物理化学实验报告二组分简单共熔合金相图绘制

合集下载

物化实验

物化实验

物化实验二组分简单共熔体系相图的绘制1. 对于不同成分混合物的步冷曲线,其水平段有什么不同?答:纯物质的步冷曲线在其熔点处出现水平段,混合物在共熔温度时出现水平段。

而平台长短也不同。

2. 作相图还有哪些方法?答:作相图的方法还有溶解度法、沸点法等。

3. 通常认为,体系发生相变时的热效应很小,则用热分析法很难测得准确相图,为什么?在含Bi30%和80%的二个样品的步冷曲线中第一个转折点哪个明显?为什么?答:因为热分析法是通过步冷曲线来绘制相图的,主要是通过步冷曲线上的拐点和水平段(斜率的改变)来判断新相的出现。

如果体系发生相变的热效应很小,则用热分析法很难产生拐点和水平段。

30%样品的步冷曲线中第一个转折点明显,熔化热大的Sn先析出,所以当发生相变时可以提供更多的温度补偿,使曲线斜率改变较大。

4. 有时在出现固相的冷却记录曲线转折处出现凹陷的小弯,是什么原因造成的?此时应如何读相图转折温度?答:这是由于出现过冷现象造成的,遇到这种情况可以通过做延长线的方式确定相图的转折温度。

5. 金属熔融系统冷却时,冷却曲线为什么出现折点?纯金属、低共熔金属、及合金等转折点各有几个?曲线形状为何不同?答:因为金属熔融系统冷却时,由于金属凝固放热对体系散热发生一个补偿,因而造成冷却曲线上的斜率发生改变,出现折点。

纯金属、低共熔金属各出现一个水平段,合金出现一个折点和一个水平段。

由于曲线的形状与样品熔点温度和环境温度、样品相变热的多少、保温加热炉的保温性能和样品的数量均有关系,所以样品的步冷曲线是不一样的。

对于纯金属和低共熔金属来说只有一个熔点,所以只出现平台。

而对于合金来说,先有一种金属析出,然后2种再同时析出,所以会出现一个折点和一个平台。

6. 有一失去标签的Sn-Bi合金样品,用什么方法可以确定其组成?答:可以通过热分析法来确定其组成。

首先通过热分析法绘制Sn-Bi的二组分相图,然后再绘制该合金样品的步冷曲线,与Sn-Bi的二组分相图对照即可得出该合金的组成。

实验六 二组份合金体系相图的绘制

实验六  二组份合金体系相图的绘制

二组份合金体系相图的绘制一实验目的要求1.用热分析法测量铅、锡二元金属相图,了解固-液相图的基本特点。

2.学会热电偶测温技术。

3.掌握可控升降温电炉和数字式控温仪的使用方法。

二实验原理1.二组分固-液相图以体系所含物质的组成为自变量,温度为应变量所得到的T-X图是常见的一种相图。

二组分体系的自由度与相的数目有以下关系:自由度=组分数-相数+2 图Ⅱ-7-1(a)以邻-、对-硝基氯苯为例表示有低共溶点相图的构成情况:高温区为均匀的液相,下面是三个两相共存区,至于两个互不相溶的固相A、B 和液相L三相平衡共存现象则是固-液相图所特有的。

