2017年福建省泉州市中考数学试题(含答案)
2017福建中考数学试卷解析完整版
A.-3
B. 1
C. 1
D.3
3
3
【分析】直 接 根 据 相 反 数 的 定 义 进 行 解 答 即 可 .
【答案】D. 解 : -3 的 相 反 数 是 : 3 ,故 选 D.
【关键词】相 反 数 .
2.(2017 福建,题号 2,分值 4)如图,由四个正方体组成的几何题的左视图是
(A)
(B)
B.1.36 105
C.136 103
D.1.36 106
【分析】科学记数法的表示形式为 a 10n 的形式,其中1 a 10 , n 为整数.确定 n 的 值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值>1 时, n 是正数;当原数的绝对值<1 时, n 是负数. 【答案】B. 解:136000 1.36 105 ,故选:B.
6.(2017
福建,题号
6,分值
4)不等式组:
x x
2 3
0 0
的解集是
A. 3 x 2
B. 3 x 2
C. x 2
D. x 3
【分析】根据解不等式组的方法可以求得原不等式组的解集.
【答案】A 解 x 2 0 x 3 0
解不等式①,得: x 2 , 解不等式②,得 x 3 , 由①②可得, 3 x 2 , 故原不等式组的解集是 3 x 2 ,故选 A.
2017 福建中考解析--福建数学团队出品
2017 年福建省中考数学试卷
满分:150 分 版本:人教(北师,华师大)
由宁德屏南张小锋,福安郑惠,福鼎雷少华,方光德,金良快共五位老师解析.
2017年福建省中考数学试卷及答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前福建省2017年初中毕业和高中阶段学校招生考试数学 ...................................................... 1 福建2017年初中毕业和高中阶段学校招生考试数学答案解析. (4)福建省2017年初中毕业和高中阶段学校招生考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是( )A .3-B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )AB C D 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯ D .613610⨯ 4.化简2(2)x 的结果是( )A .4xB .22xC .24x D .4x 5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形6.不等式组20,30x x -⎧⎨+⎩≤>的解集是( )A .32x -<≤B .32x -≤<C .2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C .BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(非选择题 共110分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.计算0|2|3--= .12.如图,ABC △中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 . 15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度. 16.已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)先化简,再求值:21(1)1aa a --,其中21a =-.18.(本小题满分8分)如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CE ===.求证:A D =∠∠.19.(本小题满分8分)如图,ABC △中,90BAC =︒∠,AD BC ⊥,垂足为D .求作ABC ∠的平分线,分别交AD ,AC 于,P Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.(本小题满分8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只.”试用列方程(组)解应用题的方法求出问题的解.21.(本小题满分8分)如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD =︒∠.(1)若4AB =,求CD 的长;(2)若,BC AD AD AP ==,求证:PD 是O 的切线.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本小题满分10分)小明在某次作业中得到如下结果:2222sin 7sin 830.12+0.99=0.9945︒+︒≈, 2222sin 22sin 680.37+0.93=1.0018︒+︒≈, 2222sin 29sin 610.48+0.87=0.9873︒+︒≈, 2222sin 37sin 530.60+0.80=1.0000︒+︒≈, 2222sin 45sin 45(+(=122︒+︒≈. 据此,小明猜想:对于任意锐角α:均有22sin sin (90)1αα+︒-=.(1)当30α=︒时,验证22sin sin (90)1αα+︒-=是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(本小题满分10分)自2016年国庆后,许多高校均投放了使用手机就可随取随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6同时,愿,(1)写出,a b 的值;(2)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5 800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利?说明理由.24.(本小题满分12分)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段,AC BC 上的点,且四边形PEFD 为矩形.(1)若PCD △是等腰三角形,求AP 的长; (2)若AP ,求CF 的长.25.(本小题满分14分)已知直线2y x m =+与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (1)求抛物线顶点Q 的坐标(用含a 的代数式表示); (2)说明直线与抛物线有两个交点; (3)直线与抛物线的另一个交点记为N . (ⅰ)若112a -≤≤-,求线段MN 长度的取值范围; (ⅱ)求QMN △面积的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
