情 况下,晶须的拉伸强度可达0.1E(E为杨氏模 量),这已非常接近于理论上的理想拉伸强度
0.2E。而相比之下,多晶的金属纤维和块状
金属的拉伸强度只有0.02E和0.001E。
自发现百余种不同材料构成的晶须以来, 人们对其已给予了特别的关注。因为它们具 有最佳的热性能、低密度和高杨氏模量。
在陶瓷基复合材料中使用得较为普遍的是 SiC,Al2O3及Si3N4晶须。
陶瓷材料中的另一种增强体为颗粒。从
2.陶瓷复合材料的增强体
陶瓷基复合材料中的增强体通常也称为 增韧体。从几何尺寸上可分为纤维(长、短纤 维)、晶须和颗粒三类,下面分别加以介绍。
碳纤维是用来制造陶瓷基复合材料最常 用的纤维之一。碳纤维可用多种方法进行生 产,工业上主要采用有机母体的热氧化和石 墨化。其生产过程包括三个主要阶段,第一 阶段在空气中于200℃-400℃进行低温氧化, 第二阶段是在惰性气体中在1000℃左右进行 碳化处理,第三阶段则是在惰性气体中于 2000℃以上的温度作石墨化处理。
陶瓷基复合材料的研究进展及应用
陶瓷基复合材料的研究进展及应用一、引言陶瓷基复合材料是一种新型的材料,具有高硬度、高强度、高温稳定性等优点,在航空航天、汽车制造、电子器件等领域有广泛的应用。
本文将对陶瓷基复合材料的研究进展及应用进行详细的介绍。
二、陶瓷基复合材料的定义陶瓷基复合材料是以陶瓷为基础,添加多种增强剂和填充剂,通过化学反应或物理方法制备而成的一种新型复合材料。
其主要特点是具有高硬度、高强度、高温稳定性等优点。
三、陶瓷基复合材料的分类根据增强剂和填充剂的不同,可以将陶瓷基复合材料分为以下几类:1. 碳纤维增强陶瓷基复合材料:碳纤维作为增强剂,可以提高材料的强度和刚度。
2. 硅酸盐增强陶瓷基复合材料:硅酸盐作为填充剂,可以提高材料的耐火性能和抗氧化性能。
3. 陶瓷颗粒增强陶瓷基复合材料:陶瓷颗粒作为填充剂,可以提高材料的耐磨性和耐蚀性。
四、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法包括以下几种:1. 热压法:将预先加工好的增强剂和填充剂与陶瓷粉末混合均匀,然后在高温高压下进行热压,使其形成一体化的复合材料。
2. 热处理法:将预先加工好的增强剂和填充剂与陶瓷粉末混合均匀,然后在高温下进行热处理,使其形成一体化的复合材料。
3. 溶胶-凝胶法:通过溶胶-凝胶反应制备出纳米级别的氧化物粉末,再将其与增强剂和填充剂混合均匀,最后通过加热处理使其形成一体化的复合材料。
五、陶瓷基复合材料的应用由于其具有高硬度、高强度、高温稳定性等优点,陶瓷基复合材料在以下领域有广泛的应用:1. 航空航天领域:陶瓷基复合材料可以用于制造飞机发动机叶片、导向叶片等高温部件。
2. 汽车制造领域:陶瓷基复合材料可以用于制造汽车刹车盘、排气管等高温部件。
3. 电子器件领域:陶瓷基复合材料可以用于制造高压电容器、电子封装等部件。
六、结论随着科学技术的不断发展,陶瓷基复合材料将有更广泛的应用前景。
本文介绍了其定义、分类、制备方法和应用领域,相信对读者对该材料有更深入的了解。
(完整word版)陶瓷基复合材料的机理、制备、生产应用及发展前景
陶瓷基复合材料的机理、制备、生产应用及发展前景姓名:王珍学号:Z09016203科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景.陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。
陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。
其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。
连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。
金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。
