氧化沟、二沉池工艺设计计算

合集下载

水厂构筑物计算

水厂构筑物计算

根据卡罗塞氧化沟工艺流程的特点,需要进行设计计算的污水处理构筑物包括中格栅、提升泵房、细格栅、沉砂池、Carrousel氧化沟、二次沉淀池、紫外线消毒池等。

1 泵前中格栅格栅是由一组平行的金属或塑料栅条制成,斜置在污水流经的渠道上或水泵集水井处,用以拦截污水中的大块悬浮杂质,以免后续处理单元的水泵或构筑物造成损害。

根据《给水排水设计手册》(第05期.城镇排水),粗格栅栅条间距50~100mm,中格栅栅条间距为16~40mm,细格栅栅条间距为3~10mm。

格栅与水泵房的设置方式:中格栅——提升泵房——细格栅。

污水处理厂的进水中格栅按远期设计,即设计秒流量Q=1182L/s=1.182m3/s,设计中选择N=2组中格栅,每组格栅的设计流量为0.591m3/s。

1.设计参数根据《给水排水设计手册》(第05期.城镇排水),采用格栅栅条间隙b=20mm,格栅倾角为75°,过栅流速v2=0.9m/s。

图3-1 中格栅计算草图2.设计计算(1)栅条间隙数2sin bhv Q n α=式中 n ——格栅栅条间隙数(个);Q ——设计流量(m 3/s );α——格栅倾角(°) 本设计取75。

; b ——栅条间隙(m ); h ——栅前水深(m ); 2v ——过栅流速(m/s )。

()个419.065.002.075sin 591.0≈⨯⨯︒⨯=n(2)格栅槽宽度bn n S B +-=)1(式中 B ——格栅槽宽度(m );S ——每根格栅条的宽度(m );设计中取S =0.01m 。

22.14102.0)141(01.0=⨯+-⨯=B m(3)进水渠道渐宽部分的长度1112αtg B B l -=式中 1l ——进水渠道渐宽部分的长度(m ); 1B ——进水渠宽(m );B 1=1.00m ;1α——进水渠道渐宽部分的展开角度,一般可采用20°。

30.020200.122.11=︒⨯-=tg l m(4)栅槽与出水渠道连接处的渐窄部分长度15.0212==ll m(5)通过格栅的水头损失αβsin 2223/41gv b S k h ⎪⎭⎫ ⎝⎛=式中 1h ——水头损失(m );k ——系数,格栅受污物堵塞使水头损失增大的倍数,一般采用3; β——格栅条的阻力系数,其数值与格栅栅条的断面几何形状有关,栅条断面形状为迎水面为半圆形的矩形时83.1=β;g ——重力加速度。

氧化沟课程设计

氧化沟课程设计

污水处理工程课程设计(氧化沟工艺设计)一课程设计的内容和深度污水处理课程设计的目的在于加深理解所学专业知识,培养运用所学专业知识的能力,在设计、计算、绘图等方面得到锻炼。

针对一座二级处理得城市污水处理厂,要求对主要污水处理构筑物的工艺尺寸进行设计计算,确定污水厂的平面布置和高程布置。

最后完成设计计算说明书和设计图纸(污水处理厂平面布置图和污水处理厂高程图及主要构筑物结构图)。

设计深度一般为初步设计的深度。

二污水处理工程课程设计任务书1.设计题目已给2.基本资料(1)污水水量与水质污水处理水量:已给污水水质:COD Cr450mg/L,BOD5 200mg/L,SS 250mg/L,氨氮15mg/L。

(2)处理要求污水经二级处理后的出水水质应符合以下具体要求:COD Cr≤60mg/L,BOD5≤20mg/L,SS≤20mg/L,氨氮≤8mg/L。

(3)处理工艺流程污水拟采用氧化沟法工艺处理,具体流程如下:污水→分流闸井→格栅间→污水泵房→出水井→计量槽→沉砂池→氧化沟→二沉池→消毒池→出水↑回流泵↓→污泥浓缩→污泥脱水(4)气象与水文资料风向:多年主导风向为北北东风;气温:最冷月平均为-3.5℃;最热月平均为32.5℃;极端气温,最高为41.9℃,最低为-17.6℃,最大冻土深度为0.18m;水文:降水量多年平均为每年728mm;蒸发量多年平均为每年1210mm;地下水水位,地面下5-6m。

(5)厂区地形污水厂选址区域海拔标高在64-66m之间,平均地面标高为65.0m。

3. 设计内容①对工艺构筑物选型作说明;②主要处理构筑物(格栅、沉砂池、氧化沟、二沉池、消毒池)的工艺计算;③污水处理厂平面和高程布置。

4. 设计成果①设计计说明书一份;②设计图纸:污水平面图和污水处理高程图各一张;另出氧化沟图一张。

三、污水处理工程课程设计指导书1,总体要求①在设计过程中,要发挥独立思考独立工作的能力;②本课程设计的重点训练,是污水处理主要构筑物的设计计算和总体布置;③课程设计不要求对设计方案作比较,处理构筑物选型说明,按其特点特征加以说明;④设计计算说明书,应内容完整(包括计算草图),简明扼要,文句通顺,字迹端正。

氧化沟工艺设计计算及说明

氧化沟工艺设计计算及说明

氧化沟工艺设计计算书1.项目概况处理水量Q=5万m 3/d ;进水水质BOD 为150mg/L ;COD 为300 mg/L ;SS 为250mg/L ;L mg TN L mg N NH /30,/304==-+。

处理要求出水达到国家一级(B)排放标准即 COD≤60 mg/L ,BOD 5≤20 mg/L ,SS ≤20mg/L ,L mg TN L mg N NH /20,/84≤≤-+。

2. 方案对比三种方案优缺点比较如下表:本方案设计采用氧化沟,氧化沟分两座,每座处理水量Q=2.5万m3/d 。

下面是氧化沟工艺流程图。

氧化沟工艺流程图3. 设计计算3.1设计参数总污泥龄:20d MLSS=4000mg/L MLVSS/MLSS=0.7 MLVSS=2800mg/L污泥产率系数(VSS/BOD 5)Y=0.6kg /(kg.d ) 3.2 工艺计算 (1)好氧区容积计算出水中VSS=0.7SS=0.7×20=14mg/LVSS 所需BOD=1.42×14(排放污泥中VSS 所需得BOD 通常为VSS 的1.42倍) 出水悬浮固体BOD 5=0.7×20×1.42×(1-e -0.23×5)=13.6 mg/ L 出水中溶解性Se=BOD 5=20-13.6 mg/ L=6.4mg/L%.795%100150.461505=⨯-=去除率BOD好氧区容积:内源代谢系数Kd=0.0535.77467.04000)2005.01()4.6150(25000206.0)1()(m X c Kd c Se So YQ V V =⨯⨯⨯+-⨯⨯⨯=+-=θθ好氧停留时间 h h Q V t 7.4424250007746.5=⨯==好氧 校核:)/(17.05.77467.0400025000)4.6150()(5d kgMLVSS kgBOD V X Se So Q M F V ⋅=⨯⨯⨯--=好氧 满足脱氮除磷的要求。