20170515-1(定稿)泉州市2017届初中毕业班中考模拟数学试卷(一)参考答案及评分标准
泉州市2017届初中毕业班中考模拟数学试卷(一)参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题4分,共40分)1.B 2.A 3.B 4.B 5.B 6.D 7.C 8.B 9.B10.D 二、填空题(每小题4分,共24分)11.12 12.3(1)(1)a ab ab +- 13.42x y =⎧⎨=⎩14.<15.16三、解答题(共86分)17.(本小题8分)解:原式222444x x x x =++-++……………………………………………………………6分=248x x ++……………………………………………………………………………7分当2410x x +-=时,即241x x +=原式=189+=……………………………………………………………………………8分18.(本小题8分)解:2(2)(13)6x x --+=………………………………………………………………………4分24136x x ---=23641x x -=++ 11x -==11x - 所以,方程的解为=-11x …………………………………………………………………8分19.(本小题8分)解法一:添加:BD CD =或点D 为线段BC 的中点…………………………………………3分 理由:∵AB AC =∴B C ∠=∠ ……………………………………………………………………………… 4分 又∵,DE AB DF AC ⊥⊥∴90DEB DFC ∠=∠=︒,………………………………………………………………5分 在DCF和DBE中,∵DFC DEB C B CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………………………………………………………6分 ∴()DCF DBE AAS ≌………………………………………………………………7分∴DF DE =………………………………………………………………………………8分 解法二:添加:BE CF =…………………………………………………………………………3分理由:∵AB AC =∴B C ∠=∠ …………………………………………………………………………… 4分又∵,DE AB DF AC ⊥⊥∴90DEB DFC ∠=∠=︒,……………………………………………………………… 5分 在DCF 和DBE 中,∵DFC DEB CF BE C B ∠=∠⎧⎪=⎨⎪∠=∠⎩……………………………………………………………………6分 ∴()DCF DBE ASA ≌………………………………………………………………7分∴DF DE =………………………………………………………………………………8分20.(本小题8分)解:(1)过点C 作CD ⊥x 轴于D …………………………………………………………………1分∵A (2,0),B (0,4),C (﹣3,2)∴2,3,2,4CD OD OA OB ==== ∴2425S 4,S 5,22AOB ACD ⨯⨯==== 3(24)S 92BODC ⨯+==四边形 ∴S S S S 8ABC OAB ACD BODC =+-= 四边形………………4分 (2)当点P 在点A 的左边时,2AP m =-………………5分 ∵S △P AB =S △ABC =8∴4(2)S 2(2)822PAB AP OB m m ⋅-===-= ………6分 解得2m =-……………………………………………7分当点P 在点A 的右边时,同理可得6m =综上所述,m 的值为2-或6 ……………………………………………………………8分21.(本小题8分)(1)200;…………………………………2分 (2)条形统计图如图所示;………………4分 (3)解法一:列表如下:……………………………………………………7分所有等可能的结果为12种,其中抽到甲乙的为2种, 所以P (抽到甲乙)21126==.…………………………………………………………………8分图(1)60解法二:画树状图如下:…7分所有等可能的结果为12种,其中抽到甲乙的为2种, 所以P (抽到甲乙)21126==.…………………………………………………………………8分 22.(本小题10分)(1)证明:在矩形ABCD 中有:90,B C ∠=∠=︒6,AB DC ==8,AD BC ==∴90BAF AFB ∠+∠=︒……………………………………………………………1分∵∠AFE =90°∴90CFE AFB ∠+∠=︒……………………………………………………………2分∴CFE BAF ∠=∠……………………………………………………………………3分 ∴△ABF ∽△FCE …………………………………………………………………4分(2)解:在矩形ABCD 中有:90,D ∠=︒8,AD BC ==6,AB DC ==∴8tan AD AED DE DE∠== ∴当DE 取最小值时,tan ∠AED 的值最大,此时∠AED 最大 ∵6CE DE +=∴当CE 取最大值时,DE 取最小值……………………………………………………6分 设BF x =由(1)得△ABF ∽△FCE∴,AB BF FC CE =即6,8xx CE =-∴22(8)118(8)(4)6663x x CE x x x -==--=--+…………………………………8分 当x =4时,CE 取得最大值为83,DE 取得最小值为810633-=,此时∠AED 最大…………………………………10分23.