二组分完全互溶系统的气—液平衡相图
完全互溶双液系气液平衡相图的绘制。实验报告
完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一在工作曲线上找出未知溶液的组成。
三.仪器与试剂沸点仪,阿贝折射仪,调压变压器,超级恒温水浴,温度测定仪,长短取样管。
环己烷物质的量分数x环己烷为0、0.2、0.4、0.6、0.8、1.0的环己烷-乙醇标准溶液,已知101.325kPa下,纯环己烷的沸点为80.1℃,乙醇的沸点为78.4℃。
25℃时,纯环己烷的折光率为1.4264,乙醇的折光率为1.3593。
四.实验步骤:1.环己烷-乙醇溶液折光率与组成工作曲线的测定调节恒温槽温度并使其稳定,阿贝折射仪上的温度稳定在某一定值,测量环己烷-乙醇标准溶液的折光率。
为了适应季节的变化,可选择若干温度测量,一般可选25℃、30℃、35℃三个温度。
2. 无水乙醇沸点的测定将干燥的沸点仪安装好。
从侧管加入约20mL无水乙醇于蒸馏瓶内,并使传感器(温度计)浸入液体内。
冷凝管接通冷凝水。
按恒流源操作使用说明,将稳流电源调至1.8-2.0A,使加热丝将液体加热至缓慢沸腾。
液体沸腾后,待测温温度计的读数稳定后应再维持3~5min以使体系达到平衡。
在这过程中,不时将小球中凝聚的液体倾入烧瓶。
记下温度计的读数,即为无水乙醇的沸点,同时记录大气压力。
3. 环己烷沸点的测定同2步操作,测定环己烷的沸点。
3.4 二组分系统固液平衡相图
t/℃
80
l(A+B)
•t
* B
液相线(凝固
60
点降低曲线)
• 40 t
* A
s(A)+l(A+B)
l (A+B)+sB
固相线
20 C
•E s(A)+s(B)
共晶线
D
(温度、三个相的
0.0 0.2 0.4 0.6 0.8 1.0 组成都不变)
邻硝基氯苯(A) xB
对硝基氯苯(B)
E点:液相能存在的
l+s s(A+B)
p/102kPa
t=60℃ l(A+B)
lg g(A+B)
d-香芹(A) wB
l-香芹(B)
图a 最高熔点液固相图
H2O(A)
yB
C2H5OH(B)
图b 最高恒沸点气液相图
2 液态完全互溶而固态完全不互溶
t/℃ 80
60
• 40 t
* A
20
C
•E
•t
* B
t/℃
•t
* A
p=101 325Pa
出的t-xB图,列表回答系统在5C,30C,50C时的
相数、相的聚集态及成分、各相的物质的量、系统所 在相区的条件自由度数。
解:
系统 相数
温度
t / C
5
2
相的聚集态 及成分
s (A), s (B)
30 2 s (B), l (A+B)
50 1
l (A+B)
各相的物量
ns(A) = 2 mol ns(B) = 8 mol
t
* B
l (A+B)
双液系的气—液平衡相图
实验五双液系的气—液平衡相图一、实验目的1、绘制在标准压力下乙醇-正丙醇体系的沸点组成图,并确定其恒沸点及恒沸组成;2、熟练掌握测定双组分液体沸点的方法及用折光率确定二组分物系组成的方法;3、掌握超级恒温槽、阿贝折射仪、气压计等仪器的使用方法。
二、实验原理1、相图任意两个在常温时为液态的物质混合起来组成的体系称为双液系。
两种溶液若能按任意比例进行溶解,称为完全互溶双液系,如环已烷-乙醇、正丙醇-乙醇体系都是完全互溶体系。
若只能在一定比例范围内溶解,称为部分互溶双液系,例苯-水体系。
在完全互溶双液系中,有一部分能形成理想液态混合物,如苯-甲苯系统,二者的行为均符合拉乌尔定律,但大部分双液系是非理想液态混合物,其行为与拉乌尔定律有偏差。
液体的沸点是指液体的蒸气压与外界压力相等时的温度。
在一定外压下,纯液体的沸点有其确定值,但双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关。
双液系两相平衡时的气相组成和液相组成并不相同。
通常用几何作图的方法将双液系的沸点对其气相和液相的组成作图,所得图形叫双液系的沸点T(或t)-组成(x)图,即T(或t)—x图。
它表明了沸点与液相组成和与之平衡的气相组成之间的关系。
在恒定压力下,二组分系统气液达到平衡时,其沸点-组成(t-x)图分三类:(1)混合液的沸点介于A、B二纯组分沸点之间。
这类双液系可用分馏法从溶液中分离出两个纯组分。
如苯-甲苯系统,此时混合物的行为符合拉乌尔定律或对拉乌尔定律的偏差不大。
如图5-1(a)所示。
(2)有最低恒沸点体系,如环已烷-乙醇体系,t—x图上有一个最低点,此点称最低恒沸点,在此点相互平衡的液相和气相具有相同的组成,此时混合物的行为对拉乌尔定律产生最大正偏差,如图5-1(b)所示。
对于这类的双液系,用分馏法不能从溶液中同时分离出两个纯组分。
(3)有最高恒沸点体系,如氯仿-丙酮体系,t—x图上有一个最高点,此点称最高恒沸点,在此点相互平衡的液相和气相具有相同的组成,此时混合物的行为对拉乌尔定律产生最大负偏差,如图5-1(c)所示。