氧化沟(改)计算

氧化沟(改)计算

1. 基 本 数 据1.1 流 量日 平 均 流 量 Qav =cu m / d 日 最 小 流 量 Qmin = cu m / d日 变 化 系 数 Kz = 日 最 大 流 量 Qmax = #NAME?cu m / d设 计 日 流 量 Q = 90000cu m / d1.3 参 数 选 取1.3.1 运 行 参 数△ 生 物 池 中 活 性 污 泥 浓 度 Xvss = △挥发活性组份比例 fvss = ( 一 般 0.7 ~ 0.8 )△ 混 合 液 回 流 比 R =1.3.2 碳 氧 化 工 艺 参 数△ 污 泥 理 论 产 泥 系 数 Y = △20℃ 时污泥自身氧化系数 Kd20 =( 范 围 0.04 ~ 0.075 , 一 般 0.06 )1.3.3 硝 化 工 艺 参 数△ 好 氧 池 中 溶 解 氧 浓 度 DO = △ NH4-N 的 饱 和 常 数 12 ℃ KN = 10^( 0.051 * T - 1.158 ) = △ 硝 化 菌 理 论 产 率 系 数 Yn = △20℃时硝化菌自身氧化系数 KdN20 = △ 氧 的 饱 和 常 数 Ko =1.3.4 反 硝 化 工 艺 参 数△ 在 20℃ 时 的 反 硝 化 速 率△ 厌 氧 池 溶 解 氧 浓 度 DOn =1.3.5 除 磷 工 艺 参 数 △氧 化 沟 生 物 处 理 池 设 计 计 算2 好 氧 池 设 计 计 算 ( 按 低 温 情 况 计 算 )2.1 参 数 修 正污 水 的 最 低 平 均 水 温 Tmin =12 ℃△ 污 泥 自 身 氧 化 系 数 Kd 修 正Kd(Tmin) = Kd20 * 1.05 ^ ( Tmin - 20) = 0.041 1 / d△ 硝 化 菌 自 身 氧 化 系 数 Kd N 修 正KdN(Tmin) = KdN20 * 1.05 ^ ( Tmin - 20) = 0.027 1 / d2.2 选取设计泥龄 tc =15d△ BOD5 表 观 产 率 系 数Yobs = Y / ( 1 + Kd * tc )=0.37 mgVSS / mgBOD52.3 排泥量计算△ 污 泥 有 机 部 分 产 量 X B,H = Yobs * ( So - Se ) * Q / 1000 =4698.12 kg / d△ 污 泥 惰 性 部 分 产 量 X I = SSo * Q * (1-f V) / 1000 =13500.00 kg / d△ 污 泥 硝 化 部 分 产 量 X B,A=Yn*(NH0-Nhe)*Q/(1000*(1+tc*KdN))=240.0 kg / d△ 内 源 衰 减 残 留 物 量 X B = f P * Yd * tc * X B,H =572.38 kg / d△ 剩 余 活 性 污 泥 总 量 X T = X I + X B,H + X B,A + X B =19.01△ 活 性 污 泥 中 MLVSS 比 例 fvss= ( X B,H + X B,A + X B ) / X T =28.99%△ 活 性 污 泥 产 率= X T / [ Q * ( So - Se ) / 1000 ] = 1.51kgSS/kgBOD2.3 好氧池容积计算△ 设 计 好 氧 池 中 污 泥 浓 度(MLSS) =5000mg / l△ 设 计 好 氧 池 中 活 性 污 泥 浓 度(MLVSS) =△ 好 氧 池 总 池 容 V =(tc*X T) / (MLSS/1000) =3△ 好 氧 池 水 力 停 留 时 间 HRT = 24 * V/Q =15.21hr =0.63d2.4 参数校核△ MLSS 污泥负荷 = Q * ( So ) / ( V * MLSS ) =0.047kgBOD/kgMLSS△ MLVSS 污泥负荷 = Q * (So) /(V * MLSS * fvss) =0.163kgBOD/kgMLVSS2.5 污 泥 体 积取 活 性 污 泥 含 水 率 p =99.3%污 泥 浓 度 Nw =7.0kg/m3污 泥 体 积 Vs = W/Nw =2716m3/d =53.88l/s (14 hr)99.20%2376.3169.7447.194.00%316.822.63 6.380.00%95.1 6.79 1.9每公斤干泥加混凝剂 PAM0.004kgPAM/kg干泥加药量76.0kg/d = 5.432kg/h2.6 生物池容积计算2.6.1 Carrousel 氧化沟 2.6.2 Orbal氧化沟设计水深 H1=4m 超高 H2= 1.0m设计水深 H1=系列数 S=3系列系列数 S=单渠道宽度 B1 =9.0m单渠道宽度 B1 =单系列好氧区面积A1=4752.6m2单池好氧区面积A1=单系列好氧区长度L1=528.1m单系列好氧区长度L1=曲线段长度 L2=84.8m曲线段长度 L2=直线段长度 L3=443.25m直线段长度 L3=单池分格数 N =4格单池分格数 N =单池直线段长度 L4=110.8m 取 L4=113.5m单池直线段长度 L4=设计氧化沟超高 H2= 1.0m设计氧化沟超高 H2=氧化沟总高 H=5m氧化沟总高 H=设纵向总池壁厚 B2=2m设纵向总池壁厚 B2=设横向总池壁厚 B3= 1.5m设横向总池壁厚 B3=氧化沟尺寸 L×W×H=3-142×38×5m氧化沟尺寸 L×W×H=有效容积 W'=19397.6m3 总有效容积V'=58192.88m3有效容积 W'=单池总容积 W=24247.04m3 总池容积V=72741.11m3池总容积 W=厌氧池尺寸 L×W×H=3-38×9×5m2.7 二沉池辐流式沉淀池设计水深 H1=系列数 S=设计有效水深 H1= 3.5m单渠道宽度 B1 =设计超高 H2=0.5m单池好氧区面积A1=设计缓冲层高度 H3=0.5m单系列好氧区长度L1=设计污泥层高度 H4=0.5m曲线段长度 L2=沉淀池池边高度 H=5m直线段长度 L3=设计沉淀池直径 D=35m单池分格数 N =设计初沉池数量6座单池直线段长度 L4=平均流量时表面负荷q=0.65m3/m2.h设计规范 0.5~0.75 m3/m2.h设计氧化沟超高 H2=平均流量时停留时间t= 5.39h设计规范 1.5~2.5 h氧化沟总高 H=二沉池尺寸3-Φ35×5.0m设纵向总池壁厚 B2=峰值流量时表面负荷q=#NAME?m3/m2.h设横向总池壁厚 B3=峰值流量时停留时间t=#NAME?h氧化沟尺寸 L×W×H=固体负荷校核 q2' =155.9kg/m3.d设计规范 <150 kg/m2.d有效容积 W'=池总容积 W=3 厌 氧 池 设 计 计 算△ 设 计 厌 氧 池 个 数 N =3个△ 按水力停留时间1小时设计厌氧池 V =1250m3/座4 厌 氧 池 设 计 计 算 ( 按 低 温 情 况 计 算 )4.1 参 数 修 正4.2 厌 氧 区 容 积 Vp = Q * tan / 24 =厌氧区名义水力停留时间 tan =4.3 厌氧区实际水力停留时间 tant = 24 * Vp / [(1+r) * Q] =0.4 hr( 满 足 要 求 )4.4 厌 氧 区 释 放 出PO4-P 浓 度 CP1△ PO4-P 释 放 速 率 系 数 kp = 0.0236 * So - 0.036 = 3.50mgP/gMLSS*hr △ CP1 = CPo + kp * tant * X / 1000 =#REF! mg / l4.5 好 氧 区 出 水 PO4-P 浓 度 CP2△ PO4-P 吸 收 速 率 系 数 ku , 取0.5 l / gMLSS*hr△ 好 氧 区 实 际 水 力 停 留 时 间 t2 = t / (1 + r + R) =#REF! hr△ 由 公 式 ln( Cp1 / Cp2) = ku * X * t2 / 1000得 : Cp2 = Cp1 * exp( - ku * X * t2 /1000) =#REF! mg/l4.6 校 核 好 氧 区 出 水 总 磷 浓 度 TPeTPe = ( CP2 + 0.055 ) / 0.671 =#REF! mg/l4.7 校 核 污 泥 含 磷 率 PxPx = ( TPo - TPe ) * Q / ( W * 1000) =#REF!基 本 满 足 要 求5 需 氧 量 计 算5.1 有 机 物 碳 化 需 氧 量 O2-cO2-c = 1.47 * Q * (So-Se) / 1000 - 1.42*(X B,H+X B) =11037.9 kgO2 / d式 中:<> BODu/BOD5 = 1.47<> 理 论 上 微 生 物 自 身 氧 化 的 好 氧 量 1.42 kgO2/kgVSS5.2 硝 化 需 氧 量 O2-nO2-n = 4.6 * [ Q * ( TNo - Ne ) - 0.12 * ( X B,H + X B ) ] =15658.6 kgO2 / d式 中:<> 微 生 物 细 胞 中 N 的 比 例 为 14 / 113 = 0.12 kgN / kgVSS5.3 反 硝 化 可 利 用 氧 O2-dnO2-dn = 2.85 * [ Q * ( TNo - TNe ) / 1000 - 0.12*W1*fvss ] =0.000 kgO2 / d( TNe 使 用 要 求 值30mg/l )5.4 总 需 氧 量 O2 = O2_c + O2_n - O2_dn =26696.5kgO2/d =26.7 tO2/d5.5 去 除 每 公 斤 BOD5 的 需 氧 量 = O2 * 1000 / [ Q * ( So - Se )] = 2.12kgO2/kgBOD6 曝 气 器 计 算6.1 基 础 数 据6.1.1 实际传氧速率N (AOR)26696.5kgO2/d =1112.4kgO2/h6.1.2 污水剩余DO 值 (DO)2.0mg/L 6.1.3 标准状态下清水中饱和溶解氧 (C S ,20度)9.17mg/L 6.1.4 当地海拔高度600m6.1.5 当地大气压P a (kPa) (见给排水手册一P81页)9.6mH2O =94.08Kpa6.1.6 污水温度(T)高温24度低温6.1.7 T 温度时清水饱和溶解氧 (简明排水设计手册P6页)8.53mg/L6.1.8 T 、P a 时清水饱和溶解氧 (C SW )7.926.2 计 算N 0/(P×η)η)-C 0)×1.024(T -20)/C0=f×N0/(0.3E A )E A )/79+21(1-E A(O t /42+P b /2P a )8.接触池8.1池容取接触时间 t' =30min接触池容积 V' =1875m3取接触池数 n' =2座取接触池深 h = 5.0m取单接触池宽W =10m设计单接触池长L =23.4m 取 L=度 接触池实际容积 V =2000m3mg/L8.2 出水加氯量取每方水加液氯5g Cl2/t水出水加氯量为450kg Cl2/d =N0×(β。