(本小题10分)解:(1)y 1与x 的函数关系式:1(6)20,(0200)y a x x =--<≤…………………………………2分y 2与x 的函数关系式:220.051040,(080)y x x x =-+-<≤……………………………4分 (2)对于甲,∵60a ->∴y 1随x 的增大而增大∴当x =200时,y 1取得最大值为(1180200)a -万元;……………………………………6分 对于乙,2220.0510400.05(100)460y x x x =-+-=--+∴当x =80时,y 2取得最大值为440万元;…………………………………………………8分 ∵该公司选择甲产品产销可获得最大年利润 ∴1180200440a ->解得 3.7a <…………………………………………………………………………………9分 ∵3≤a ≤5∴3 3.7a ≤<…………………………………………………………………………………10分24.(本小题13分)解:(1)由已知得1,100m n mn +==-…………………………………………………………………1分∴2222()212(100)201m n m n mn +=+-=-⨯-=………………………………………3分 (2)①由题意得2123(2)()()()x x t x x x x x x --=---2213223(44)()()x x x t x x x x x x x x x -+-=---+……………………………4分 323212312233112344()()x x x t x x x x x x x x x x x x x x x -+-=-+++++-……6分∴1234,x x x ++=1223314,x x x x x x ++=123x x x t=故122331x x x x x x ++的值为4………………………………………………………8分②由①得1324,x x x +=-21331()4,x x x x x ++=∴2231(4)4,x x x x -+=31224(4)x x x x =--……………………………………………9分 ∴22313131()()4x x x x x x -=+-2222(4)4[4(4)]x x x =----22238x x =-+22416163()333x =--+≤……………………………………………………12分又当243x =时,得1383x x +=,1349x x =于是13,x x 是关于z 的方程284039z z -+=的两根,解得z =所以13x x ==因此当123444,333x x x -+===时31x x -的取得最大值3……………13分 (注:能说明243x =是存在的,都可以得该步骤的相应分数)25.(本小题13分)解:(1)∵,AB AC AB CD ==∴,B ACB D CAD ∠=∠∠=∠又∵B D ∠=∠ ∴DAC BCA ∠=∠∴AD BC ∥……………………………………………………………………………2分1802BAC ACD B ∠=∠=︒-∠∴AB CD ∥……………………………………………………………………………3分∴四边形ABCD 是平行四边形…………………………………………………………4分 (2)作△ACD 的外接圆⊙O ,以C 点为圆心,以CD 为半径画弧交⊙O 于点F ,连结CF 、AF 则,AFC D B CF CD AB ∠=∠=∠==………………………………………………6分 假设四边形ABCF 是平行四边形,则AF BC ∥,而AD BC ∥与“过一点有且只有一条直线与已知直线平行”相矛盾,那么假设不成立. 则四边形ABCF 不是平行四边形.……………………………8分 (3)解法一:如图,①先任意作一等腰三角形ABC ,使AB =AC ;……………10分 ②在底边BC 上取一点D (BC 中点除外);………………11分 ③以AD 的中垂线为对称轴,作△ADC 的轴对称图形△ADC ’; 所以,在ABDC ’中,AB =DC ,∠B =∠C ,但四边形ABDC ’不是平行四边形.即为所求作的反例图形.……13分 解法二:如图,①作平行四边形ABDC ,并连结AC ;………………10分 ②将△ACD 绕着点A 顺时针(或逆时针)旋转,使C 点再次落在BC (或BC 的延长线)上,记为点C ’,此时点D 旋转到D ’.………………………………………11分 所以,在ABC ’D ’中,AB =C ’D ’,∠B =∠D ’,但四边形ABDC ’不是平行四边形.即为所求作的反例图形. ………………………………………………………13分 解法三:如图,①作一个锐角A BC ;………………………………10分 ②以点A 为圆心,线段AB 长为半径画弧,与BC 相交于点F ;…………………………………………………11分 ③作△BAE ≌△AFC ,使BE =AC ,AE =CF;所以,在四边形ACBE 中,AC =BE ,∠C =∠E ,但四边形ACBE 不是平行四边形,即为所求作的反例图形.……13分BCD 解法一图D'C'D BCA解法二图EF解法四:如图,①作一个锐角A BC;………………………………………………………………………10分②以点A为圆心,线段AB长为半径画弧,与BC相交于点F;………………………………………………11分③作△F AE≌△ABC,使EF=AC,AE=BC所以,在四边形ACFE中,AC=EF,∠C=∠E,但四边形ACFE不是平行四边形,即为所求作的反例图形.…………………………………………………13分解法五:如图,①作平行四边形ABCD,使∠ACB为钝角,并连结AC;………………………………………10分②作△ADC的外接圆⊙O;以C为圆心,CD长为半径画弧,与⊙O相交于点E;……………………………………………11分③连结AE,所以,在ABCE中,AB=CE,∠B=∠E,但四边形ABCE不是平行四边形,即为所求作的反例图形.…………………………………13分F解法四图E解法五图。
2017泉州中考数学试题及答案,中考数学试题及答案
以下是泉州2017年全部科目的试题发布入口:
泉州
语文 数学 英语 化学 物理 历史 政治
语文 数学 英语 化学 物理 历史 政治
2017年中考结束后您可能还
பைடு நூலகம்出国留学网中考频道第一时间为您公布2017泉州中考数学试题及答案希望对您有所帮助欢迎您访问出国留学网查看更多中考资讯了解最新信息请按ctrlf5刷新页面