物化实验 二组分体系气液平衡相图绘制
实验四二组分体系气液平衡相图一.实验目的1.了解液体沸点的测定方法。
2.掌握温度计的露茎校正方法。
3.掌握阿贝折光仪的原理及使用方法4.测定环己烷——乙醇二元系统气液平衡数据,给出沸点组成图。
二.实验原理常温下两液态物质混合构成的体系称为双液系。
若该双液系能按任意比例混合成为一相则称为完全互溶双液系。
若只能在一定比例范围内混合成为一相,其它比例范围内为两相则称部分互溶双液系。
环己烷——乙醇体系是完全互溶双液系。
液体的沸点是指液体的蒸气压和外压相等时的温度。
在一定外压下纯液体的沸点有确定值。
但是双液系沸点不仅与外压有关还随双液系的组成的改变而改变。
同时,在一般情况下双液系蒸馏时的气相组成和液相组成并不相同,因此原则上可通过反复蒸馏即精馏的方法分离双液系中的两液体。
但是当双液系具有恒沸点时,不能用单纯蒸馏的方法分离两液体。
如图4.1所示,本实验所用体系环己烷——乙醇的温度组成图是一个典型的具有最低恒沸点的相图。
若将组成在恒沸点处的体系蒸馏时气相组成和液相组成完全一样,因此在整个蒸馏过程中沸点也恒定不变,无法通过蒸馏的方法分离两组分。
恒沸点和恒沸混合物的组成还和外压有关,因此在不同外压条件下实验时所得双液系的相图也不尽相同,通常压力变化不大时恒沸点和恒沸混合物的组成的变化也不大,在未注明压力时一般均指外压为101.325kPa。
图4.1 具有最低恒沸点体系相图示意图本实验采用回流冷凝法测定环己烷——乙醇溶液在不同组成时的沸点。
由于液体沸腾时易发生过热现象,同时气相又易出现分馏效应,因此沸点的准确测定不易。
本实验所用的沸点仪如图 4.2所示,称为奥斯默沸点仪,它是一支带有回流冷凝管的长颈圆底烧瓶,加热用的电热丝直接浸在溶液中,这样可以减少溶液的过热现象和防止暴沸。
冷凝管的底部有一个小球泡用以收集冷凝下来的气相样品,由于分馏作用会使获得的气相样品的组成与气液平衡时的气相组成发生偏差,为此须在吹制沸点仪时尽量缩短小球泡与烧瓶间的距离以减少分馏作用。
二组分气液平衡相图
实验三二组份气液平衡相图一、目的1、用沸点仪测定和绘制乙醇和环己烷的二组份气液平衡相图;2、用阿贝折射仪测定液体的组成,了解液体折射率的测量原理及方法。
二、基本原理两种液态物质混合而成的二组份系统称为双液系。
二液体若能按任意比例互相溶解,称完全互溶双液系;若只能在一定比例范围内互相溶解,则称部分互溶双液系。
例如水-乙醇双液系、苯-甲苯双液系都是完全互溶双液系,苯-水双液系则是部分互溶双液系。
液体的沸点是指液体的蒸汽压和外压相等时的温度。
在一定的外压下,纯液体的沸点有确定的值,但对于双液系,沸点不仅与外压有关,而且还与双液系的组成有关,即和双液系中两种液体的相对含量有关。
通常用几何作图的方法将双液系的沸点对其气相、液相的组成作图,即得二组份气液平衡相图,它表明溶液在各种沸点的液相组成和与之成平衡的气相组成的关系。
在恒压下,二组份完全互溶双液系的沸点组成图可分为三类:(1)溶液的沸点介于两纯组份沸点之间,如苯和甲苯、水和甲醇等。
(2)溶液有最高沸点,如氯化氢与水、硝酸和水、丙酮与氯仿等。
(3)溶液有最低沸点,如水和乙醇、苯和乙醇、乙醇和环已烷等。
这三种类型的相图如下图所示图4-1 二组份气液平衡相图的三种类型图中、T 分别表示纯A 纯B 的沸点。
图中两曲线包围的区域为气-液两相平衡共存区。
它的上方G 代表气相区,下方L 为液相区。
C 和C'分别表示最高和最低恒沸物的沸点和组成。
T A *B *测绘这类相图时,要求同时测定溶液的沸点及气液平衡时两相的组成。
本实验用回流冷凝法测定环己烷-乙醇溶液在不同组成时的沸点。
所用沸点仪如图4-2所示,是一只带有回流冷凝管的长颈园底烧瓶,冷凝管底部有一球形小室D ,用以收集冷凝下来的气相样品,液相样品则通过烧瓶上的支管L 抽取,图中E是一根电热丝,直接浸在溶液中加热溶液。
溶液的组成用测定其折射率确定。
折射率是物质的一个特征数值。
溶液的折射率与组成有关,因此测得一系列已知浓度的溶液折射率,作出该溶液的折射率-浓度工作曲线,就可按内插法求得具有某折射率的溶液组成。
6-2二组分系统理想液态混合物的气—液平衡相图
(a)完全互溶
(b)完全不互溶 (c)部分互溶
液态完全互溶系统 p-x、t-x图
理想系统 真实系统
一般正偏差 最大正偏差
一般负偏差 最大负偏差
液态部分互溶系统 t-x图
气相组成介于两液相之间 气相组成位于两液相同侧
液态完全不互溶系统 t-x图
完全互溶系统:理想液态混合物系统气-液平衡相图
1. 压力—组成图
A、B形成理想液态混合物:均符合拉乌尔定律
A组分分压: pA pA* xA pA* 1 xB
B组分分压: pB pB* xB
pA,pB,p和xB均成
气相总压: p pA pB