从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。
陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域.但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。
而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点.一、陶瓷基复合材料的基本介绍和种类1、陶瓷基复合材料的基本介绍陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷.这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
陶瓷基复合材料的研究进展及应用
陶瓷基复合材料的研究进展及应用
陶瓷基复合材料是一类由陶瓷基体和其他增强相组成的新型材料,具有高温、耐磨、耐腐蚀等优异性能。
随着材料科学和工程技术的不断发展,陶瓷基复合材料在各个领域都得到了广泛的应用。
1. 陶瓷基复合材料的研究进展
近年来,针对陶瓷基复合材料的研究越来越深入,取得了一系列重要的进展。
首先,在材料的组成方面,研究人员通过添加不同的增强相,如纤维、颗粒和纳米材料等,有效地提高了陶瓷基复合材料的力学性能和导热性能。
其次,研究人员对陶瓷基复合材料的制备工艺进行了改进和优化,例如采用热压烧结、等离子烧结和化学气相沉积等方法,以获得更高的致密度和均匀的微观结构。
此外,利用先进的表征技术,如扫描电子显微镜、透射电子显微镜和X 射线衍射仪等,研究人员能够深入了解陶瓷基复合材料的微观结构和相互作用机制。
2. 陶瓷基复合材料的应用
陶瓷基复合材料在诸多领域都有广泛的应用。
首先,在航空航天领域,陶瓷基复合材料因其轻质、高强度和抗腐蚀等特点被用于制作航空发动机和燃气涡轮等零部件。
其次,在能源领域,陶瓷基复合材料因其优异的耐高温性能被广泛应用于核能、太阳能和化学能源等方面,用于制作核反应堆壳体、太阳能电池板和燃料电池等。
此外,陶瓷基复合材料还在汽车制造、电子器件、医疗设备和化工等领域得到了应用,例如用于制作汽车刹车系统、电子封装材料和人工关节等。
陶瓷基复合材料(CMC)
4.溶解——沉淀
在有液相参与的烧结中,若液相能润湿和溶解 固体,由于小颗粒的表面能较大,其溶解度也 比大颗粒的大。小颗粒不断溶解并在大颗粒表 面析出,空隙消失而致密化。
陶瓷基复合材料(CMC)
第四节 CMC制备工艺
一、粉末冶金法 将陶瓷粉末、增强材料(颗粒或纤维)
和加入的粘结剂混合均匀后,冷压制成 所需形状,然后进行烧结或直接热压挠 结或等静压烧结制成陶瓷基复合材料。
六、化学气相浸渍法
陶瓷基复合材料(CMC)
第五节 CMC界面
一、CMC界面的特点 CMC一般制备的温度较高,原子的活性增
特点: 低密度,2.0-2.8g/cm3 高弹性模量(80-140GPa)和弯曲强度
(70-350MPa)
陶瓷基复合材料(CMC)
第三节 陶瓷粉末的烧结
粉末状物料在压制成型后,含有大量气孔,颗粒 之间接触面积较小,强度也比较低。经过高温作 用后,坯体中颗粒相互烧结,界面逐渐扩大成为 晶界,最后数个晶粒结合在一起,产生再结晶与 聚集再结晶,使晶粒长大。气孔体积缩小,大部 分甚至全部从体坯中排出,体收缩而致密,强度 增加,成坚固整体。上述整个过程叫烧结过程。
初期:晶界不移动,也就是晶粒不成长 中期:晶界开始移动,晶粒开始成长,气孔成
三维连通状 末期:还体浙趋致密,当相对密度达95%左右,
气孔逐渐封闭,成为不连续状态
陶瓷基复合材料(CMC)
二、烧结动力
任何系统都有向最低能量状态转变的趋 势,所以这种表面自由能的降低,在很 多情况下就成为物质烧结的主要动力。 此外高度分散物料的表面还存在严重歪 曲,内部也具有比较严重的结构缺陷, 这些都促使晶格活化,性质点易于迁移, 从而构成烧结动力的另一部分。
陶瓷基复合材料(CMC)
陶瓷基复合材料