2017泉州中考数学试题及答案,中考数学试题及答案
天行健君子当自强不息。中考频道第一时间为您公布2017泉州中考数学试题及答案,希望对您有所帮助,欢迎您访问查看更多中考资讯,了解最新信息请按CTRL F5刷新页面。更多泉州中考分数线、泉州中考成绩查询、泉州中考志愿填报、泉州中考录取查询信息等信息请关注我们网站的更新!
2017福建中考数学试题及答案
2017福建中考数学试题及答案(正文开始)一、选择题1. (2x + 5)(x - 3)的展开式是A. 2x^2 - x - 15B. 2x^2 - 11x - 15C. 2x^2 - 8x - 15D. 2x^2 - 11x + 15答案:B. 2x^2 - 11x - 152. 若x - y = 5,且5x + 13y = 30,则x =A. 4B. 5C. 6D. 7答案:C. 63. 半径为r的圆垫在正方形内,正方形的边长是圆的直径的4倍,则正方形的面积是A. πr^2C. 16πr^2D. 64πr^2答案:C. 16πr^24. 如图,△ABC中,∠BAC = 90°,BC = 5cm,AC = 12cm,则AB =[图略]A. 5cmB. 7cmC. 9cmD. 10cm答案:B. 7cm二、填空题1. 化简:(-a^2)^3 × (-a)^4 的结果是______。
答案:a^142. 若x = 3/4,y = -2/3,则xy的值为______。
答案:-1/23. 已知函数y = -2x + 3,当x = 4时,y的值为______。
4. 三角形ABC中,∠ABC = 60°,∠BAC = 30°,则∠BCA的度数为______。
答案:90°三、解答题1. 以下是2017福建中考数学试题的两道解答题:(1)解方程2(3x - 1) = 3(2x + 4) + 6的结果。
解答:2(3x - 1) = 3(2x + 4) + 66x - 2 = 6x + 12 + 66x - 6x = 12 + 6 + 20 = 20方程无解。
(2)三角形ABC中,∠A = 60°,AB = 8cm,AC = 6√3 cm,求BC的长度。
解答:根据余弦定理:BC^2 = AB^2 + AC^2 - 2AB × AC × cos∠ABC^2 = 8^2 + (6√3)^2 - 2 × 8 × 6√3 × cos60°BC^2 = 64 + 108 - 96√3BC^2 = 172 - 96√3BC = √(172 - 96√3)以上是题目要求的2017福建中考数学试题及答案,更多内容请参考试卷或相关资料。
2017年福建省泉州市中考数学试题及解析
2017年福建省泉州市中考数学试卷一、选择题(共7小题,每小题3分,满分21分)23.D4.(3分)(2017•泉州)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都5.(3分)(2017•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()6.(3分)(2017•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值7.(3分)(2017•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是(). C二、填空题(共10小题,每小题4分,满分40分) 8.(4分)(2017•泉州)比较大小:4 (填“>”或“<”)9.(4分)(2017•泉州)因式分解:x 2﹣49= . 10.(4分)(2017•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为 . 11.(4分)(2017•泉州)如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.12.(4分)(2017•泉州)方程x 2=2的解是 .13.(4分)(2017•泉州)计算:+= .14.(4分)(2017•泉州)如图,AB 和⊙O 切于点B ,AB=5,OB=3,则tanA= .15.(4分)(2017•泉州)方程组的解是 .16.(4分)(2017•泉州)如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=.17.(4分)(2017•泉州)在以O为圆心3cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则该菱形的边长等于cm;弦AC所对的弧长等于cm.三、解答题(共9小题,满分89分)18.(9分)(2017•泉州)计算:|﹣4|+(2﹣π)0﹣8×4﹣1+÷.19.(9分)(2017•泉州)先化简,再求值:(x﹣2)(x+2)+x2(x﹣1),其中x=﹣1.20.(9分)(2017•泉州)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.21.(9分)(2017•泉州)为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.22.(9分)(2017•泉州)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是°.(2)请你帮学校估算此次活动共种多少棵树.23.(9分)(2017•泉州)如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D 是否在该反比例函数的图象上?24.(9分)(2017•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?25.(13分)(2017•泉州)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)26.(13分)(2017•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.2017年福建省泉州市中考数学试卷参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)23.D 表示在数轴上为:4.(3分)(2017•泉州)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都5.