直线关系
pA* 1 xB pB* xB
pA* pB* pA* xB
液相线:气相总压 p 与液相组成 xB 之间的关系曲线
nL
解: (1) 先确定系统点的总组成
xM
nB nA nB
6 46
0.6
利用
nG (xM yB ) nL (xB xM ) 即 nG (0.6 0.2) nL (0.7 0.6) (1)
nG nL n总 =4+6=10mol (2)
解得
nG =2mol
nL =8mol
(2) 气相中: 甲苯 nB nG yB 2 0.2 0.4mol 苯 nA nG yA 2 0.8 1.6mol
(4)最大负偏差系统
p实际 p理想
且在某一组成范围内比 难挥发组分的饱和蒸气 压还小,实际蒸气总压 出现最小值
液相线
氯仿(A)—丙酮(B)系统
加上气相线:
一般正偏差系统
一般负偏差系统
最大正偏差系统
液相线 气相线
3.2 二组分系统气液平衡相图
LG
定温连结线
80
t
* B
xl,B
l(A+B)
60
0.0
0.0 0.2 0.4 0.6 0.8 1.0
C6H5CH3(A)
xB
C6H6 (B)
图3-10 C6H5CH3(A) - C6H6 (B)系统的 沸点-组成图
15
0.0 t/℃
120
t
* A
100
80
60
yB 0.2 0.4 0.6 0.8 1.0
p/102kPa
(2) 蒸气压‐组成曲线有极值
0.0 0.2 1. 0
t=60℃ 0.8
0.6
0.4
pA*
0.2
xB 0.4 0.6
l(A+B) lg
0.8 1.0 xB=0.92
蒸气压有极大值,
yB=xB,气相线与液相 线相切
左半支:yB > xB pB* 右半支:yB < xB
g(A+B)
0.0 0.0 0.2
若pB* > p > pA*, 则 yB > xB, yA < xA. 可知:
饱和蒸气压不同的两种液体形成理想液态混合物成气液平衡时, 两相的组成并不相同, 易挥发组分在气相中的相 对含量大于它在液相中的相对含量.
气-液平衡时蒸气总压p与气相组成yB的关系: 结合式 p = pA* + (pB* - pA* ) xB 和式 yB = pB*xB /p 可得
• 从相图分析恒温降压变化过程.
• 与纯物质在恒温下有一定的饱和蒸气压不同, 由于液相在 气化过程中组成不断变化(剩余难挥发性组分愈来愈多), 使得其平衡蒸气压不断下降, 因而存在相变压力区间. 5
完全互溶双液系的气-液平衡相图
实验三完全互溶双液系的气-液平衡相图一、实验目的1.绘制常压下环己烷-乙醇双液系的T—X图,并找出最低恒沸点和最低恒沸混合物的组成。
2.学会阿贝折射仪的使用。
二、实验原理在大气压下,完全互溶双液系的沸点-组成相图有理想溶液及无恒沸点、最低恒沸点和最高恒沸点实际溶液四种:环己烷-乙醇体系沸点—组成图与乙醇-水体系沸点—组成图相似,同属实际溶液中第二类有最低恒沸点的。
其相图可通过阿贝折射仪测定不同组成样品体系在沸点温度时气-液相的折射率、查“折射率—组成工作曲线得相应的组成”来绘制的。
三、仪器药品1、仪器阿贝折射仪1台; 沸点仪1套; 恒温槽1台;0.1刻度水银温度计(0-100℃)2支;带磨口塞子的小样品管(2mL)16支;移液管(2mL)2支;胶头滴管2个; 50mL 烧杯10只(公用);50mL量筒10只(公用)。
2、药品(1)无水乙醇(AR);环己烷(AR); 二次蒸馏水。
(2)在样品瓶中依次加入环己烷10mL、20mL、30mL、40mL、50mL、60mL、70mL、80mL、90mL和乙醇90mL、80mL、70mL、60mL、50mL、40mL、30mL、20mL、20mL已知浓度的标准溶液(按纯样品的密度,换算成物质的量分数)9份。
(3)环己烷物质的量分数约为0.05、0.15、0.30、0.45、0.55、0.65、0.80、0.95的环己烷-乙醇溶液样品。
四、实验步骤1、测已知浓度的标准的折射率,作环己烷-乙醇的折射率-组成工作曲线(1)调节超级恒温槽水浴温度,使阿贝折射仪上的温度为250.1±℃左右。
(2)依次测已知浓度的标准溶液及纯乙醇和环己烷的的折射率(棱镜不能触及硬物如滴管,擦拭棱镜用擦镜纸)。
2、按图安装好沸点仪-沸点仪将一干燥、洁净的磁子放入已洗涤、干燥的沸点仪内,按图安装在实验室特制的磁力加热电热套内(250mL、只可覆盖圆底烧瓶底部1/5);一支温度计离圆底烧瓶约0.5cm,另一支温度计水银球上沿与支管口下沿相齐。
第4 5 节:二组分理想液态混合物的气液平衡相图分析
压力-组成图
应用相图可以了解指 定系统在外界条件改变时 的相变化情况。 若在一个带活塞的导热 气缸中有总组成为xB(M) (简写为xM)的 A,B二组分 系统,将气缸置于100°C 恒温槽中。起始系统压力 pa,系统的状态点相当于 右图中的 a 点。 当压力缓慢降低时,系统 点沿恒组成线垂直向下移 动。在到达L1 前,一直是单 一的液相。 p t =const. a L2 L1 M b G3 g