在三相共存的水平线上,自由度等于零。

处于这个平衡状态下的温度TE 、物质组成A、B和XE都不可改变。

TE 和XE构成的这一点称为低共熔点。

2.热分析法和步冷曲线热分析法是相图绘制工作中常用的一种实验方法。

按一定比例配成均匀的液相体系,让它缓慢冷却,以体系温度对时间作图,则为步冷曲线。

图Ⅱ-7-1(b)为与图(a)标示的三个组成相应的步冷曲线。

曲线(Ⅰ)表时,体系温度将保持恒定直到样品完全凝固。

曲线上示,将纯B液体冷却至TB出现一个水平段后再继续下降。

在一定压力下,单组分的两相平衡体系自由度是定值。

曲线(Ⅲ)具有低共溶物的成分。

该液体冷却时,情况与纯为零,TB的B体系相似。

曲线(Ⅱ)代表了上述两组成之间的情况。

设把一个组成为X1,即有B的固相析出。

与前两种情况不同,这时体系还有一个自液相冷却至T1由度,温度将可继续下降。

不过由于B的凝固所释放的热效应将使该曲线的斜处出现一个转折。

率明显变小,在T1三实验仪器与试剂KWL-09多头可控升降温电炉。

SWKY-1型数字控温仪,配控温热电偶和测温热电偶。

微型计算机,金属相图测绘软件。

1~6号样品,分别为含铅0、20、40、60、80、100%的铅锡合金实验者自备U盘一个。

四实验步骤1. 检查1~6号样品管是否依次放在试管架上,控温探头Ⅰ是否放入加热腔内,测温探头Ⅱ应放在1号样品管内。

物化实验——二组分合金相图

物化实验——二组分合金相图

图1 实验装置图计算机样品和松香 石蜡 热电阻电炉二组分合金相图1. 引言(实验目的/原理)1) 学习温度的测量方法——用PT100热电阻测量温度 2) 用布冷曲线法测绘Bi-Sn 二组分合金相图 3) 用电脑软件记录数据和处理数据2. 实验操作2.1 实验药品:铋、锡、松香、石蜡仪器型号:调压器 TT-1 热电阻 PT-100 测试装置示意图(如图1)2.2 实验条件室温:24 ℃样品温度:样品先加热至240-300 ℃,之后渐渐降温 2.3 实验操作2.3.1步骤:1) 加热样品至样品熔融 2) 搅拌使样品均匀3) 冷却,由热电阻测量温度,由电脑软件记录步冷曲线 4) 用软件处理步冷曲线,找出相变点,记录相变温度 2.3.2方法要点1) 加热硬质试管和样品时应缓慢调节,因为合金样品和玻璃的膨胀系数不同,骤冷骤热,玻璃管易破裂。

加热时可以同时记录升温曲线,可以预测步冷曲线的平台位置2) 移动硬质试管时注意用钳子,戴手套,防止烫伤3) 记录布冷曲线的过程中不能移动硬质试管上的胶塞以及热电阻3. 结果与讨论3.1 原始实验数据由实测数据,用origin 作图,其中图2-6为样品布冷曲线,图7为水的升温曲线。

由电脑软件对布冷曲线进行线性拟合,并且根据水的沸点进行温度校正,得到如表1所示数据表1Bi-Sn 合金或纯金属的相变点温度及水的沸点*第三、四列数据由电脑软件线性拟合得到3.2 数据处理结果由表1所示数据和已知部分数据[1],由Execl 软件绘制得到Bi-Sn T-X 相图(如图8)相图中共有6个部分,每个区域、曲线和最低共熔物的相数(Φ)和条件自由度数(f’)如下:1.液相Φ=1 f’=2(温度和浓度)2.液相+固溶体1 Φ=2 f’=1(温度或浓度)3.液相+固溶体2 Φ=2 f’=1(温度或浓度)4. 固溶体1 Φ=1 f’=2(温度和浓度)5.固溶体1+固溶体2 Φ=2 f’=1(温度或浓度)6.固溶体2 Φ=1 f’=2(温度和浓度)AB 液体到液体加固溶体1的过渡态AD 液体到液体加固溶体2的过渡态BC液体加固溶体1到固溶体1的过渡态DE液体加固溶体2到固溶体2的过渡态CF固溶体1到固溶体1加固溶体2的过渡态EG固溶体2到固溶体1加固溶体2的过渡态CAE 固溶体1、固溶体2加液体三相共存Φ=3 f’=0由水、Bi、Sn的转折点读书和文献熔点或沸点值做出热电阻工作曲线(如图9)。