(完整版)卡鲁塞尔氧化沟设计计算

(完整版)卡鲁塞尔氧化沟设计计算

卡罗塞尔氧化沟.1设计参数1) 氧化沟座数:1座2) 氧化沟设计流量:max Q =183 L/s3) 进水水质:5BOD =220 mg/LCOD=300 mg/LSS=300 mg/L3NH -N ≤35 mg/LT-P=4 mg/LT-N=30 mg/L4) 出水水质:5BOD ≤20 mg/LCOD ≤60 mg/LSS ≤20 mg/L3NH -N ≤8 mg/LT-P ≤1 mg/LT-N ≤20 mg/L5) 最不利温度:T= 100C6) 污泥停留时间:d Q c =7) MLSS=8) f=9) 反应池中的溶解氧浓度:10) 氧的半速常数:11) 污泥负荷:12) 水流速:.2计算.2.1碱度平衡计算(1)由于设计的出水BOD ,为20mg/L ,处理水中非溶解性5BOD ,值可用下列公式求得,此公式仅适用于氧化沟。

f BOD 5 = 0.7)e 1(42.15-0.23e ⨯-⨯⨯⨯C= 0.7 ⨯ 20 ⨯1.42 (5-0.23e 1⨯-)=13.6 m g / L式中 e C —出水中5BOD 的浓度 mg/L因此,处理水中溶解性 5BOD 为: 20-13.6=6.4 mg/L(2)采用污泥龄20d ,则日产泥量据公式/921kg = d式中 Q —氧化沟设计流量 m ³/s ;a---污泥增长系数,一般为0.5~0.7,这里取0.6;b---污泥自身氧化率,一般为0.04~0.1,这里取0.06;t L ---)(e 0L L -去除的5BOD 浓度 mg/L ;m t --污泥龄 d ;0L ---进水5BOD 浓度 mg/L ;e L ---出水溶解性5BOD 浓度 mg/L ;一般情况下,设其中有12.4%为氮,近似等于TKN 中用于合成部分为: 0.124⨯921=114.22 kg/d即:TKN 中有2.72.158********.114=⨯mg/L 用于合成。

二沉池计算案例

二沉池计算案例

二沉池计算案例一、设计水量本阶段的设计规模为2万m 3/d ,为便于检修,设计2座二沉池,二沉池按最大水力负荷计算。

总变化系数为K 总=1.49,最大小时流量Q=20000×K 总/24=1242 m 3/h (345 L/s)表面负荷q=1.00 m 3/ m 2.h 。

配水井及回流污泥泵房设计为1口,规模为2万m 3/d ,回流比R=150%。

二、沉淀部分水面面积、池子直径:单个沉淀池水面面积为;F=Q/nq=1242/2/1=621 m 2。

池子直径:设计取28m 直径。

三、实际水面面积和实际表面负荷单个沉淀池实际水面面积为:F=πD 2/4=3.1416×282/4=615.8 m 2。

实际表面负荷为:q’=Q/nF =1242/2/615.8=1.01 m 3/ m 2.h 。

四、校核堰口负荷设计采用双堰出水:外堰直径28-2×0.4=27.2m ,周长=πD=3.1416×27.2m=85.45m内堰直径28-2×1.04=25.92m周长=πD=3.1416×25.92m=81.43m堰口总长L=85.45+81.43=166.88m堰口负荷:q”= Q/nL =345/2/166.88=1.03 L/m.s 。