(3分)(2017•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()6.(3分)(2017•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值7.(3分)(2017•泉州)在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是. C﹣位于二、填空题(共10小题,每小题4分,满分40分) 8.(4分)(2017•泉州)比较大小:4 > (填“>”或“<”) =4,比较和4=,,,题目9.(4分)(2017•泉州)因式分解:x2﹣49=(x+7)(x﹣7).10.(4分)(2017•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为 1.2×103.11.(4分)(2017•泉州)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.BAD=∠12.(4分)(2017•泉州)方程x2=2的解是±.±.±13.(4分)(2017•泉州)计算:+=2.=14.(4分)(2017•泉州)如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.tanA=.故答案为:.15.(4分)(2017•泉州)方程组的解是.,,故答案为:16.(4分)(2017•泉州)如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=50°.17.(4分)(2017•泉州)在以O为圆心3cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则该菱形的边长等于3cm;弦AC所对的弧长等于2π或4πcm.===4l=三、解答题(共9小题,满分89分)18.(9分)(2017•泉州)计算:|﹣4|+(2﹣π)0﹣8×4﹣1+÷.19.(9分)(2017•泉州)先化简,再求值:(x﹣2)(x+2)+x2(x﹣1),其中x=﹣1.20.(9分)(2017•泉州)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.21.(9分)(2017•泉州)为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.;=22.(9分)(2017•泉州)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是72°.(2)请你帮学校估算此次活动共种多少棵树.×)每个小组的植树棵树:(棵)则此次活动植树的总棵树是:×23.(9分)(2017•泉州)如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D 是否在该反比例函数的图象上?y=(y=(k=xy=1=×=×),=,)在反比例函数y=24.(9分)(2017•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?25.(13分)(2017•泉州)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计),同理,可得即该三棱柱的侧面积与表面积的比值是.26.(13分)(2017•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.EM=FM=<21。
2017福建省中考数学卷及答案
A B C D(第7题) 2017年福建省中考数学卷一、选择题(共40分)1、 3的相反数是( ); A .3- B .31-C .31D .3 2、 三视图。
下面三个并排正方体,压一个正方体,问左视图;3、 用科学计数法表示136000的结果是( );A .0。
136×106B .1。
36×105C .136×103D .1。
36×106 4、 化简2)2(x 的结果是( )A .4x B .22x C .24x D .x 45、 下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形;B .正三角形既是轴对称图形,又是中心对称图形 ;C .线段是轴对称图形,但不是中心对称图形 ;D .菱形是中心对称图形,但不是轴对称图形。
6、 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .23≤<-xB .23<≤-xC .2≥xD . 3-<x 7、 某校举行“汉字听写比赛”,5个班代表队的正确答题数如图。
这5个正确答题数所组成的一组数据中的中位数和 众数是( );A .10,15B .13,15C .13,20D .15,158、 如图,AB 是直径,C 、D 是⊙O 上位于AB 异侧的两点, 下列四个角中,一定与∠ACD 互余的角是( ) A .∠ADC B .∠ABD C .∠BAC D .∠BAD 9、若直线过1++=k kx y 经过点(m ,n +3)和(m +1,12-n ), 且20<<k ,则n 的值可以是( )A .3B .4C .5D .610、如图,网格纸上正方形小格的边长为1。
图中线段AB 和 点P 绕着同一个点做相同的旋转,分别得到线段B A ''和 点P ',则点P '所在的单位正方形区域是( ) A .1区 B .2区 C .3区 D .4区正面(第8题)CA DBO(第14题)二、填空题:(共24分) 11、032--12、△ABC 中,E 、F 分别是AB 、AC 的中点,连线DE ,若DE=3,则BC=________;13、一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球。
2017年福建省中考数学试卷(后附答案解析)