0 A
l
pB
L3
pA
l+g G1 G2
xL
xM xG xB
1 B
C6H5CH3(A) - C6H6(B)
7
压力-组成图
到达L1后,液相开始蒸发, 最初形成的蒸气相的状态为 G1所示,系统进入平衡区。 在此区内,压力继续降 低,液相蒸发为蒸气。当系 统点为M点时,两相平衡的 液相点为L2,气相点为G2, 这两点均为相点。两个平衡 相点的连接线称为结线。 压力继续降低,系统点到 达G3时,液相全部蒸发为蒸 气,最后消失的一滴液相的 状态点为 L3 。 p
p=const. b
L2 L1 a l
0 A
g
tA
t2 t1
G2 l+g
G1 tB
C6H5CH3(A) - C6H6(B)
12
1 B
§6.2
杠杆规则(Lever rule)
讨论A,B二组分系统,气、液两相,C点代表了系 统总的组成和温度,称为物系点。 通过C点作平行于横坐标 的等温线,与液相和气相线 分别交于D点和E点。DE线 称为等温连结线(tie line)
n(l) CD n(g) CE
或
m(l) CD m(g) CE
完全互溶双液系统气-液平衡相图的绘制(2) 误差分析
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载完全互溶双液系统气-液平衡相图的绘制(2) 误差分析地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容大学化学实验Ⅱ实验报告(物理化学部分)(贵州大学化学与化工学院——大学化学教学与示范中心)班级专业:环境科学091姓名:岳凡耀学号: 0908100121指导教师:谭蕾实验成绩:实验编号:十四实验项目名称:完全互溶双液系统气-液平衡相图的绘制报告人:岳凡耀同组人:赵安娜、赵芳、吴红、陈彦霖、孙腾实验时间:2011年4 月 28 日实验目的:掌握阿贝折射仪的使用方法通过测定混合物的折射率确定其组成。
学习常压下完全互溶双液系统气-液平衡相图的测绘方法,加深对相律、恒沸点的理解。
实验原理:相图是描述相平衡系统温度、压力、组成之间关系的图形,可以通过实验测定相平衡系统的组成来绘制。
两种液体物质混合而成的两组分体系称为双液系。
若两液体能以任意比例互溶,称其为完全互溶双液系统;若两液体只能部分互溶,称其为部分互溶双液系统。
当纯液体或液态混合物的蒸气压与外压相等时,液体就会沸腾,此时气-液两相呈平衡,所对应的温度就是沸点。
双液系统的沸点不仅取决于压力,还与液体的组成有关。
表示定压下双液系统气-液两相平衡时温度与组成关系的图称为T-XB 图或沸点-组成图。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-X),根据体系对乌拉尔定律的偏差情况,可分为三类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(а)所示。
(2)最大负偏差:混合物存在着最高沸点,如盐酸-水体系,如图1(b)所示。
(3)最大正偏差:混合物存在着最低沸点,如正丙醇-水体系,如图1(c)所示。
大学物化实验报告--双液系的气—双液系的气—液平衡相图
实验目的与要求:1.绘制常压下环己烷一乙醇双液系的气液平衡相图(TX图),了解相图和相律的基本概念;2.掌握测定双组分液体的沸点及正常沸点的方法;3.掌握用折光率确定二元液体组成的方法。
实验原理:常温下,任意两种液体混合组成的体系称为双液体系。
若两液体能按任意比例相互溶解,则称完全互溶双液体系;若只能部分互溶,则称部分互溶双液体系。
双液体系的沸点不仅与外压有关,还与双液体系的组成有关。
恒压下将完全互溶双液体系蒸馏,测定馏出物(气相)和蒸馏液(液相)的组成,就能找出平衡时气、液两相的成分并绘出TX图。
通常,如果液体与拉乌尔定律的偏差不大,在TX图上溶液的沸点介于A、B二纯液体的沸点之间见图1(a)。
而实际溶液由于A、B二组分的相互影响,常与拉乌尔定律有较大偏差,在TX图上就会有最高或最低点出现,这些点称为恒沸点,其相应的溶液称为恒沸点混合物,如图1(b),(c)所示。
恒沸点混合物蒸馏时,所得的气相与液相组成相同,因此通过蒸馏无法改变其本实验采用回流冷凝的方法绘制环己烷乙醇体系的TX图。
其方法是用阿贝折射仪测定不同组分的体系在沸点温度时气相、液相的折射率,再从折射率组成工作曲线上查得相应的组成,然后绘制TX图仪器与试剂:数据记录及处理分析:环己烷的沸点:80.7摄氏度乙醇的沸点:78.4摄氏度进实验室前的温度:30.5摄氏度气压:101.04千帕出实验室的温度:29.7摄氏度气压:101.15千帕方程 数据::y=-0.0 .0893x+ 599实验所 图可 人看出液 混 物中随 不己;含量的升高沸点先逐渐下降到 个恒 个稳沸点然后 定的波动 迅逐 上升,盾气 液相和气力 混合物随 点是恒沸 烷的升高是迅速到一点然后保持组分的改变导致沸点的改变。