五、沉淀部分有效水深与容积属延时曝气的氧化沟系统二沉池沉淀时间一般为1.5~2.5h 。

本设计沉淀时间:t=2 h 。

m FD 12.281416.362144=⨯==π沉淀部分有效水深为:h2=q’t=1.01×2=2.02m。

本设计取沉淀池半径中心处的有效水深为:h2= 2.1 m。

单个沉淀池有效面积为:S=单个沉淀池实际面积-中心筒面积=608 m2单个沉淀池有效容积为:V=单个沉淀池有效面积×有效水深=608×2.1=1277m3。

六、污泥部分所需容积和污泥层高度污泥部分设计含水率99.2%。

奥贝尔氧化沟设计计算

奥贝尔氧化沟设计计算

4.4.2奥贝尔氧化沟的设计4.4.2.1基本设计参数设计污泥龄θc :由于点源曝气,氧化沟中存在缺氧区域,在奥贝尔氧化沟的外沟,由于亏氧,缺氧区更大,因此,当只要求硝化时,泥龄应取10d ,再加上除磷要求的厌氧区,以及增加污泥同步稳定的要求,氧化沟总泥龄取20d 。

θc =20d污泥产率系数Y :()()()⎥⎦⎤⎢⎣⎡∙+∙⨯⨯--+=--151500072.117.01072.175.017.02.016.075.0T C T C S X K Y θθ ()()()⎥⎦⎤⎢⎣⎡∙⨯+∙⨯⨯⨯--+=--151********.12017.01072.12075.017.02.011501606.075.09.0 =0.87 KgSS/kgBOD查表知,混合液悬浮固体浓度 (MLSS )X = 4500 mg/L 。

由MLVSS/MLSS=0.75可知,混合挥发性悬浮固体浓度 (MLVSS )Xv = 3375 mg/L进水水质:BOD 5浓度S 0=160mg/l SS=160mg/l TN=32mg/l TP=3mg/l NH 3-N =20mg/l COD Cr =320mg/l 最低水温10摄氏度, 最高水温25摄氏度出水水质: BOD 5浓度S e =10mg/l SS=10mg/l TN=15mg/l TP=0.5mg/l NH 3-N =5mg/l COD Cr =50mg/l内源呼吸系数K d =0.055,200C 时脱氮率q dn =0.035kg(还原的NO 3—N/(kgMLVSS •d)4.4.2.2 去除BOD 计算1.氧化沟中BOD 5浓度S)1(42.1523.0⨯--⨯⨯⨯-=e TSS TSSVSS S S e = 10-1.42×0.7×10× (523.01⨯--e )=3.23mg/l2.好氧区容积V 1()()30max 121361)20055.01(375.300323.016.087.02055500)1(m K X S S Y Q V c d v c =⨯+⨯-⨯⨯⨯=+-=θθ3.好氧区水力停留时间t 1385.05550021361max 11===Q V t d=9.24h 4.剩余污泥量ΔX剩余污泥量为:dkg K YS S Q X cd /59.360420055.0187.0)00323.016.0(555001)(0=⨯+⨯-⨯=+-=∆θ每去除1kgBOD 5产生的干污泥量)/(433.0)01.016.0(5550059.3604)(50max kgBOD kgDS S S Q X e =-=-∆4.4.2.3 脱氮量计算(a )氧化沟的氨氮量氧化沟产生的剩余污泥中含氮率为12.4%,则用于生物合成的总氮量为:l mg k S S Y N c d /1.520055.01)23.3160(55.0124.01)(124.000=⨯+-⨯⨯=+-⨯=θ需要氧化的氨氮量N 1=进水TN-出水NH 3-N-生物合成氮量N 0=32-5-5.1=21.9(mg/l )(a ) 脱氮量N r =进水总氮量TN-出水总氮量TN-生物合成所需的氮N o=32-15-5.1=11.9(mg/L )(c )脱氮所需容积V 2及停留时间t 2脱硝率 20)20()(08.1-⨯=T dn t dn q q10℃时 )]/([02.008.1035.052010d kgVSS kgBOD q dn ∙=⨯=- 脱氮所需容积4.9784337502.09.1155500max 2=⨯⨯==V dn r X q N Q V m 3 停留时间18.0555004.9784max 22===Q V t d=4.32h (b ) 氧化沟总容积V 及停留时间tV=V 1+V 2=21361+9784.4=31145.4m 3t=t 1+t 2=9.24+4.32=13.56 h 校核污泥负荷084.0375.34.3114516.055500Q =F 0max W =⨯⨯=V VX S kgBOD 5/Kg VSS ·d 规定氧化沟污泥负荷在0.05~0.1kgBOD 5/Kg VSS ·d ,故符合规范。

奥贝尔氧化沟设计计算

奥贝尔氧化沟设计计算

4.4.2奥贝尔氧化沟的设计4.4.2.1基本设计参数设计污泥龄θc :由于点源曝气,氧化沟中存在缺氧区域,在奥贝尔氧化沟的外沟,由于亏氧,缺氧区更大,因此,当只要求硝化时,泥龄应取10d ,再加上除磷要求的厌氧区,以及增加污泥同步稳定的要求,氧化沟总泥龄取20d 。

θc =20d污泥产率系数Y :()()()⎥⎦⎤⎢⎣⎡∙+∙⨯⨯--+=--151500072.117.01072.175.017.02.016.075.0T C T C S X K Y θθ ()()()⎥⎦⎤⎢⎣⎡∙⨯+∙⨯⨯⨯--+=--151********.12017.01072.12075.017.02.011501606.075.09.0 =0.87 KgSS/kgBOD查表知,混合液悬浮固体浓度 (MLSS )X = 4500 mg/L 。

由MLVSS/MLSS=0.75可知,混合挥发性悬浮固体浓度 (MLVSS )Xv = 3375 mg/L进水水质:BOD 5浓度S 0=160mg/l SS=160mg/l TN=32mg/l TP=3mg/l NH 3-N =20mg/l COD Cr =320mg/l 最低水温10摄氏度, 最高水温25摄氏度出水水质: BOD 5浓度S e =10mg/l SS=10mg/l TN=15mg/l TP=0.5mg/l NH 3-N =5mg/l COD Cr =50mg/l内源呼吸系数K d =0.055,200C 时脱氮率q dn =0.035kg(还原的NO 3—N/(kgMLVSS •d)4.4.2.2 去除BOD 计算1.氧化沟中BOD 5浓度S)1(42.1523.0⨯--⨯⨯⨯-=e TSS TSSVSS S S e = 10-1.42×0.7×10× (523.01⨯--e )=3.23mg/l2.好氧区容积V 1()()30max 121361)20055.01(375.300323.016.087.02055500)1(m K X S S Y Q V c d v c =⨯+⨯-⨯⨯⨯=+-=θθ3.好氧区水力停留时间t 1385.05550021361max 11===Q V t d=9.24h 4.剩余污泥量ΔX剩余污泥量为:dkg K YS S Q X cd /59.360420055.0187.0)00323.016.0(555001)(0=⨯+⨯-⨯=+-=∆θ每去除1kgBOD 5产生的干污泥量)/(433.0)01.016.0(5550059.3604)(50max kgBOD kgDS S S Q X e =-=-∆4.4.2.3 脱氮量计算(a )氧化沟的氨氮量氧化沟产生的剩余污泥中含氮率为12.4%,则用于生物合成的总氮量为:l mg k S S Y N c d /1.520055.01)23.3160(55.0124.01)(124.000=⨯+-⨯⨯=+-⨯=θ需要氧化的氨氮量N 1=进水TN-出水NH 3-N-生物合成氮量N 0=32-5-5.1=21.9(mg/l )(a ) 脱氮量N r =进水总氮量TN-出水总氮量TN-生物合成所需的氮N o=32-15-5.1=11.9(mg/L )(c )脱氮所需容积V 2及停留时间t 2脱硝率 20)20()(08.1-⨯=T dn t dn q q10℃时 )]/([02.008.1035.052010d kgVSS kgBOD q dn ∙=⨯=- 脱氮所需容积4.9784337502.09.1155500max 2=⨯⨯==V dn r X q N Q V m 3 停留时间18.0555004.9784max 22===Q V t d=4.32h (b ) 氧化沟总容积V 及停留时间tV=V 1+V 2=21361+9784.4=31145.4m 3t=t 1+t 2=9.24+4.32=13.56 h 校核污泥负荷084.0375.34.3114516.055500Q =F 0max W =⨯⨯=V VX S kgBOD 5/Kg VSS ·d 规定氧化沟污泥负荷在0.05~0.1kgBOD 5/Kg VSS ·d ,故符合规范。