物化实验报告-合金相图

物化实验报告-合金相图

二组分合金相图实验者:黄浩2011011743 分1同组实验者:李奕实验日期:2013-9-28 提交报告日期:2013-10-1实验老师:吉岩1. 引言1.1 实验目的a.用热分析法(步冷曲线法)测绘Bi-Sn二组分金属相图。

b.掌握热电偶测量温度的基本原理和校正方法。

c.学会使用自动平衡记录仪。

1.2 实验原理人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。

以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。

二组分相图已得到广泛的研究和应用。

固-液相图多用于冶金、化工等部门。

较为简单的二组分金属相图主要有三种;一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。

本实验研究的Bi-Sn系统就是这一种。

在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。

它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。

由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。

通常的做法是先将金属或合金全部熔化。

然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。

以合金样品为例,当熔融的体系均匀冷却时(如图2-6-1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。

当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。

【最新精选】二组分共熔体系相图

【最新精选】二组分共熔体系相图

二组分简单共熔系统相图的绘制1 实验目的(1) 用热分析法测绘Sn-Pb二组分金属相图。

(2) 掌握热电偶测量温度的原理及校正方法。

(3) 了解热分析法测量技术。

2 实验原理相图就是通过图形来描述多相平衡体系的宏观状态与温度、压力及组成的相互关系,具有重要的生产实践意义。

对于二组分体系,C=2,f=4- 。

由于我们所讨论的体系至少有一个相,所以自由度数最多为3。

即二组分体系的状态可以由三个独立变量所决定,这三个变量通常为温度、压力及组成,所以二组分体系的状态图要用具有三个坐标的立体图来表示。

由于立体图在平面纸上表示起来很不方便,因此我们一般固定一个变量,如压力,得到一个两个变量的状态图。

在二组分体系中,温度-组成(T -X)图表示体系状态与组成之间的相互关系。

测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,记录稳定随时间的变化趋势。

表示温度与时间关系的曲线叫步冷曲线。

当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,相变热使冷却曲线出现转折或形成水平线段,转折点所对应的温度即为该组成合金的相变温度。

利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。

二元简单共熔体系的冷却曲线具有图1所示的形状。

图1 a.步冷曲线 b.有过冷现象时的步冷曲线 c.根据步冷曲线绘制相图用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。

此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,使折点发生起伏,见图 1.1.b。

遇此情况,可延长dc线与ab线相交,交点e即为转折点。

3 仪器与试剂仪器:镍铬-镍硅热电偶1支;EF-07金属相图实验装置1套(包括加热单元,数显单元);sunyLAB200A实验数据分析记录仪;石英样品皿7支;电脑。

物化实验报告:二组分合金相图

物化实验报告:二组分合金相图

二组分合金相图化63 宋光2006011931同组实验人:卢颖达实验日期:2009年3月19日提交报告日期:2009年4月2日指导教师:王力1.实验目的1.用热分析法(步冷曲线法)测绘Bi-Sn二组分金属相图。

2.掌握热电偶测量温度的基本原理和校正方法。

3.学会使用自动平衡记录仪。

2.实验原理人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。

以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。

二组分相图已得到广泛的研究和应用。

固-液相图多用于冶金、化工等部门。

较为简单的二组分金属相图主要有三种;一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。

本实验研究的Bi-Sn系统就是这一种。

在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。

它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。

由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。

通常的做法是先将金属或合金全部熔化。

然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。

以合金样品为例,当熔融的体系均匀冷却时(如图2-6-1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。

