气相色谱仪有哪些检测器
解析各种检测器的原理、用途和作用

气相色谱仪-检测系统1.热导检测器热导检测器( Thermal coductivity detector,简称TCD ),是应用比拟多的检测器,不管对有机物还是无机气体都有响应。
热导检测器由热导池池体和热敏元件组成。
热敏元件是两根电阻值完全一样的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。
如果热导池只有载气通过,载气从两个热敏元件带走的热量一样,两个热敏元件的温度变化是一样的,其电阻值变化也一样,电桥处于平衡状态。
如果样品混在载气过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。
这种检测器是一种通用型检测器。
被测物质与载气的热导系数相差愈大,灵敏度也就愈高。
此外,载气流量和热丝温度对灵敏度也有较大的影响。
热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。
热导检测器构造简单、稳定性好,对有机物和无机气体都能进展分析,其缺点是灵敏度低。
2.气相色谱仪氢火焰离子化检测器氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。
它的主要部件是一个用不锈钢制成的离子室。
离子室由收集极、极化极(发射极)、气体入口及火焰喷嘴组成。
在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。
无样品时两极间离子很少,当有机物进入火焰时,发生离子化反响,生成许多离子。
在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。
离子流经放大、记录即得色谱峰。
有机物在氢火焰中离子化反响的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反响生成自由基,自由基又与氧作用产生离子。
在外加电压作用下,这些离子形成离子流,经放大后被记录下来。
所产生的离子数与单位时间进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。
气相色谱仪及色谱检测器-2

2). 进样器
类型:微量注射器,旋转式六通阀 用注射器进样重复性为2-5% 用六通阀进样量的重复性<0.5% 液体样品: 5、10 μL 微量进样器 气体样品: 50、100、200μL 微量进样器 也可用一般1mL、2mL注射器 定量最好用六通阀进样 0.5、1、2……mL定量 环
3、分离系统
进入检测器的试样是气体,mv· mL/mL 灵敏度表示每毫升载气中有一毫升试样在检测 器上产生的毫伏数。Q的单位为毫升组分/毫升流动 相,则有检测器体积灵敏度SV: Sv= u2FdA/u1mL
B. 质量型检测器灵敏度, mv·s/g
表示每秒钟有一克物质通过检测器时所产 生的信号的大小。Q的单位为克组分/秒,则 有质量型检测器灵敏度St,其单位为毫伏/克 组分/秒。 St=60u2A/u1m
1 、气路系统
气相色谱仪的气路系统是一个载气连续运行,包 括气源、气体净化、气体流速控制和测量。 气路系统的气密性、载气流量的稳定性都对实 验的结果有影响。 气相色谱的气路系统有:单柱单气路系统 双柱双气路系统
1). 载气的选择
气相色谱常用的载气有:氢气、氮气、氦气等, 其选用取决于所用的检测器。 •热导检测器(TCD) •氢火焰离子化检测器(FID) •火焰光度检测器(FPD) •电2 (高纯 >99.99%)
由灵敏度公式:
1、进样量与峰面积成正比。(色谱 峰定量的理论基础) 2、进样量一定时,峰面积与流速成 反比。(定量时,要保持载气流速 恒定)
2).噪声和漂移:(稳定性)
噪声:当纯载气通过检测器时,记录仪记 录下来的基线波动为噪声。 以RN表示,单位为mv或mA 短期噪声:记录笔的振幅波动。 长期噪声:周期性的基线波动。 漂移:单方向的长期噪声所产生基线相对 于起始基线移动的距离。
气相色谱仪有哪些检测器

1、氢火焰离子化检测器FID用于微量有机物分析
2、热导检测器TCD用于常量、半微量分析,有机、无机物均有响应
3、电子捕获检测器ECD用于有机氯农药残留分析
4、火焰光度检测器FPD用于有机磷、硫化物的微量分析
5、氮磷检测器NPD用于有机磷、含氮化合物的微量分析
6、催化燃烧检测器CCD用于对可燃性气体及化合物的微量分析
7、光离子化检测器PID用于对有毒有害物质的痕量分析
FID氢火焰检测器居多;
它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方是气体色谱检测仪中对烃类如丁烷,己烷灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测;
TCD热导池检测器;
热导池检测器TCD是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器;其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器;
FPD 火焰光度检测器
FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原, 产生激发态的S2S2的激发态和HPOHPO的激发态,这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质量流速成正比关系;FPD是灵敏度很高的选择性检测器,广泛地用于含硫、磷化合物的分析;。
安捷伦8860气相色谱仪技术参数