氧化沟工艺处理城市污水说明计算书(DOC)

氧化沟工艺处理城市污水说明计算书(DOC)

氧化沟工艺处理城市污水摘要本次毕业设计的题目为某污水处理厂设计——氧化沟工艺。

主要任务是工艺流程选择及构筑物设计和计算。

其中初步设计要完成设计说明书一份、污水处理厂总平面布置图一张、高程图一张,流程图一张,主要设备图一张,管道布置图一张;单项处理构筑物施工图设计中,主要是完成氧化沟平面图和剖面图。

该污水处理厂工程,总规模达到8万吨/日。

该污水厂的污水处理流程为:从泵房到沉砂池,进入氧化沟,二沉池,最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入消化池,经过消化的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。

出水执行国家污水综合排放标准(GB8978-1996)二级标准。

关键词:氧化沟工艺;消化池第一章设计概论1.1设计依据和设计任务1.1.1 原始依据1.设计题目:2.设计基础资料:1.2进出水水质处理水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)二级标准。

第二章工艺流程的确定2.2 污水处理中生物方法的比较2.2.1SBR工艺和氧化沟工艺的比较如前所述,SBR工艺和氧化沟工艺都比较适合于中小型污水厂,如果设计管理的好,都可以取得比较好的除磷脱氮效果。

但是这两种工艺又各有优缺点,分别适用于不同的情况。

a)SBR工艺由于采用合建式,不需要设置二沉地,同时由于采用微孔曝气,可以采用的水深一般为4~6m,比一般氧化沟的水深(3~4m)要深,因此在同样的负荷条件下,SBR工艺的占地面积小,如果污水处理厂所在地的征地费用比较高,对SBR 工艺有利。

b)SBR工艺中一个周期的沉淀时间是由活性污泥界面的沉速、MLSS浓度、水温等因素确定的,浑水时间是由滗水器的长度、上清液的滗除速率等因素决定的,对于一个固定的反应系统,沉淀时间和滗水时间的和基本上是固定的,一般都不应小于2小时,因此,每个周期的时间短,反应时间所占的比例就低,反应池的体积利用系数降低。

氧化沟设计

氧化沟设计

3.5曝气池(氧化沟) (1)设计说明拟用卡罗塞尔(Carrousel )2000型氧化沟,去除BOD5与COD 之外,还具备硝化和一定的脱氮除磷作用,使出水NH 3-N 低于排放标准。

(2)设计参数设计流量为75000m ³/d ,即868L/s;平行设计两座氧化沟,则每座流量为 37500m ³/d 进出水水质如下:项目 进水 出水 项目 进水 出水 BOD 5(mg/L) 200 ≤10 氨氮(mg/L) 25 ≤5 COD Cr (mg/L) 400 ≤40 总氮(mg/L) 30 ≤15 SS(mg/L)200≤10总磷(mg/L)5≤0.5T max =38℃;T min =3℃污泥产率系数Y=0.55; 污泥浓度(MLSS )X=4000mg/L ; f=MLSS/MLVSS=0.7,即挥发性污泥浓度(MLVSS )Xv=2800mg/L ; 污泥泥龄θc=30d ; 内源代谢系数K d =0.055; 座数:2座 (3)设计计算氧化沟出水溶解性BOD 5浓度S 。

为了保证沉淀出出水BOD 5浓度Se ≤10mg/L ,必须控制所含溶解性BOD 5浓度S 2,因为沉淀池出水中的VSS 也是构成BOD 浓度的一个组成部分。

1S -Se S =S 1为沉淀池出水中的VSS 所构成的BOD 浓度。

L mg e e TSS TSS VSSS /79.6)1(107.042.1)1()(42.15*23.05*23.01=-⨯⨯⨯=-⨯⨯⨯=--则氧化沟出水溶解性BOD 5为L mg /21.379.610S -Se S 1=-==1. 碱度校核LBOD S ALK /mg 62.7147.757.321.32001.047.1714.7150-5=⨯+-⨯+⨯-=++=)(产生碱度氧化反硝化产生碱度硝化消耗碱度原水碱度碱度其中需要氧化的氨氮量N 2:氧化沟产生的剩余污泥中含氮率为12.4%,则用于生物合成的总氮量为:)/(53.27500010006.1531124.0750001000124.0vss 0L mg X N =⨯⨯=⨯⨯=△需要氧化的氨氮量N 1=进水TKN-出水NH 3-N-生物合成所需要的氨氮(mg/L)47.172.53-5-25N 1==脱氮量N r =进水TKN-出水TN-生物合成所需要N(mg/L)47.72.53-15-25N r ==2. 计算硝化菌的生长速率μn ,硝化所需最小污泥平均停留时间θcm ,取最低温度为15℃,氧的半速常数KO2去2.0mg/L ,PH 取7.2考虑 μ因此,满足硝化最小污泥停留时间为θcm =1/μn =5.1d 。

氧化沟说明计算书2

氧化沟说明计算书2

水控设计说明书班级:姓名:学号:日期:目录1 粗格栅 (1)2 泵站 (3)3 细格栅 (3)4 沉砂池 (5)5 计量设备 (7)6 氧化沟 (8)7 二沉池的设计和计算 (11)8 回流污泥泵房 (12)9 接触消毒 (13)10剩余污泥泵房 (14)11污泥浓缩池 (15)12贮泥池 (16)13浓缩污泥提升泵房 (17)14污泥脱水间 (17)15污水厂总体布置 (18)16工程技术经济分析 (19)参考文献 (21)污水处理系统设计计算1 粗格栅设计说明:栅条的断面主要根据过栅流速确定,过栅流速一般为0.6~1.0m/s ,槽内流速0.5m/s 左右。