C...C 0.2 L.C温度/℃最低恒沸物的沸点.。
其组成:环己烷的摩尔分数为的环己烷乙醇溶液二-1.<E实验结论:个人实验图乙醇/环己烷平衡相图通过实验学会了测定双组分液体的沸点及正常沸点的方法以及用折光率确定二元液体组成的方法。
二组分液态部分互溶和完全不互溶系统液-气平衡相图精品PPT课件
(2)系统有一转熔温度
相图上有三个单相区:
BCA线以左,熔化物L
ADF区, 固溶体(1)
BEG以右, 固溶体(2)
有三个两相区
BCE
L+(2)
ACD
L+(1)
FDEG (1)+(2)
CDE是三相线(组成为D)
(3)固溶体(2)(组成为E)三相共存。
CDE对应的温度称为转熔温度
l1 + l2→ g,F = 2-3+1 = 0, T、组成不变,三相组成分别为xM、xN、xE。
此时温度为共沸温度
(2)一个液相的组成位于另一个液 相组成和气相组成之间的二组分部 分互溶系统 a—纯B的沸点;b—纯A的沸点 aP、bP-气相线;aN、bM-液相线 FN、GM—溶解度曲线 aPb以上—g;aBFN-l1和bMGA-l2 aNP和bMP—l-g; MNFG—l1-l2 PMN:三相线, l2 → g+l1,F = 2-3+1 = 0,
2.部分互溶系统的温度-组成图
(1)气相组成位于两液相组成之间的
二组分液态部分互溶系统
a—纯B的沸点;b—纯A的沸点
aE、bE—气相线;aM、bN—液相线
aEb以上—g ; aBFM-l1和bAGN-l2 FM、GN—溶解度曲线
aME和bNE—l-g;MNGF—l1-l2
B
A
三相点E点:共沸点,即两个液相同时沸腾产生气相。
§6.4 二组分液态部分互溶和完全不互 溶系统液-气平衡相图
1. 液体的相互溶解度
彼此互相饱和的两溶液,称为共轭溶液 6.7p.2影二响组不分大液,态通部常分是互T溶-x图系—统—的溶气解一度液曲平线衡相图
一般来说,温度升高, 液体的相互溶解度加大, 当温度达到TB时,两液 相的组成相同,相点均 达到B点而成为一相。点 B称为会溶点,称温度TB 为临界会溶温度。
4.3二组分气-液平衡系统剖析
一、理想液态混合物
双液系统分类
完全互溶 部分互溶 完全溶容
理想液态混合物 非理想双液系统
理想液态混合物 全部浓度范围内均能互溶形成均匀的单一液相,同时在全部浓 度范围内符合拉乌尔定律。
f 3 max 3 p不变 =1 f=2 称为 T-x图
T不变 =1 f=2 称为 p-x图
1. 理想液态混合物的蒸气压(定T下,p-x图)
3. 负偏差很大的体系
非理想的完全互溶双液系统
3. 负偏差很大的体系 例:1atm下,H2O-HCl体系
Tb最高=108.5C 恒沸物组成 HCl% =20.24%
非理想的完全互溶双液系统
常见恒沸混合物的数据
solution
HCl+H2O HCl+H2O HNO3+H2O HBr+H2O HCOOH+ H2O CHCl3+(CH)2CO C2H5OH+ H2O CCl4+CH3OH CS2+ (CH)2CO CH3COOC2H5+ H2O
x 0 0.025 0.1 0.240 0.360 0.462 0.563 0.710 0.833 0.942
y 0 0.070 0.164 0.295 0.398 0.462 0.507 0.600 0.735 0.880
T 77.15 76.70 75.0 72.6 71.8 71.6
72.0 72.8 74.2 76.4
p
l
pB*
p1
p2
l=g
pA*
g
A
xA
B
在对气体的恒温加压过程中,随着压力的增加,气体将逐渐液化
2. 理想液态混合物在定压下的T-x图(沸点组成图)
实验六 实验六完全互溶二组分液态混合系统的 气液平衡相图
五、实验步骤
4、停止加热,冷却2~3分钟,由侧管加入0.1ml乙醇 于蒸馏瓶中,重新加热至沸腾,边加热边将沸点仪倾 斜,目的是用冷凝器流下来的回流液冲洗球形小室, 斜, 以保证收集的冷凝液是与液相平衡的气相组成。冲洗 两次后,将冷凝液收集在球形小室中,等沸点稳定 后,记录沸点温度。停止加热,冷却2~3分钟,由凝 液取样口和侧管分别取气相和液相样品,迅速测定其 折光率。测完后,打开棱镜,用镜头纸擦干,并用洗 耳球吹干,以备测另一样品。
八、问题讨论
1、每次加入蒸馏瓶中的环己烷或乙醇的量是否需要 精确量取?为什么? 2、如何判断气、液两相已达平衡?本实验能否真正 达到平衡?为什么? 3、测定纯环己烷和乙醇沸点时,为什么要求蒸馏瓶 必须是干燥的? 4、我们测的沸点与标准大气压的沸点是否一致? 5、为什么每次测定气相冷凝液的折光率以前,一定 要将取样支管的球形小室冲干净?