当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。

在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。

二组分共熔体系相图

二组分共熔体系相图

二组分简单‎共熔系统相‎图的绘制1 实验目的(1) 用热分析法‎测绘Sn-Pb二组分‎金属相图。

(2) 掌握热电偶‎测量温度的‎原理及校正‎方法。

(3) 了解热分析‎法测量技术‎。

2 实验原理相图就是通‎过图形来描‎述多相平衡‎体系的宏观‎状态与温度‎、压力及组成‎的相互关系‎,具有重要的‎生产实践意‎义。

对于二组分‎体系,C=2,f=4- 。

由于我们所‎讨论的体系‎至少有一个‎相,所以自由度‎数最多为3‎。

即二组分体‎系的状态可‎以由三个独‎立变量所决‎定,这三个变量‎通常为温度‎、压力及组成‎,所以二组分‎体系的状态‎图要用具有‎三个坐标的‎立体图来表‎示。

由于立体图‎在平面纸上‎表示起来很‎不方便,因此我们一‎般固定一个‎变量,如压力,得到一个两‎个变量的状‎态图。

在二组分体‎系中,温度-组成(T-X)图表示体系‎状态与组成‎之间的相互‎关系。

测绘金属相‎图常用的实‎验方法是热‎分析法,其原理是将‎一种金属或‎合金熔融后‎,使之均匀冷‎却,记录稳定随‎时间的变化‎趋势。

表示温度与‎时间关系的‎曲线叫步冷‎曲线。

当熔融体系‎在均匀冷却‎过程中无相‎变化时,其温度将连‎续均匀下降‎得到一光滑‎的冷却曲线‎;当体系内发‎生相变时,相变热使冷‎却曲线出现‎转折或形成‎水平线段,转折点所对‎应的温度即‎为该组成合‎金的相变温‎度。

利用冷却曲‎线所得到的‎一系列组成‎和所对应的‎相变温度数‎据,以横轴表示‎混合物的组‎成,纵轴上标出‎开始出现相‎变的温度,把这些点连‎接起来,就可绘出相‎图。

二元简单共‎熔体系的冷‎却曲线具有‎图1所示的‎形状。

图1 a.步冷曲线 b.有过冷现象‎时的步冷曲‎线 c.根据步冷曲‎线绘制相图‎用热分析法‎测绘相图时‎,被测体系必‎须时时处于‎或接近相平‎衡状态,因此必须保‎证冷却速度‎足够慢才能‎得到较好的‎效果。

此外,在冷却过程‎中,一个新的固‎相出现以前‎,常常发生过‎冷现象,使折点发生‎起伏,见图1.1.b。

实验6 二组分合金相图

实验6 二组分合金相图

实验六二组分合金相图1.引言1.1实验目的①用热分析法(步冷曲线法)测绘Bi-Sn二组分合金相图②掌握热电偶测定温度的基本原理和校正方法③学会使用计算机记录和处理数据1.2实验原理1.1.1二组分合金相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。

以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。

二组分相图已得到广泛的研究和应用。

固-液相图多用于冶金、化工等部门。

较为简单的二组分金属相图主要有三种:①液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;②液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;③液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。

本实验研究的Bi-Sn系统就是这一种。

在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

1.1.2热分析法(步冷曲线法)热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。

它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。

由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。

通常的做法是先将金属或合金全部熔化。

然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。

以合金样品为例,当熔融的体系均匀冷却时(如图6.1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。

当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。

在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。

二组分合金相图

二组分合金相图

二组分合金相图1 引言二组分合金相图是表示体系存在状态与组成、温度的关系,由于合金的沸点很高,所以合金相图一般是固-液相图。

本实验研究的Bi-Sn合金相图是一种较为简单的合金相图,Bi和Sn这两种组分的液相完全互溶,固相部分互溶,故该体系的相图如图1所示图1 Bi-Sn二组分合金相图示例(来源:SGTE alloy database)本实验用步冷曲线法绘制Bi-Sn合金相图。

它是利用金属及合金在加热或冷却过程中发生相变时热量的释出或吸收及热容的突变,使得温度-时间关系图上出现突变段(平台或者拐点),从而得到相变温度。

其通常的做法是,先将金属或合金全部熔化,然后让其在一定的环境中自行冷却,通过记录仪记录下步冷曲线。

然后根据步冷曲线得出所有固体析出的温度和低共熔温度。

根据一系列组成不同的二组分系统的步冷曲线的各转折点,即可画出二组分系统的相图(T-x图)。

绘制过程也可由图2来表示。

图2 用步冷曲线法绘制二组分合金相图(来源:贺德华等. 基础物理化学实验. 高等教育出版社,2008,39页)2 实验操作2.1实验药品、仪器及测试装置示意图2.1.1 实验仪器电热偶,电炉(2个),调压器,热电偶套管,沸点仪,硬质玻璃试管,数据自动记录软件2.1.2 实验药品Sn (AR), Bi (AR), 松香,液体石蜡2.1.3 实验装置示意图图3 实验装置示意图(来源:/view/71f133224b35eefdc8d33322.html)2.2 实验条件温度:室温(具体数值未知)气压:未知湿度:未知(在实验等待过程中实验者曾在实验室中寻找温度计等仪器,但由于疏忽并未找到,直到实验后看到被批改的第一次报告才得知,温度/湿度仪在称量台旁边,故本次实验中温度、湿度和气压仍未知)2.3实验操作步骤及方法要点a.由于事先已有配好Bi质量分数30%,56.9822%,80%的Bi-Sn合金以及纯Bi和纯Sn金属,故可直接将样品放入电炉加热。