安捷伦8860气相色谱仪技术参数
安捷伦8860气相色谱仪的主要技术参数如下:
1. 柱箱温度范围:室温+150℃~400℃
2. 柱箱温度控制精度:±0.1℃
3. 柱箱温度升温速率:0.1℃/min ~ 40℃/min
4. 检测器类型:FPD(火焰光度检测器)、FID(火焰离子检测器)、TCD(热导检测器)、ECD(电化学检测器)、PID(光离子化检测器)等
5. 检测器灵敏度:FPD:1ppm,FID:1ppm,TCD:1%,ECD:1ppm,PID:1ppm
6. 载气:高纯度氮气或氢气
7. 进样方式:自动进样器、手动进样器、分流/不分流进样器等
8. 数据处理系统:Agilent MassHunter B.07.00软件
9. 分析时间:根据样品种类和仪器配置而定
10. 分析效率:根据样品种类和仪器配置而定
11. 稳定性:在24小时内,漂移应小于0.1%
12. 噪音水平:在24小时内,噪音应小于0.01%
13. 电源:220V/50Hz或110V/60Hz,功率:200W
14. 重量:约100kg
以上是安捷伦8860气相色谱仪的主要技术参数,该仪器具有高精度、高效率、高稳定性等特点,适用于多种样品的气相色谱分析。
气相色谱仪进样口温度、柱温、检测器温度如何设置

气相色谱仪进样口温度、柱温、检测器温度如何设置1、进样口的温度要高于被分析物的沸点,确保所有分析物经过进样口进样后能够完全气化。
2、在其他条件都不变的情况下,柱箱温度越高,峰高越高,峰宽越窄,但是峰与峰之间的间距会越小。
反之温度越低,峰高越低,峰宽越宽,峰之间的间距越大。
所以不一定温度越低分离越好。
他们之间有一个临界温度,将会使峰宽与分离度达到一个个最合适的效果。
3、检测器温度一般等于或者高于进样器20℃左右。
气相色谱分析复习题及参考答案(46题)一、填空题1、气相色谱柱的老化温度要高于分析时最高柱温℃,并低于的最高使用温度,老化时,色谱柱要与断开。
答:5—10 固定液检测器《气相色谱分析原理与技术》,P302、气相色谱法分析非极性组分时应首先选用固定液,组分基本按顺序出峰,如为烃和非烃混合物,同沸点的组分中大的组分先流出色谱柱。
答:非极性沸点极性《气相色谱分析原理与技术》,P1923、气相色谱分析中等极性组分首先选用固定液,组分基本按顺序流出色谱柱。
答:中极性沸点《气相色谱分析原理与技术》,P1924、一般说,沸点差别越小、极性越相近的组分其保留值的差别就,而保留值差别最小的一对组分就是物质对。
答:越小难分离《气相色谱分析原理与技术》,P785、气相色谱法所测组分和固定液分子间的氢键力实际上也是一种力,氢键力在气液色谱中占有地位。
答:定向重要《气相色谱分析原理与技术》,P1796、分配系数也叫,是指在一定温度和压力下,气液两相间达到时,组分分配在气相中的与其分配在液相中的的比值。
答:平衡常数平衡平均浓度平均浓度《气相色谱分析原理与技术》,P457、分配系数只随、变化,与柱中两相无关。
答:柱温柱压体积《气相色谱分析原理与技术》,P468、分配比是指在一定温度和压力下,组分在间达到平衡时,分配在液相中的与分配在气相中的之比值。
答:气液重量重量《气相色谱分析原理与技术》,P469、气相色谱分析中,把纯载气通过检测器时,给出信号的不稳定程度称为。
气相色谱仪热导池检测器TCD的故障排除方法