如果流速过大,不仅过栅水头损失增加,还可能将已截留在栅上的栅渣冲过格栅,如果流速过小,栅槽内将发生沉淀。

此外,在选择格栅断面尺寸时,应注意设计过流能力只为格栅生产厂商提供的最大过流能力的80%,以留有余地。

如前面所述,选用平面矩形格栅(三座) 计算草图3-1图3-1 格栅示意图1.1 格栅的间隙数量n取过栅流速0.9m/s, 格栅倾角α=60°,,栅条间距b=30 mm ,栅前水深0.6m120.46360)0.030.9max ×n=2(bhv)×(sin =×0.6 =26.6Q取n=27式中: Q max ­-最大设计流量,m 3/sa-格栅倾角 b-栅条间隙.m h-栅前水深,mv-污水流经格栅的速度,m/s1.2格栅的建筑宽度 B设计采用圆钢为栅条,即s = 0.01mB=S n-1+bn=0.01(27-1)+0.037=1.07m ()××21.3 过栅水头损失 栅条断面形状为圆形 21 h =(v /2g)s i na K 0.188m =ξ×式中:ξ-阻力系数,其值与栅条断面形状有关,圆形取1.79 k-格栅受污物堵塞时水头损失增大倍数,一般取3 1.4 栅后槽的总高度12h =h+h +h 总式中: h 2-栅前管道超高,取0.3米h =0.6+0.188+0.3=1.088m 总1.5 格栅的总建筑长度121L=L +L +1.0+0.5+H /t ga111-b L ==1.22m 2b t g a 式中: L 1—进水渐宽部位长度,mb 1—进水渠渠宽,取0.8米;a 1—进水渠渐宽部分展开角,20° L 2—出水管道渐窄部位长度,L 2= 0.5L 1=0.61m121L=L +L +1.0+0.5+H /t ga = 7.53m 1.5 每日栅渣量的计算工程格栅间隙为30mm ,取W 1=0.02m 3/103m 33max 13W=(m /d )0.463 =1.2 =1.6m /dv z q w k ×××××· 8640010000.05864001000式中:K Z —生活污水流量总变化系数,取1.2 因为每日栅渣量>0.2m3/d,宜采用机械清渣 1.6 清渣设备亚太环保公司的FH 型旋转式格栅除污机,2台,N=1.5KW 。

氧化沟——设计计算部分

氧化沟——设计计算部分
式中f—综合修正因子,f的计算公式如下:
式中C—曝气池中溶解氧浓度;
Csm—20℃,1大气压下氧的饱和度,9.17mg/L;
CS(T)—标准大气压下、T℃时清水中的饱和溶解氧浓度;
—污水传氧速率与清水传氧速率之比,取值范围0.5~0.95, ;
—污水中饱和溶解氧与清水中饱和溶解氧浓度之比,通常为0.9~0.97, ;
T3—去除BOD5产生的碱度, ;
T4—剩余碱度, 。
所以
3.7
为了使得沉淀池内水流更稳(如避免横向错流、异重流、出水束流等)、进出水配水更均匀、存排泥更方便,常采用幅流式二沉池。型式:周边进水,周边出水辐流式二沉池。
第二章
本工程以氧化沟法污水厂处理工艺为推荐方案。具体流程如下:
第三章
3.1
格栅用以截阻大块的呈悬浮或漂浮状态的污染物,是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。设为两座。
参数选择:
污水流量总变化系数为Kz=1.2
Qmax=50000×1.2/2=30000m3/d=1250m3/h=0.3472m3/s
3.5
沉砂池后端设置配水井,污水进入配水井向氧化沟配水,同时回流污泥液经配水井向反应区分配。
最大水流量为Qmax=50000×1.2=60000m3/d,设停留时间为t=2min,则配水井总容积为
m3
取V=84m3
设置两个配水井,每个配水井容积为42m3,取水深为3.5m,则面积A为
m2
设置圆形配水井,直径D为
BOD5
COD
SS
TN
NH3-N
单位
mg/l
mg/l
mg/l
mg/l
mg/l
数值
150

污泥处理系统设计计算

污泥处理系统设计计算

污泥处理系统污泥浓缩池采用两座辐流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。

.1 要求:a 连续流重力浓缩池可采用沉淀池形式,一般为竖流式或辐流式;b 浓缩时间一般采用12—16h 进行核算,不宜过长c 活性污泥含水率一般为99.2%—99.6%,浓缩后污泥含水率97%-98%d 污泥固体负荷采用20—30kg/d m ⋅2e 浓缩池的有效水深一般采用4mf 浓缩池的上清液应重新回流到污水处理系统;g 池子直径与有效水深之比不大于3,池子直径不宜大于8m ,一般为4—7m h 浮渣挡板高出水面0.1—0.15m ,淹没深度为0.3-0.4mi 采用栅条浓缩机时,外缘线速度一般为1~2㎡/min ,底坡不小于0.5;j 无刮泥设备时,污泥是斜壁与水平面形成的家教不小于50度k 沉淀部分上升流速一般不大于0.1mm/sl 采用定期排泥时,两次排泥间隔一般可采用8h.2 设计参数污泥初始含水率%4.99为浓缩时间采用h 14浓缩池有效水深采用m 4浓缩后污泥含水率%97.3 计算.3.1 浓缩池的直径浓缩池面积:MX M Qc A ∆==式中: Q —剩余污泥量,;m ³/dc —污泥固体浓度,g/lM —浓缩池污泥固体通量,kg/(㎡ /d)ΔX —剩余活性污泥量 ,kg/dA=2269/45=50.42㎡采用两个重力浓缩池,每个池子的面积为A/2=25.21㎡污泥浓缩池直径πAD 4==6m.3.2 泥斗尺寸浓缩后的污泥体积为46%971%)4.991(9.2261)1(21=--=--=P P Q V w m ³/d 'V =V/2=46/2=23m ³/d两次排泥时间间隔取8h则贮泥区所需容积 24'82V V ==7.7 m ³ 令m r m r 1,221==污泥斗高度021560tan )(h r r -==1.73m ()3222121537.123m r r r r h V =++=π沉淀池坡度设为i=0.06 06.0)23(06.0)(06.0h 14=-=-=r R m故池底可贮泥容积2.119.1)(3212144≈=++=R R r r h V πm ³ 因此总的贮泥容积43V V V +==12.7+1.2≈14 m ³.3.3 浓缩池的总高度取超高 1h =0.3m ,缓冲层高3h =0.3m ,则总高 H=54321h h h h h ++++=0.3+4+0.3+0.06+1.73=6.39m ≈6.4m贮泥池及提升泵.1 贮泥池的作用剩余污泥经浓缩后进入贮泥池,主要作用为:调节污泥量;药剂投加池预加热池.2 设计参数进泥量:污泥经浓缩池,含水率为2P =97%的污泥W =463md设贮泥池:1座,贮泥时间:T =0.5d=12h.3 设计计算池容为V=WT =46⨯0.5=233m贮泥池尺寸(将贮泥池设计为正方形形): L B H ⨯⨯=3×3×3m ,有效池容为V=273m污泥提升泵将贮泥池的污泥提升至污泥脱水间。