五、实验步骤
5、为了使数据在图中均匀分布,按0.1,0.2,0.2,0.5,0.5, 1.0,1.0,2.0ml的顺序依次加入乙醇,重复步骤4,记录 沸点和折光率数据。 6、将蒸馏瓶中的液态混合物从侧管吸出,并用洗耳 球吹干,重新加入20ml乙醇,按步骤3测沸点后,再 按步骤4,依次加入1.0,1.0,2.0,2.0,4.0,8.0,10.0,12.0ml 的环己烷,重复步骤4,记录沸点和折光率数据。
四、实验仪器及试剂
二组分体系气-液平衡相图
通过25℃的无水乙醇,折射率应为 n D =1.3594(文献值),如果25℃实测值为1.3600,则1.3600-
1.3594=0.0006 表 明 标 尺 零 点 有 正 误 差,应 予 校 正,校 正 值 △ = - 0.0006,实 验 中 每 次 测 定 应 加 上
△,此例为减去0.0006。用环己烷(
n
D 25
=1.4326)校正零点也是同样。
3.测定乙醇-环己烷溶液不同组成时的沸点及此时(气液平衡)气、液相的组成。待上述无水 乙醇冷却至近于室温或不烫手时,加1.5ml环己烷至无水乙醇中,测定沸点并测沸腾时气、液组成。 再 依 次 加 入 环 己 烷 2.0、2.0、8.0、10.0、10.0、10.0ml 至 无 水 乙 醇 中,分 别 测 其 沸 点 和 气、液 相 组 成。
file://E:\whsy\whsy05.htm
2008-4-22
二组分体系气-液平衡相图
页码,3/3
五.数据处理
1.根据沸点数据以及从折射率-组成曲线内插得到气液组成;
乙醇-环己烷溶液不同组成的沸点及气、液组成
加入量
T
n液
n气
液相组成
气相组成
20ml乙醇 加1。5环己烷 加2.0环己烷 加2.0环己烷 加8.0环己烷 加10.0环己烷 加10.0环己烷 加10.0环己烷
4.同法测定环己烷-乙醇不同组成的沸点及其相应的气、液组成。在沸点仪先加入25ml环己 烷,测定沸点,然后依次加入无水乙醇0.5、0.5、0.5、1.0、1.0、2.0、5.0ml,分别测定沸点和气、 液组成。
判断沸点的准则:温度计汞柱上升明显变缓;液体发生大量气泡;蒸汽冷凝得到的液体很快充 满支管。此时一手握住台架,一手扶好台架底座,倾斜沸点仪,将支管中冷凝液倒回液体中(此步 骤简称“回流”),,立即读温度计示值,反复回流数次待温度计示值稳定,就是沸点。
二组分完全互溶系统的气液平衡相图
二组分完全互溶系统的气——液平衡相图周韬摘要:测定了乙醇--环己烷完全互溶系统的气--液平衡相图。
在相图上,以环己烷占互溶系统的摩尔含量作为横坐标,以混合物的沸点为纵坐标,分别从分析纯的乙醇出发和分析纯的环己烷出发,制作出完整的混合溶液相图。
实验中通过控制压力相等的条件测定相图需要的各项数据,混合物溶液各组分的含量利用折光率不同来确定。
实验结果与理论值能够很好的符合。
关键词:相律;折射率;沸点。
1 前言许新华,王晓岗,刘梅川等人的“双液系气液平衡相图实验的新方法研究”①中讨论了自制工作曲线和引用文献数据的优良,由于实验环境等因素的影响,文献值之间也会有差别,所以文献数据并不能很好地反映真实情况,而自制工作曲线由于溶液配制时会挥发,准确浓度的溶液配制又有难度。
另一方面气相测折光率确定组分是,由于气相冷凝液非常少,难以进行平行测定,偶然误差比较大。
他们在文献中提到的解决办法是,用气相色谱法是进行微量样品分析。
借鉴气相色谱实验定量配制混合样品的方法,比较精确地配制出乙醇-环己烷标准组成溶液。
对最后得出的实验数据用Origin 处理得到如下的工作曲线(图1):进行实验时,由于器材和时间的限制,我们采用直接引用文献数据和测定折光率的方式。
最后的数据进行温度校正之后作图,得到的工作曲线依然可以很好地和文献相吻合。
2实验部分 2.1原理两种液态物质若能以任意比例混合,则称为二组分完全互溶混合物系统。
当其蒸气压与外压相当时,溶液就会沸腾,此时的温度称为沸点,沸腾的溶液也产图 1 文献的工作曲线生了气相和液相两种相数。
在一定压力下,二组分完全互溶混合物系统的沸点可能有三种情况:①混合物的沸点介于两种纯液体的沸点之间,这种混合物,气液两项的组成不同,可以通过精馏使系统的两个组分完全分离开;②混合物有沸点极大值;③混合物有沸点极小值。
②、③两种由于实际系统严重偏离了拉乌尔定律,②项负偏差很大,在相图上有沸点极大值,③项的正偏差很大,会产生沸点极小值,后面两种混合物情况,难以用精馏的方式将两种液体分离开②。