碳/碳化硅陶瓷基复合材料一、简介陶瓷基复合材料(Ceramic matr ix composite ,CMC)是在陶瓷基体中引入第二相材料, 使之增强、增韧的多相材料, 又称为多相复合陶瓷(Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。
陶瓷基复合材料是20 世纪80 年代逐渐发展起来的新型陶瓷材料, 包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。
其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用, 成为理想的高温结构材料。
报道,陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构的首选材料。
鉴于此, 许多国家都在积极开展陶瓷基复合材料的研究, 大大拓宽了其应用领域, 并相继研究出各种制备新技术。
其中,C/SiC 陶瓷基复合材料是其中一个非常重要的体系。
C/SiC 陶瓷基复合材料主要有两种类型, 即碳纤维/碳化硅(Cf /SiC)和碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。
Cf /SiC 陶瓷基复合材料是利用Cf 来增强增韧SiC 陶瓷, 从而改善陶瓷的脆性, 实现高温结构材料所必需的性能, 如抗氧化、耐高温、耐腐蚀等;Cp/SiC 陶瓷基复合材料是利用Cp 来降低SiC 陶瓷的硬度, 实现结构陶瓷的可加工性能,同时具有良好的抗氧化性、耐腐蚀、自润滑等。
本文主要综述了Cf /SiC 陶瓷基复合材料的制备及应用研究现状,并且从结构和功能一体化的角度, 提出了采用软机械力化学法制备Cp 与SiC 复合粉体, 通过无压烧结得到强度、抗氧化性、耐腐蚀等性能以满足普通民用工业用的Cp/SiC 陶瓷基复合材料的制备技术及应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、智能材料的构成
一般来说智能材料由基体材料、敏 感材料、驱动材料和信息处理器四部 分构成。
19
(1)基体材料
基体材料担负着承载的作用,一般宜选用 轻质材料。
一般基体材料首选高分子材料,因为其重 量轻、耐腐蚀,尤其具有粘弹性的非线性特征。 其次也可选用金属材料,以轻质有色合金为主。
20
(2)敏感材料
29
1、电流变体和磁流变体
电致、磁致变体智能材料大多是由陶瓷材 料或人工合成材料制成的,具有在电场或磁场 的作用下“性质” 发生变的能力,其变化的大 小与电场和磁场的强度有关。
30
诸如目前研制成功的一种电致变性材料,这种 材料在接通电流时,可以从液体变为接近固体。
如果向空心复合梁中充入电流变性液体材料, 在外电场的作用下,这种液体材料就会变硬,从而 使梁变成僵硬状。
9
这使得智能材料的设计、制造、加工 和性能结构特征均涉及到了材料学的最前 沿领域,使智能材料代表了材料科学的最 活跃方面和最先进的发展方向。
10
智能材料应用的简单事例: 某些太阳镜的镜片当中含有智能材料, 这种智能材料能感知周围的光,并能够对光 的强弱进行判断,当光强时,它就变暗,当 光弱时,它就会变的透明。
无机非金属系智能材料在电流变体、压 电陶瓷、光致变色和电致变色材料等方面发 展较快;
27
高分子系智能材料的范围很广泛,作为智能材 料的刺激响应性高分子凝胶的研究和开发非常活跃;
其次还有智能高分子膜材、智能高分子粘合剂、 智能型药物释放体系和智能高分子基复合材料等。
28
第二节 主要智能材料
1、电流变体和磁流变体; 2 、磁致伸缩材料; 3 、压电陶瓷; 4 、电致伸缩陶瓷; 5 、智能材料系统; 6 、光致变色玻璃; 7 、电致变色材料; 8 、形状记忆合金;
31
将电致变性现象与传感器结合起来,就可以 实现使复合梁随着负载的变化而改变其性质。这
一般来说,智能复合材料结构是以传统的复合材 料结构为基体,通过复合或附加一系列智能化元件, 如传感器、驱动器与控制器等,而形成的新型复合 材料结构。