气相色谱仪热导池检测器TCD的故障排除方法气相色谱仪热导池检测器(Thermal Conductivity Detector,TCD)是一种常用的检测器,常用于分析空气等简单气体的成分和浓度,也可用于分析多种气体的混合样品。
但是在使用过程中,热导池检测器也会遇到一些故障问题。
本文将介绍TCD故障的常见原因和排除方法。
TCD的组成TCD主要由两个部分组成:检测单元和信号处理单元。
检测单元是由两个纯铂丝组成的热导池。
当空气流过热导池时,空气与纯铂丝发生热传导,导致铂丝温度发生变化。
由于铂的电阻随温度的变化而变化,因此可以通过测量铂丝电阻的变化来检测空气中的成分和浓度。
信号处理单元包含一个放大器和滤波器,用于放大和滤除铂丝电阻变化所产生的信号,并将其传递给数据处理单元进行分析。
常见故障原因及解决方法1. 检测单元故障TCD的检测单元主要由铂丝组成,铂丝容易受到氧化、化学污染、温度过高等因素的影响而引起故障。
当出现问题时,TCD会失去灵敏度,检测不到空气中的成分和浓度,或者出现偏差。
原因•铂丝氧化•铂丝受到化学污染•温度过高导致铂丝劣化解决方法•清洗热导池:将热导池从仪器中取出,用纯水和有机溶剂清洗干净。
•处理被污染的样品:将样品与热导池分离,避免样品污染导致热导池受损。
•降低热导池温度:适当降低热导池温度,避免铂丝受损。
2. 信号处理单元故障TCD的信号处理单元主要由放大器和滤波器组成。
当信号处理单元出现故障时,TCD会失去灵敏度,甚至出现噪声。
原因•放大器故障:放大器失灵可能是由于损坏的元件或线路故障引起的。
•滤波器故障:滤波器失灵也可能是由于损坏的元件或线路故障引起的。
•连接线路故障:连接线路的故障也可能导致TCD失去灵敏度。
解决方法•检查放大器和滤波器:检查放大器和滤波器是否有受损的元件或线路;如果确定有问题,需要更换部件或维修电路。
•检查连接线路:检查连接线路是否有故障,可以检查连接线路上的插头、连接器,或者使用万用表测试电路。
【气相色谱仪】气相色谱仪的维护方法 气相色谱仪维护和修理保养

【气相色谱仪】气相色谱仪的维护方法气相色谱仪维护和修理保养气相色谱仪是一种常用的检测仪器,紧要对各种混合气体的组分进行检测,在石油、化工、医学、卫生、食品、环保等行业都有确定的应用。
用户使用气相色谱仪时应当怎样进行维护呢?今日我就来实在介绍一下气相色谱仪的维护方法,希望可以帮忙用户更好的应用产品。
气相色谱仪的维护方法1、仪器内部的吹扫、清洁气相色谱仪停机后,打开仪器的侧面和后面面板,用仪表空气或氮气对仪器内部灰尘进行吹扫,对积尘较多或不简单吹扫的地方用软毛刷搭配处理。
吹扫完成后,对仪器内部存在有机物污染的地方用水或有机溶剂进行擦洗,对水溶性有机物可以先用水进行擦拭,对不能彻底清洁的地方可以再用有机溶剂进行处理,对非水溶性或可能与水发生化学反应的有机物用不与之发生反应的有机溶剂进行清洁,如甲苯、丙酮、四氯化碳等。
注意,在擦拭仪器过程中不能对仪器表面或其他部件造成腐蚀或二次污染。
2、电路板的维护和清洁气相色谱仪准备检修前,切断仪器电源,首先用仪表空气或氮气对电路板和电路板插槽进行吹扫,吹扫时用软毛刷搭配对电路板和插槽中灰尘较多的部分进行认真清理。
操作过程中尽量戴手套操作,防止静电或手上的汗渍等对电路板上的部分元件造成影响。
吹扫工作完成后,应认真察看电路板的使用情况,看印刷电路板或电子元件是否有明显被腐蚀现象。
对电路板上沾染有机物的电子元件和印刷电路用脱脂棉蘸取酒精当心擦拭,电路板接口和插槽部分也要进行擦拭。
3、进样口的清洗在检修时,对气相色谱仪进样口的玻璃衬管、分流平板,进样口的分流管线,EPC等部件分别进行清洗是特别必要的。
玻璃衬管和分流平板的清洗:从仪器中当心取出玻璃衬管,用镊子或其他小工具当心移去衬管内的玻璃毛和其它杂质,移取过程不要划伤衬管表面。
假如条件允许,可将初步清理过的玻璃衬管在有机溶剂中用超声波进行清洗,烘干后使用。
也可以用丙酮、甲苯等有机溶剂直接清洗,清洗完成后经过干燥即可使用。
分流平板较为理想的清洗方法是在溶剂中超声处理,烘干后使用。
GC-2008C型气相色谱仪