实验二组分合金相图

实验二组分合金相图

二组分合金相图1引言1.1实验目的(1) 用热分析法(步冷曲线法)测绘Bi-Sn二组分金属相图。

(2) 掌握热电偶测量温度的基本原理和校正方法。

(3) 学会使用自动平衡记录仪。

1.2 实验原理(1) 二组分合金相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。

二组分相图已得到广泛的研究和应用。

固-液相图多用于冶金、化工等部门。

较为简单的二组分金属相图主要有三种:①液相完全互溶,凝固后,固相也能完全互溶成固溶体的系统,最典型的为Cu-Ni系统;②液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;③液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。

本实验研究的Bi-Sn系统就是这一种。

在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

(2) 热分析法(步冷曲线法)热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。

它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。

由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。

通常的做法是先将金属或合金全部熔化。

然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。

以合金样品为例,当熔融的体系均匀冷却时(如图1.1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。

当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。

在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。

图1.1 步冷曲线由此可知,对组成一定的二组分低共熔混合物系统,可根据它的步冷曲线得出有固体析出的温度和低共熔点温度。

二组分合金相图的绘制实验报告

二组分合金相图的绘制实验报告

二组分合金相图的绘制一、实验目的:1.通过实验,用热分析法测绘锡-铋二元合金相图。

2.了解热分析法的测量技术与有关测量温度的方法。

二、实验原理:绘制相图常用的基本方法,其原理是根据系统在均匀冷却过程中,温度随时间变化情况来判断系统中是否发生了相变化。

将金属溶解后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称为步冷曲线。

若熔融体系在均匀冷却的过程中无相变,得到的是平滑的冷却线,若在冷却的过程中有相变发生,那么因相变热的释放与散失的热量有所抵偿,步冷曲线将出现转折点或水平线段,转折点所对应的温度即为相变温度。

时间(a)纯物质(b)混合物(c)低共熔混合物图1 典型步冷曲线对于简单的低共熔二元合金体系,具有图1所示的三种形状的步冷曲线。

由这些步冷曲线即可绘出合金相图。

如果用记录仪连续记录体系逐步冷却温度,则记录纸上所得的曲线就是步冷曲线。

用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此体系的冷却速度必须足够慢才能得到较好的结果。

Sn—Bi合金相图还不属简单低共熔类型,当含Sn 81%以上即出现固熔体。

三、实验仪器和药品:仪器和材料:金属相图实验炉(图2),微电脑温度控制仪,铂电阻,玻璃试管,坩埚,台天平。

药品:纯锡(CR)、纯铋(CR),石墨。

四、实验步骤:1.配制样品用感量为0.1g的托盘天平分别配制含铋量为30%、58%、80%的锡铋混合物各100g,另外称纯铋100g、纯锡100g,分别放入五个样品试管中。

2.通电前准备①首先接好炉体电源线、控制器电源、铂电阻插头、信号线插头、接地线。

图2 金属相图实验炉接线图②将装好药品的样品管插入铂电阻,然后放入炉体。

③设置控制器拨码开关:由于炉丝在断电后热惯性作用,将会使炉温上冲100℃—160℃(冬天低夏天高)。

因此设置拨码开关数值应考虑到这一点。

例如:要求样品升温为350℃,夏天设置值为170℃。

当炉温加热至170℃时加热灯灭,炉丝断电,由于热惯性使温度上冲至350℃后,实验炉自动开始降温。

二组分合金系统相图的绘制

二组分合金系统相图的绘制

综合测试实验一、目的要求1.用热分析步冷曲线法绘制铋-镉二组分金属相图2.掌握热分析法的测量技术二、基本原理较为简单的二组分金属相图主要有三种:一种是液相完全互溶,固相也完全互溶成固溶体的系统,最典型的为Cu-Ni 系统;一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,固相是部分互溶的系统,如Pb-Sn系统,本实验研究的是Bi-Cd系统。