2017年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣ C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30=.12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2017年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•长春)3的相反数是()A.﹣3 B.﹣ C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2017•福建)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2017•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2017•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2017•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2017•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2017•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2017•福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2017•福建)计算|﹣2|﹣30=1.【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2017•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于6.【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2017•福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2017•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2017•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A 的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2017•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2017•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP ∽△CDF ,是一道中考常考题.25.(14分)(2017•福建)已知直线y=2x +m 与抛物线y=ax 2+ax +b 有一个公共点M (1,0),且a <b .(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若﹣1≤a ≤﹣,求线段MN 长度的取值范围;(ⅱ)求△QMN 面积的最小值.【分析】(Ⅰ)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i )由(Ⅱ)的方程,可求得N 点坐标,利用勾股定理可求得MN 2,利用二次函数性质可求得MN 长度的取值范围;(ii )设抛物线对称轴交直线与点E ,则可求得E 点坐标,利用S △QMN =S △QEN +S △QEM 可用a 表示出△QMN 的面积,再整理成关于a 的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),且a <0,设△QMN 的面积为S ,∴S=S △QEN +S △QEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a 2+(8S ﹣54)a +24=0(*),∵关于a 的方程(*)有实数根,∴△=(8S ﹣54)2﹣4×27×24≥0,即(8S ﹣54)2≥(36)2, ∵a <0,∴S=﹣﹣>, ∴8S ﹣54>0,∴8S ﹣54≥36,即S ≥+, 当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN 面积的最小值为+. 【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M 的坐标得到b 与a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得N 点的坐标是解题的关键,在最后一小题中用a 表示出△QMN 的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
20170525-1泉州市2017届初中毕业班中考模拟数学试卷(二)参考答案及评分标准
∴点 N 关于对称轴对称的点 N ' 为( n 2 n
∵在抛物线对称轴右侧,y 随 x 的增大而减小 ∴①当 n 4n 6 n n
2 2
9 5 时,即 n 时, y1 y2 …………………………………11 分 4 4 9 5 2 2 ②当 n 4n 6 n n 时,即 n 时, y1 y2 …………………………………12 分 4 4 9 5 2 2 ③当 n 4n 6 n n 时,即 n 时, y1 y2 …………………………………13 分 4 4
解得: x=40 ,…………………………………………………………………………………9 分 经检验 x=40 是原方程的根,且符合题意 所以若该小组计划每天的销售利润为 450 元, 则其单价应定为 40 元.……………………10 分 23. (本小题 10 分) 解:(1)在正方形 ABCD 中, AB=BC=CD, ∠BAD= ∠BCD=90° . 由对折可知:∠DAE= ∠FAE,∠BAG= ∠FAG,
21. (本小题 8 分) 解:(1)由旋转的性质得:∠DCF=90° ,∴∠DCE+∠ECF=90° , ACB =90° DCE + BCD =90° ∵∠ ,∴∠ ∠ , ∴∠ECF=∠BCD,……………………………………………………………………………2 分
DC FC 在△BDC 和△EFC 中, BCD ECF BC EC
2
所以 2 x 2 3x 3 …………………………………………………………………………………7 分 所以原式=
3x 3 2 x 2 2 2. ……………………………………………………………………8 分 x2 x
2017年福建省中考数学试卷及答案解析.