完全互溶双液系统气 液平衡相图的绘制2误差分析
大学化学实验□实验报告(物理化学部分)(贵州大学化学与化工学院——大学化学教学与示范中心)班级专业:_________ 环境科学091姓名:__________ 岳凡耀学号:_________ 0908100121指导教师:_____________ 谭蕾实验成绩:_____________________________实验编号:十四实验项目名称:完全互溶双液系统气-液平衡相图的绘制报告人:岳凡耀同组人:赵安娜、赵芳、吴红、陈彦霖、孙腾实验时间:2011年4月28日一、实验目的:1.掌握阿贝折射仪的使用方法通过测定混合物的折射率确定其组成。
2.学习常压下完全互溶双液系统气-液平衡相图的测绘方法,加深对相律、恒沸点的理解。
二、实验原理:相图是描述相平衡系统温度、压力、组成之间关系的图形,可以通过实验测定相平衡系统的组成来绘制。
两种液体物质混合而成的两组分体系称为双液系。
若两液体能以任意比例互溶,称其为完全互溶双液系统;若两液体只能部分互溶,称其为部分互溶双液系统。
当纯液体或液态混合物的蒸气压与外压相等时,液体就会沸腾,此时气-液两相呈平衡,所对应的温度就是沸点。
双液系统的沸点不仅取决于压力,还与液体的组成有关。
表示定压下双液系统气-液两相平衡时温度与组成关系的图称为T-X B图或沸点-组成图。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-X),根据体系对乌拉尔定律的偏差情况,可分为三类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1 ( a ) 所示。
(2)最大负偏差:混合物存在着最高沸点,如盐酸-水体系,如图1 ( b)所示。
(3 )最大正偏差:混合物存在着最低沸点,如正丙醇-水体系,如图1 (c)所示。
图1完全互溶双液系统的气-液平衡相图在最高沸点和最低沸点处,气相线与液相线相交,对应于此点组成的溶液,达到气-液两相平衡时,气相与液相组成相同,沸腾的结果只使气相量增加、液相量减少,沸腾过程中温度保持不变,这时的温度叫恒沸点,相应的组成叫恒沸组成。
二组分完全互溶系统的气—液平衡相图
课程名称:______大学化学实验(P)__________ 指导老师:____曹发和_____成绩:__________________ 实验名称:二组分完全互溶系统的气液平衡相图实验类型:_____________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.学习测定气—液平衡数据及绘制二元系统相图的方法,加深理解相律和相图等概念。
2.掌握正确测量纯液体和液体混合物沸点的方法。
3.熟悉阿贝折光仪的原理及操作,熟练掌握超级恒温槽的使用和液体折射率的测量。
4.了解运用物理化学性质确定混合物组成的方法。
二、实验内容和原理两种液态物质若能以任意比例混合,则称为二组分完全互溶液态混合物系统。
当纯液体或液态混合物的蒸气压与外压相等时就会沸腾,此时的温度就是沸点。
在一定的外压下,纯液体的沸点有确定的值,通常说的液体沸点是指101.325Kpa下的沸点。
对于完全互溶的混合物系统,沸点不仅与外界压力有关,还与系统的组成有关。
在一定压力下,二组分完全互溶液态混合物系统的沸点与组成关系可分为三类:(1)液态混合物的沸点介于两纯组分沸点之间(2)液态混合物有沸点极大值(3)液态混合物有沸点极小值。
对于(1)类,在系统处于沸点时,气、液两相的组成不相同,可以通过精馏使系统的两个组分完全分离。
(2)、(3)类是由于实际系统与Raoult定律产生严重偏差导致。
相图中出现极值的那一点,称为恒沸点。
具有恒沸点组成的二组分混合物,在蒸馏时的气相组成和液相组成完全一样,整个蒸馏过程中沸点恒定不变,因此称为恒沸混合物。
对有恒沸点的混合物进行简单蒸馏,只能获得某一纯组分和恒沸混合物。
液态混合物组成的分析是相平衡实验的关键。
本实验采用折射率法。
采用制作工作曲线的内插法得到未知液态混合物的组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:______大学化学实验(P)__________ 指导老师:____曹发和_____成绩:__________________