热分析中的步冷曲线法是绘制相图的基本方法之一。

它是利用金属及合金在加热和冷却过程中发生相变时,热量的释放或吸收及热容的突变,得到金属或合金中相转变温度的方法。

本实验是先将金属或合金全部熔化,然后让其在一定的环境中冷却,并在电脑上自动画出温度随时间变化的关系曲线—步冷曲线(见图1)。

当熔融的系统均匀冷却时,如果系统不发生相变,则系统的温度随时间的变化是均匀的,冷却速率较快(如图1中ab线段);若在冷却过程中发生了析出固体的相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统的冷却速率减慢,步冷曲线上出现转折(如图1中b 点)。

当熔液继续冷却到某一点时(如图1中c点),系统以低共熔混合物固体析出,在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图1中cd线段);当熔液完全凝固后,温度才迅速下降(如图1中的线段)。

图1步冷曲线图2步冷曲线与相图由此可知,对组成一定的二组分低共熔混合物体系,可以根据它的步冷曲线得出有固体析出的温度和低共熔点温度。

根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。

不同组成熔液的步冷曲线对应的相图如图2所示。

用步冷曲线法绘制相图时,被测系统必须时时处于接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。

三、仪器和试剂1.仪器:ZR-HX金属相图试验装置一套;电脑一台(四套公用)2.试剂:铋(分析纯、熔点为544.5 K)、镉(分析纯、熔点为594.1 K)四、实验步骤1.配制试样:配制含铋质量分数分别为20%、40%、60%、80%的Bi-Cd合金150g,再称纯Bi、纯Cd各150 g,分别放入6个不锈钢试管中,上面滴入约1 mL的硅油。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。

2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。

二、主要实验器材和药品
1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳
2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡
三、实验原理
压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。