2017福建省中考数学卷及答案
A B CD(第7题)2017年福建省中考数学卷一、选择题(共40分)1、 3的相反数是( ); A .3- B .31-C .31D .3 2、 三视图。
下面三个并排正方体,压一个正方体,问左视图;3、136000的结果是( ); A .0.136×106 B .1.36×105C .136×103D .1.36×106 4、 化简2)2(x 的结果是( )A .4x B .22x C .24x D .x 45、 下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形;B .正三角形既是轴对称图形,又是中心对称图形 ;C .线段是轴对称图形,但不是中心对称图形 ;D .菱形是中心对称图形,但不是轴对称图形。
6、 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .23≤<-xB .23<≤-xC .2≥xD . 3-<x 7、 某校举行“汉字听写比赛”,5个班代表队的正确答题数如图。
这5个正确答题数所组成的一组数据中的中位数和 众数是( );A .10,15B .13,15C .13,20D .15,158、 如图,AB 是直径,C 、D 是⊙O 上位于AB 异侧的两点, 下列四个角中,一定与∠ACD 互余的角是( ) A .∠ADC B .∠ABD C .∠BAC D .∠BAD9、若直线过1++=k kx y 经过点(m ,n +3)和(m +1,12-n ), 且20<<k ,则n 的值可以是( )A .3B .4C .5D .610、如图,网格纸上正方形小格的边长为1。
图中线段AB 和 点P 绕着同一个点做相同的旋转,分别得到线段B A ''和 点P ',则点P '所在的单位正方形区域是( ) A .1区 B .2区 C .3区 D .4区 二、填空题:(共24分) 11、032--12、△ABC 中,E 、F 分别是AB 、AC 的中点,连线DE ,若DE=3,则BC=________;13、一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球。
2017年福建省中考数学试卷含答案
2017年福建省中考数学试卷含答案福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是()3.用科学计数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.不等式组x2≤0。
的解集是()x3>A.3<x≤2B.3≤x<2C.x≥2D.x<-37.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,158.如图,AB是O的直径,C,D是O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADCBB.∠ABDC.∠BACD.∠BAD删除无效段落)福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.求3的相反数。
A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是哪个?图片无法显示,无法改写)3.用科学计数法表示136 000.A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2.A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是哪个?A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.求不等式组的解集。
2017年福建省中考数学试卷
2017年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30=.12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A 的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2017年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•长春)3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2017•福建)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2017•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2017•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2017•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,故选A.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2017•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2017•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2017•福建)如图,网格纸上正方形小格的边长为1.图中线段AB 和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2017•福建)计算|﹣2|﹣30=1.【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2017•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于6.【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2017•福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2017•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2017•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A (2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2017•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2017•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P 也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.25.(14分)(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利(ii)设抛物线对称轴交直线与点E,用二次函数性质可求得MN长度的取值范围;则可求得E点坐标,利用S=S△QEN+S△QEM可用a表示出△QMN的面积,再整△QMN理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i )由勾股定理可得MN 2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a ≤﹣, ∴﹣2≤≤﹣1,∴MN 2随的增大而减小,∴当=﹣2时,MN 2有最大值245,则MN 有最大值7, 当=﹣1时,MN 2有最小值125,则MN 有最小值5,∴线段MN 长度的取值范围为5≤MN ≤7;(ii )如图,设抛物线对称轴交直线与点E ,∵抛物线对称轴为x=﹣, ∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),且a <0,设△QMN 的面积为S , ∴S=S △QEN +S △QEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a 2+(8S ﹣54)a +24=0(*), ∵关于a 的方程(*)有实数根,∴△=(8S ﹣54)2﹣4×27×24≥0,即(8S ﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b 与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省泉州市2017年中考数学试卷一、选择题(每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡题目区域内作答答对的得3分,答错或不答一律得0分.)1.(3分)(2017•泉州)2017的相反数是()A.2017 B.﹣2017 C.D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2017的相反数是﹣2017.故选B.点评:本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017•泉州)下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.