实验名称:二组分完全互溶系统的气液平衡相图 实验类型:_____________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求
1. 学习测定气—液平衡数据及绘制二元系统相图的方法,加深理解相律和相图等概念。
2. 掌握正确测量纯液体和液体混合物沸点的方法。
3. 熟悉阿贝折光仪的原理及操作,熟练掌握超级恒温槽的使用和液体折射率的测量。
4. 了解运用物理化学性质确定混合物组成的方法。
二、实验内容和原理
两种液态物质若能以任意比例混合,则称为二组分完全互溶液态混合物系统。
当纯液体或液态混合物的蒸气压与外压相等时就会沸腾,此时的温度就是沸点。
在一定的外压下,纯液体的沸点有确定的值,通常说的液体沸点是指101.325Kpa 下的沸点。
对于完全互溶的混合物系统,沸点不仅与外界压力有关,还与系统的组成有关。
在一定压力下,二组分完全互溶液态混合物系统的沸点与组成关系可分为三类:(1)液态混合物的沸点介于两纯组分沸点之间(2)液态混合物有沸点极大值(3)液态混合物有沸点极小值。
对于(1)类,在系统处于沸点时,气、液两相的组成不相同,可以通过精馏使系统的两个组分完全分离。
(2)、(3)类是由于实际系统与Raoult 定律产生严重偏差导致。
相图中出现极值的那一点,称为恒沸点。
具有恒沸点组成的二组分混合物,在蒸馏时的气相组成和液相组成完全一样,整个蒸馏过程中沸点恒定不变,因此称为恒沸混合物。
对有恒沸点的混合物进行简单蒸馏,只能获得某一纯组分和恒沸混合物。
液态混合物组成的分析是相平衡实验的关键。
本实验采用折射率法。
采用制作工作曲线的内插法得到未知液态混合物的组成。
折射率是温度的函数,测定时必须严格控制温度。
三、主要仪器设备
仪器:沸点仪,阿贝折光仪,超级恒温槽,调压变压器。
试剂:环己烷(AR ),无水乙醇(AR )。
四、操作方法和实验步骤
1. 工作曲线的制定(实验室已完成)。
2. 相图数据的测定。
(1)安装沸点仪
检查带有温度计的软木塞是否塞紧及温度计的位置。
加热用的电热丝要靠近容器底部中心。
(2)测定沸点
取样口中加入20~25ml 乙醇,开冷却水,缓缓加热,沸腾液体喷在水银球上,蒸汽在冷凝管中凝聚,温度计读数稳定,记录温度计度数。
(3)取样分析
冷却,吸取蒸汽冷凝液及残留液。
测定蒸汽冷凝液和残留液的折射率各平行三次。
加料口加入1,1,2,3,
姓名: 徐泰川
学号: 37 日期:________________ 地点:________________
5……ml环己烷,重复实验,分别测定折射率及沸点至沸点几乎不再下降及冷凝液和残留液折射率近似相等。
吹干仪器,加入30ml环己烷,重复实验。
五、实验数据记录和处理
室温:25.5℃大气压:101.89Kpa
阿贝折光仪测量温度为:30.8℃
测量温度计露颈读数:48.0℃
30℃纯乙醇折光率为1.3570
30℃纯环己烷折光率为1.4202
表2 30ml初始环己烷,气相、液相数据
表3 制图数据
65.200.5550.504 65.200.5270.525
65.200.5480.572 65.200.5220.518
65.200.5590.572
图1 沸点~组成图
六、实验结果与分析
测量恒沸组成为0.5427,恒沸温度为65.20
文献理论值为:恒沸组成为0.5551,恒沸温度为64.90
误差分析:实验操作中必然存在偶然误差,例如观测时对得不准,读数不准确,周围环境的偶然变化或温度的波动等因素的影响。
思考题:
1.沸点仪中盛气相冷凝液小球体积过大导致气相液循环不充分,组成误差大;若体积过小则气相液太少,测量折光率时会难以测量。
2.不需要重新配,加热等冷凝液生成即可。
3.吹干沸点仪中存在的水分、环己烷、乙醇,防止干扰纯物质的测量。
混合后就不必再进行干燥,因为一开始已经干燥过了。
4.应该相等,若不等,说明不是纯物质或者冷凝液循环不充分,应当重新测量。
5.理论上可行,因为二者沸点不同,合理控制温度即可分离。
6.混合物沸点下降,当组成为0.5左右时沸点最小,折射率也下降,当组成为0.5左右时最小。
7.由于本次实验的液体样品是挥发性的,因此测折光率的时候滴的量要大,并且调节读数的速度要快,
取样的滴管一定要充分吹干,温度冷却要到位。
8.由本实验可知,在一定沸点下,组成可能有两种。
组成分数是确定的。
9.阿贝折光仪要恒温,测折光率的时候试液滴的量要大、要均匀。
平行测定三次。