8
智能材料的构想来源于仿生学,它的 目标就是想研制出一种材料,使它成为具 有类似于生物的各种功能的“活”的材料。
因此智能材料必须具备感知、驱动和 控制这三个基本要素。
13
(2)反馈功能(Feedback)
可通过传感网络,对系统输入与输出信息 进行对比,并将其结果提供给控制系统。
(3)信息识别与积累功能
能够识别传感网络得到的各类信息并 将其积累起来。
14
(4) 响应功能
能够根据外界环境和内部条件变化, 适时动态地作出相应的反应,并采取必要 行动。
15
(5) 自诊断能力(Self-diagnosis)
能通过分析比较系统目前的状况与过 去的情况,对诸如系统故障与判断失误等 问题进行自诊断并予以校正。
16
(6)自修复能力(Self-recovery)
能通过自繁殖、自生长、原位复 合等再生机制,来修补某些局部损伤 或破坏。
17
(7)自调节能力(Self-adjusting)
对不断变化的外部环境和条件,能及时 地自动调整自身结构和功能,并相应地改变 自己的状态和行为,从而使材料系统始终以 一种优化方式对外界变化作出恰如其分的响 应。
陶瓷基复合材料分类及应用
智 能(复合)材 料
主要内容 1、什么是智能材料 2、智能材料的特征 3、智能材料的构成 4、智能材料的分类与应用
2
1、什么是智能材料?
智能材料是二十世纪90年代迅速发展 起来的一类新型复合材料。
智能材料目前还没有统一的定义,不 过,现有的智能材料的多种定义仍然是大 同小异。
11
2、智能材料的特征
因为设计智能材料的两个指导思想是材料 的多功能复合和材料的仿生设计,所以智能材 料系统具有或部分具有如下的智能功能和“生 命”特征:
12
(1)传感功能(Sensor)
能够感知外界或自身所处的环境条件,如负 载、应力、应变、振动、热、光、电、磁、化学、 核辐射等的强度及其变化。
因为现在可用于智能材料的材料种类不断扩大, 所以智能材料的分类也只能是粗浅的,分类方法也 有多种。
25
按智能材料的来源来分,可以分为金属系智 能材料、无机非金属系智能材料和高分子系智能 材料。
按智能材料的功能来分,可以分为光导纤维、 形状记忆合金、压电、电流变体和电(磁)致伸 缩材料等。
26
目前研究开发的金属系智能材料主要有 形状记忆合金和形状记忆复合材料两大类;
敏感材料担负着传感的任务,其主要作用是 感知环境变化(包括压力、应力、温度、电磁场、 pH值等)。
常用敏感材料如形状记忆材料、压电材料、 光纤材料、磁致伸缩材料、电致变色材料、电流 变体、磁流变体和液晶材料等。
21
(3)驱动材料
驱动材料在一定条件下,可产生较大的应变和 应力,担负着响应和控制的任务。常用有效驱动材 料如形状记忆材料、压电材料、电内 环境和外环境)刺激,对之进行判断、处 理、分析,并采取一定的措施进行适度响 应智能特征的材料。
4
具体来说,智能材料需具备以下内涵: (1)具有感知功能,能够检测并且可以识 别外界(或者内部)的刺激强度,如电、光、 热、应力、应变、化学、辐射等;
5
(2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏、及时和恰当; (5)当外部刺激消除后,能够迅速恢复到 原始状态。
可以看出,这些材料既是驱动材料又是敏感材 料,显然起到了身兼二职的作用,这也是智能材料 设计时可采用的一种思路。
22
(4)其它功能材料
包括导电材料、磁性材料、光 纤和半导体材料等。
23
图所示为智能材料的基本构成和工作原理。
24
4、智能材料的分类
智能材料是继天然材料、人造材料、精细材料 之后的第四代功能材料。
6
现有的材料一般比较单一,难以满足 智能材料的要求,所以智能材料一般由两 种或两种以上的材料复合构成一个智能材 料系统。
7
智能复合材料结构的内涵非常丰富,涉及的材料 从无机到有机,结构层次从宏观到微观,它模糊了材 料与结构之间的界限。
与材料科学、信息科学、仿生学和生命科学等诸多 前沿科学及高技术密切相关。