氧化沟设计计算设计共78页文档

氧化沟设计计算设计共78页文档

目录第1章设计概论 (1)1.1设计依据和设计任务 (1)1.1.1设计题目 (1)1.1.2设计任务 (1)1.1.3设计(研究)内容和基本要求 (2)1.1.4设计原始资料 (3)1.2设计水量的计算 (4)1.2.1城市平均日污水量 (4)1.2.2城市平均日公共建筑污水量 (5)1.2.3工业废水量 (5)1.2.4混合污水量 (5)1.3设计水质 (6)1.3.1进水水质 (6)1.3.2排水水质 (6)第2章工艺流程的确定 (6)2.1污水处理中生物方法的比较 (6)2.1.1适用于大中型污水处理厂脱氮除磷工艺 (6)2.1.2生物处理工艺的选择 (9)2.2工艺流程的确定 (10)2.3对各级处理的出水水质估算 (11)第3章一级处理构筑物 (11)3.1格栅 (11)3.1.1格栅的设计 (12)3.1.2设计参数 (12)3.1.3中格栅设计计算 (13)3.1.4细格栅设计计算 (15)3.2提升泵站 (15)3.2.1 选泵 (15)3.2.2 泵房布置 (17)3.3 曝气沉砂池 (18)3.3.1 沉砂池概述 (18)3.3.2 设计概述 (18)3.3.3 曝气沉砂池设计计算 (19)3.3.4曝气沉砂池曝气计算 (21)3.4初沉池设计计算 (21)3.4.1设计参数 (21)3.4.2池体设计计算 (22)3.4.3进水集配水井计算 (23)3.4.4出水溢流堰的设计 (24)3.4.5出水挡渣板设计计算 (25)第4章二级处理构筑物 (25)4.1厌氧池+DE型氧化沟工艺计算 (26)4.1.1设计参数 (26)4.1.2厌氧池计算 (26)4.1.3氧化沟设计 (27)4.1.4进出水系统计算 (29)4.1.5剩余污泥量计算 (30)4.1.6需氧量计算 (30)4.1.7供气量 (31)4.2二沉池 (31)4.2.1设计要求 (32)4.2.2设计计算 (33)4.2.3二沉池进水部分计算 (35)4.2.4出水溢流堰的设计 (36)4.2.5出水挡渣板设计计算 (37)第5章深度处理 (37)5.1深度处理工艺流程 (37)5.2深度处理泵房 (37)5.3机械絮凝池的设计计算 (37)5.3.1设计依据 (37)5.3.2设计参数 (38)5.3.3絮凝池平面尺寸计算 (38)5.3.4絮凝池搅拌设备计算 (39)5.4斜管沉淀池的设计计算 (41)5.4.1设计参数 (41)5.4.2平面尺寸计算 (42)5.4.3沉淀池进水设计计算 (42)5.4.4沉淀池集水系统设计计算 (43)5.4.5沉淀池排泥系统设计计算 (44)5.4.6沉淀池校核 (44)5.5 过滤 (45)5.5.1 池型选择 (45)5.5.2 V型滤池特点及设计参数 (45)5.5.3V型滤池设计计算 (45)5.6消毒设施计算 (51)5.6.1消毒剂选择 (51)5.6.2消毒剂的投加 (52)5.6.3平流式接触消毒池 (52)5.7 计量槽设计 (54)第6章污泥处理系统 (55)6.1浓缩池设计 (55)6.1.1 浓缩池选型 (55)6.1.2 设计参数 (55)6.1.3设计计算 (55)6.2污泥脱水 (58)6.2.1脱水后污泥量 (58)6.2.2带式压滤机的选择 (58)第7章总体布置及高程水力计算 (58)7.1 污水厂的平面布置 (59)7.1.1 污水厂平面布置原则 (59)7.1.2 污水厂的平面布置 (59)7.2 污水厂高程布置 (62)7.2.1 高程布置要求 (62)7.2.2 高程设计计算 (63)第8章供电仪表与供热系统设计 (67)8.1 变配电系统 (67)8.2 监测仪表的设计 (68)8.2.1 设计原则 (68)8.2.2 检测内容 (68)8.3 供热系统的设计 (68)第9章劳动定员 (68)9.1 定员原则 (69)9.2 污水厂定员 (69)第10章工程概预算及运行管理 (69)10.1 工程概算 (69)10.2 安全措施 (71)10.3 污水厂运行管理 (71)10.4 污水厂运行中注意事项 (71)致谢 (71)参考资料 (72)第1章设计概论1.1设计依据和设计任务1.1.1设计题目上海曲阳污水处理厂工程设计1.1.2设计任务根据上海市总体规划和所给的设计资料进行上海松江污水处理厂设计。

氧化沟设计说明书2

氧化沟设计说明书2

设计任务原始资料:一、自然条件1、气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。

2、水文:最高潮水位 6.48m(罗零高程,下同)高潮常水位 5.28m低潮常水位 2.72m二、城市污水排放现状1、污水水量(1)生活污水按人均生活污水排放量300L/人.d;(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;(4)处理厂处理系数按近期0.80,远期0.90考虑。

2、污水水质(1)活污水水质指标为COD cr60g/人.dBOD530g/人.d(2)工业污染源参照沿海开发区指标,拟定为:COD cr300mg/L;BOD5170mg/L(3)氨氮根据经验确定为30md/L。

三、污水处理厂建设规模与处理目标1、建设规模该污水处理厂服务面积为10.09km2,近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。

处理目标2、根据该城镇环保规划,污水处理厂出水进入的水体水质按国家Ⅲ类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为COD cr:100mg/L;BOD5:30mg/L;SS :30mg/L ;NH3-N:10mg/L四、厂址及地貌2.标高:自然地面标高为5.20~6.50m,西侧市政道路中心标高6.67m,结合周围地形和厂区土方量平衡,确定污水处理厂平整后地面标高为6.85m。

3.进水点数据市政污水管网总进水口在距厂址的西北角18m处。

进水管管径为Dn1200mm,水面标高为2.30m,管顶标高为3.02m。

废水量及水质计算近期:生活废水产生量:6.0×104×0.3=1.8×104m 3/d处理厂进水量:Q =(1.8×104×1.15+1.5×104)×0.8=2.56×104m 3/d 水质计算L mg CODCODcrcr/242105.115.1108.1105.130015.1100.6604444=++=废水产生总量产生总量⨯⨯⨯⨯⨯⨯⨯⨯=L mg BOD BOD/129105.115.1108.1105.117015.1100.630444455==废水产生总量产生总量⨯+⨯⨯⨯⨯+⨯⨯⨯=远期:生活废水产生量:10×104×0.3=3×104m 3/d处理厂进水废水量:Q =(3×104×1.20+2.4×104)×0.9=5.4×104 m 3/d 水质计算L mg CODCODcrcr/240104.220.1103104.230020.1100.1604444=++=废水产生总量产生总量⨯⨯⨯⨯⨯⨯⨯⨯=L mg BOD BOD/128104.220.1103104.217020.1100.130444455==废水产生总量产生总量⨯+⨯⨯⨯⨯+⨯⨯⨯=取整后一期设计水量为Q=3×104m 3/d ,最大流量0.891212120.1110.89772.7 2.71.15 1.810 1.5102.7527/8640086400M AX Q K Q Q Q Q Q Q Q L s=∙+=∙+=∙+⎛⎫⨯⨯⨯=⨯+= ⎪⎝⎭水质L mg CODcr/242=,L mg BOD /1295=,+-4NH N 按经验取值为L mg /30。