较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。

研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。

溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。

此法适用于常温F易测定组成的系统,如水盐系统。

热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。

它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。

其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。

根据步冷曲线可以判断体系有无相变的发生。

当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。

这是因为相变时的热效应使温度随时间的变化率发生了变化。

因此,由步冷曲线的斜率变化可以确定体系的相变点温度。

测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。

图3- 15(b)是具有简单低共熔点的A- B二元系相图,左右图中对应成分点a.b.c、d.e 的步冷曲线。

下面对步冷曲线作简单分析。

在固定压力不变的条件下,相律为:
f=c-φ+1 (3-6-1)
式中:c为独立组分数;为相数。

对于纯组分熔融体系,c=1,q=1。

在冷却过程中若无相变化发生,其温度随时间变化关系曲线为平滑曲线。

到凝固点时,固液两相平衡,=2,自由度为0,温度不变,出现水平线段。

等体系全部凝固后,其冷却情况同纯熔融体系一样,呈一平滑曲线。

图3- 15(a)中曲线ave 属于这种情况。

曲线C是低共培体冷却曲线,情况与a.c相似.水平线段的出现是因为当冷却到头能点温度r。

时,A和B同时标出,且固相中的比例与溶液中相同,因此溶液浓度不变,从街具备
了稳定的凝固点。

此时固体A.B和液相三相共存,体系自由度f为0(c=2ψ=3)温度不变。

对于曲线b,当温度冷却至T时,有固相A析出,由于放出凝固热,使体系冷却速度变慢,步冷曲线斜度减小。

此时体系为两相,根据相律,f为1(c=2, φ=2),温度和溶液的组皮中只有一个独立变量(即两者相互关联)。

随着A的不断析出,溶液中B的含量增加,而被相组成沿液相线朝最低共熔点方向移动。

当温度降至T时,B也析出,此时体系三相共存,自由度为0,出现水平线段。

水平段代表二元系中三相平衡的情况,在此段只是溶液量减少固相量增加,而温度保持不变。

当液相完全消失后,温度又开始下降,曲线与液体冷却曲线相似。

曲线d与b的冷却情况相同,只是冷至T时,所析出的固体为纯B。

由此可知,对组成一定的二组分低共熔混合物 7$系统,可以根据它的步冷曲线得出有固体析出的温度和低共熔点温度。

根据-系列组成不同系统的步冷曲线的各转折点,即可画出组分系统的相图(温度组成图)。

用热分析法(步冷曲线法)绘制相图时,被测系统必须时时处于或接近相平衡状态,因此冷却速率 b要足够慢才能得到较好的结果。

此外,在冷却过程图3-16中,一个新的固相出现以前,常常发生过冷现象,轻具有过冷现象时的步冷曲线微过冷则有利于测量相变温度,但严重过冷现象.却会使折点发生起伏,使相变温度的确定产生困难,如图3- 16。

遇此情况,可延长dc线与ab线相交,交点e 即为转折点。

五、实验过程(包括步骤、装置图、注意事项)
实验步骤
1.配制样品
用最小刻度为0.1 g的托盘天平分别配制含钱25% .58%、70% .90%的铋锡混合物和纯锡纯铋各100g.装人6个样品管中。

样品上覆盖层石器粉以防止金属氧化。

2.测量样品的步冷曲线
将装有样品的试管放人炉内,把铂电极温度计插人样品管中使其顶部离样品管底约 1 cm)。

接通电源,根据不同组成设置加热温度,使样品加热熔融。

炉温控制在以样品全部熔化后再升高50℃为宜。

调节加热功率和冷却风速控制电炉的冷却速率,通常为每分钟下降6℃~8℃每隔30s读取一次温度数值,直至三相共存温度以下约50℃。

六、数据处理(包括数据的列表、整理计算、作图、结果讨论。

注:必须把原始数据按照教材上表格的形式列表)
(1)数据记录
(2)室温:13.3℃ 大气压:107.34kPa
铋的含量(质量百分比) 0% 25%
58% 70% 90% 100% 平台/拐点/℃
231.9 203.8 263.4 271.0 271.4 最低共熔点/℃
134.9 134.6 134.0 133.9 01020304050100
120
140
160
180
200
220240
260
280
300
020*********
100150200250300100150200250
300T /℃T /℃
t/min 液相区固液共存区固相区低共熔点Sn Bi T /℃x B
液相区,f=2,φ=1
固液两相区,f=1,φ=2
三相平衡区,f=0,φ=3(低共熔点)
七、思考题
1、试用相律分析各步冷曲线上出现平台的原因?
因为金属熔融系统冷却时,由于金属凝固放热对体系散热发生一个补偿,因而造成冷却曲线上的斜率发生改变,出现折点。

当温度达到了两种金属的最低共熔点,会出现平台。

2、何为步冷曲线?用步冷曲线法绘制相图时,应注意哪些问题?
步冷曲线是热分析法绘制凝聚体系相图的重要依据。

步冷曲线上的和转折点表征某一温度下发生相变的信息,二元凝聚体系相图可根据步冷曲线来绘制.常规的手工绘图方法不仅繁琐而且不可避免地会引入人为误差,随着计算机技术在数据处理方面的应用,可利用计算机编辑。

步冷曲线是晶体的熔点组成的曲线,可以得到晶体在不同温度时的组成和熔点的变化情况。

3、为什么在不同组分的步冷曲线上,最低共熔点的水平线段长度不同?
因为最低共熔混合物各组分含量不同,完全凝固所用时间不同,故水平线段不同,含量大的,平台长;组成越接近低共熔,析出越多,平台越长。

4、对于不同组成的混合物的步冷曲线,其水平段对应的温度值是否相同?
不相同。

5、为什么要缓慢冷却合金做步冷曲线?
因为步冷曲线要尽可能接近平衡态,如果冷却速度太快,很容易造成过冷,步冷曲线就不准了
八、实验心得
通过本次实验我掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法,了解。

相关文档
最新文档