主要性能特点:1. 全新日本原装数字电路,双CPU设计,功能强大,卓越的可靠性及抗干扰能力,极大提高了控温精度和整机的稳定性。
2. 中文键盘操作,大屏幕LCD液晶显示屏,显示内容丰富直观,并可根据环境光线调节屏幕背景亮度。
3. 自动报警功能:可根据环境噪声调节报警音量。
○仪器超温报警:加热区超温后会自动报警并自动切断加热电源。
○仪器故障报警:实现了真正意义上的故障自诊断功能,能够实时准确显示出故障原因、代码及处理方法。
4. 断气保护功能:当载气压力低于0.1MPa时,仪器会自动报警,提示不能加热或自动切断加热区电源、热导检测器自动切断桥电流,有效的保护仪器和色谱柱。
5. 具有五阶程序升温功能,极大满足了宽沸程、多组分复杂样品的分析。
6. 具有六路独立控温系统,可同时控制六个加热区,满足多路控温需求,可方便的扩充多检测器、转化炉等。
7. 智能后开门、超大通风口,采用进口日本原装步进电机,无级可调进出风量,快速升降温,极大缩短了程序升温分析周期的稳定时间,大大提高了工作效率。
当柱箱工作温度处于近室温时,后开门会自动调节开门的角度,控制进出风量,达到真正的近室温操作。
8. 参数存储保护功能:仪器关机后下次开机只需打开仪器电源总开关,仪器会自动按上次关机前的状态运行,实现了真正的“一键开机”功能,或掉电后恢复供电,仪器会自动恢复到掉电前的运行状态。
9. 具有秒表和流量计算功能:精确实用的秒表功能既能够测定某一特定样品峰的保留时间,还可自动计算并显示出气体的实时流量。
10.气路系统采用精密稳压阀加精密稳流阀设计,保证了气流的高稳定性,从而最大限度的保证了分析结果的高重现性和高准确性。
11.独特的进样口设计,解决了进样歧视,并可实现多种进样方式:填充柱柱头进样、填充柱汽化进样、毛细管分流/不分流进样、六通阀气体进样、自动顶空进样、自动进样器进样。
12.可同时安装三个进样口(两个填充柱进样口和一个毛细管柱进样口)和四种检测器,并可扩充六通阀气体进样器、转化炉和双FID放大器,真正实现一机多用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、氢火焰离子化检测器(FID)用于微量有机物分析
2、热导检测器(TCD)用于常量、半微量分析,有机、无机物均有响应
3、电子捕获检测器(ECD)用于有机氯农药残留分析
4、火焰光度检测器(FPD)用于有机磷、硫化物的微量分析
5、氮磷检测器(NPD)用于有机磷、含氮化合物的微量分析
6、催化燃烧检测器(CCD)用于对可燃性气体及化合物的微量分析
7、光离子化检测器(PID)用于对有毒有害物质的痕量分析
FID(氢火焰检测器)居多。
它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。
TCD(热导池检测器);
热导池检测器(TCD)是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器。
其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器。
FPD (火焰光度检测器)
FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原,产生激发态的S2*(S2的激发态)和HPO*(HPO的激发态),这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质量流速成正比关系。
FPD是灵敏度很高的选择性检测器,广泛地用于含硫、磷化合物的分析。