氧化沟工艺污水厂设计计算书

氧化沟工艺污水厂设计计算书

氧化沟工艺污水厂设计计算书设计计算书第一章构筑物设计计算第一节污水处理系统 1 格栅与提升泵 1.1 格栅设计计算 1.1.1 主要设计参数日均污水量:Q d 为15万m 3/d总变化系数K Z :1.3(平均日流量大于1000L/s 的K Z 为1.3)设计流量Q max =K z Q d =1.3*15万m 3/d =2.26m 3/s 栅条宽度S=10mm=0.01m (矩形断面)栅条间隙宽度b=20mm=0.02m 过栅流速 v=0.8m/s 栅前水深 h=1.2m格栅倾角α=60。

(α∈(45。

~75。

) 超高h=0.3m 1.1.2 设计计算由水力最优断面公式Q=(B1^2*v )/2得到B1=2.38,h=B1/2=1.19实际中取1.2计算(1)栅条的间隙数(分两组):49 实际数目为n-1=48个考虑格栅倾角的经验系数(2)栅槽宽度栅槽宽度B 一般比格栅宽0.2~0.3m 也可以不加,此取加0.2 每组栅槽宽B’=()10.2S n bn -++=0.01*(49-1)+49*0.05+0.2=1.66m 设每组栅槽间隔0.10m ,总长度栅槽宽度:B=2B’+0.10=3.42m 进水渠道渐宽部分的长度L1设进水渠宽B 1=2.1m ,其渐宽部分展开角度1α=20o (进水渠道内的流速为2.26/(2.38*1.2)=0.791m/s ,在0.4~0.9范围内,符合要求)L1=(B1-B2)/2tan 1α =1.43m栅槽与出水渠道连接处的渐窄部分长度L2=L1/2=0.715mh 损=0.0815m (3)栅后槽总高度H因粗格栅间隙较大,水利损失很少,可忽略不计设栅前渠道超高h 2=0.3m H=h 损+h 1+h 2=1.2+0.3=1.58(m) (4)格栅总长度(L )L=L1+L2+0.5+1.0+1.30/tanα=1.43+0.715+0.5+1.0+(1.2+0.30)/tan60° =4.51m(5)每日栅渣量(W )污水流量总变化系数为1.3,则每日栅渣量W=(Q max *W1*86400)/(K z *1000)=3m 3/d >0.2m 3/d 式中:Kz --总变化系数,取1.3; W ——每日栅渣量, m 3/d ;1 W ——栅渣量333m /10m 污水一般为每3 1000m 污水产3.31m 3; W>0.2m 3/d 所以采用机械清渣。

氧化沟法城市污水处理(毕业设计)

氧化沟法城市污水处理(毕业设计)

氧化沟法城市污水处理本设计中需要处理的城市污水水质条件为:=470mg/L, =260mg/L, SS=200mg/L, -N=25mg/L处理规模: 25万/d处理后出水水质:<100mg/L, <30mg/L, SS<30mg/L, -N<8mg/L主要工艺流程图:主要构筑物作用:1.粗格栅: 粗格栅为污水厂第1道预处理设施,用于去除污水中大的悬浮物和漂浮物,保证后续处理设施的正常运行。

2.提升泵房: 提升泵房用于将入流污水提升至设计高度,以便自流进入各后续处理单元。

3.细格栅:细格栅可进一步去除污水中的悬浮物和漂浮物,保证后续设备和工艺的正常运行。

细格栅采用连续运行方式,栅渣由一台无轴螺旋压实输送机收集脱水后运往厂外填埋。

为了方便管理和维护,细格栅间与沉砂池合建,细格栅间出水直接进入沉砂池.4.旋流沉砂池: 沉砂池的作用是将污水中物理、化学及生物性质不同的无机颗粒和有机颗粒(悬浮物)进行分离,以便于分别最终处置5.选择池: 该选择池分为两格,进水与从二沉池回流的活性污泥快速混合、接触,利用活性污泥中的厌氧菌对污水中的溶解态和胶态可生物降解有机物进行吸附,促进该部分微生物的增长和繁殖,选择有利于沉淀的菌胶团微生物,抑制污泥膨胀。

同时,选择池出水采用可调堰板,作为后继的氧化沟的配水设施。

6.二沉池: 二沉池的作用是对氧化沟排出的混合液进行泥水分离,保证出水水质和回流污泥的浓度。

本设计中二沉池采用中心进水周边出水圆形辐流式沉淀池,连续运行,池内设单周边传动刮泥机7.接触池消毒池: 生物处理后的出水在此投加消毒剂,经充分混合和接触(维持足够的接触时间),杀灭出水中的致病菌,保证最终排水的卫生安全。

消毒剂采用液氯,由加氯间制备8.鼓风机房: 鼓风机房分为机房、进风室和值班室。

风机出口管上均设有止回阀、安全阀、消声器、压力开关和温度开关等。

鼓风机采用连续运行方式,并由PLC自动控制,PLC主控制器将保持系统主风管中的压力恒定,并通过调节各氧化沟的空气控制阀来调节溶解氧含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沉淀池工艺、水力计算
红色字体表示。立方米/小时 416源自67立方米/秒 0.116
416.67 mg/L mg/L
0.116
初沉池取1.0-2.0,二沉池0.8-1.5
F=Qmax/n/q D=(4*F/3.14)^0.5 则沉淀池实际表面积F平方米 q1=Qmax/n/F
二沉池固体负荷在120-150kg/(m
0.511
0.100
0.611
0.500
四、出水三角堰计算:
1、三角堰周长L 堰上负荷(立方米/米) 2、三角堰过堰流量Q3 3、每米有n个三角形出水堰 4、单个三角形(90度)出水堰流量 5、过堰水头h
72.220 5.769 0.116
5.0
0.000321 0.035
注:三角堰堰上水头 h 一般为堰口的 1/2 左右即可。
2
452.16
d) 取沉淀时间/h 储泥时间/h
3.00 2.00
没有考虑池底径向坡度
b=0.9*(q0)^0.4 q0=β 2*q2 0.75b
q0=(1.2-1.5)Q
0.139
1.25b H=H2+h1
Qmax/l
辐流沉淀池出水堰上负荷一般小于7.0
流量=Q3/L/n h=(流量/1.341)^(1/2.48)
辐流沉淀池工艺、水力计算
说明:在计算的过程中需要输入的数据采用红色字体表示。
一、基础数据:
1、设计水量Q 2、变化系数k 3、沉淀池个数n 4、单座沉淀池流量 5、氧化沟悬浮固体浓度X 6、二沉池底流生物固体浓度Xr 7、污泥回流比R 立方米/天
10000 1.45 1
10000
3000 10000 100%
2
1.00
416.67 23.04
24.00
0.92 132.70 2.76 769.23 1.70
0.50 0.50
5.47
三、出水集水槽计算:
可采用以下计算方式进行近似计算: 沉淀池出水采用薄壁三角堰自由跌落出流 1、槽宽b(m) 取整数 2、槽起点水深H1
0.409
0.500
0.306
3、槽终点水深H2 4、自由跌落取值h1 5、集水槽槽深H H取整
二、计算:(以二沉池为例)
1、表面负荷q立方米/平方米.小时 2、沉淀池表面积F平方米 3、沉淀池直径(内径)D/ m 4、沉淀池直径取整 D/ m 5、表面负荷核算q1 7、校核固体负荷kg/(m d) 8、沉淀部分有效水深 h2 9、污泥区的容积V 10、污泥区高度h4 11、取缓冲层高h3 12、沉淀池超高m 13、沉淀池高 h /m
相关文档
最新文档