解答:解:A、a3+a3=2a3,故选项错误;B、2(a+1)=2a+2≠2a+1,故选项错误;C、(ab)2=a2b2,故选项正确;D、a6÷a3=a3≠a2,故选项错误.故选:C.点评:本题主要考查了二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则,解题的关键是熟记法则运算3.(3分)(2017•泉州)如图的立体图形的左视图可能是()A.B.C.D.考点:简单几何体的三视图.分析:左视图是从物体左面看,所得到的图形.解答:解:此立体图形的左视图是直角三角形,故选:A.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)(2017•泉州)七边形外角和为()A.180°B.360°C.900°D.1260°考点:多边形内角与外角.分析:根据多边形的外角和等于360度即可求解.解答:解:七边形的外角和为360°.故选B.点评:本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360°是解题的关键.5.(3分)(2017•泉州)正方形的对称轴的条数为()A.1B.2C.3D.4考点:轴对称的性质分析:根据正方形的对称性解答.解答:解:正方形有4条对称轴.故选D.点评:本题考查了轴对称的性质,熟记正方形的对称性是解题的关键.6.(3分)(2017•泉州)分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.7.(3分)(2017•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故本选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故本选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(每小题4分,共40分)8.(4分)(2017•泉州)2017年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1200000000用科学记数法表示为:1.2×109.故答案为:1.2×109.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)(2017•泉州)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=50°.Array考点:对顶角、邻补角.分析:根据对顶角相等,可得答案.解答:解;∵∠BOC与∠AOD是对顶角,∴∠BOC=∠AOD=50°,故答案为:50.点评:本题考查了对顶角与邻补角,对顶角相等是解题关键.10.(4分)(2017•泉州)计算:+=1.考点:分式的加减法分析:根据同分母分式相加,分母不变分子相加,可得答案.解答:解:原式==1,故答案为:1.点评:本题考查了分式的加减,同分母分式相加,分母不变分子相加.11.(4分)(2017•泉州)方程组的解是.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:3x=6,即x=2,将x=2代入①得:y=2,则方程组的解为.故答案为:点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(4分)(2017•泉州)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.考点:众数.分析:根据众数的定义即一组数据中出现次数最多的数,即可得出答案.解答:解:∵5出现了3次,出现的次数最多,∴这组数据的众数为5;故答案为:5.点评:此题考查了众数,众数是一组数据中出现次数最多的数,注意众数不止一个.13.(4分)(2017•泉州)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= 65°.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠2,代入求出即可.解答:解:∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,故答案为:65.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.14.(4分)(2017•泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为5cm.考点:直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.解答:解:∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.15.(4分)(2017•泉州)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110°.考点:等腰三角形的性质.分析:先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答:解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.点评:此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.16.(4分)(2017•泉州)已知:m、n为两个连续的整数,且m<<n,则m+n=7.考点:估算无理数的大小.分析:先估算出的取值范围,得出m、n的值,进而可得出结论.解答:解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.点评:本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.17.(4分)(2017•泉州)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为1米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.考点:圆锥的计算;圆周角定理专题:计算题.分析:(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可.解答:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=,∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=,解得r=.故答案为1,.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.三、解答题(共89分)18.(9分)(2017•泉州)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、绝对值、负指数幂、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+6﹣8×+4=1+6﹣2+4=9.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负指数幂、二次根式化简等考点的运算.19.(9分)(2017•泉州)先化简,再求值:(a+2)2+a(a﹣4),其中a=.考点:整式的混合运算—化简求值分析:首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.解答:解:(a+2)2+a(a﹣4)=a2+4a+4+a2﹣4a=2a2+4,当a=时,原式=2×()2+4=10.点评:此题考查整式的化简求值,注意先化简,再代入求值.20.(9分)(2017•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.考点:矩形的性质;平行四边形的判定与性质专题:证明题.分析:根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.解答:证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.点评:本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.21.(9分)(2017•泉州)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.考点:列表法与树状图法;概率公式.分析:(1)由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.解答:解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是:;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)(2017•泉州)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?考点:二次函数的性质;坐标与图形变化-旋转.分析:(1)由于抛物线过点O(0,0),A(2,0),根据抛物线的对称性得到抛物线的对称轴为直线x=1;(2)作A′B⊥x轴与B,先根据旋转的性质得OA′=OA=2,∠A′OA=2,再根据含30度的直角三角形三边的关系得OB=OA′=1,A′B=OB=,则A′点的坐标为(1,),根据抛物线的顶点式可判断点A′为抛物线y=﹣(x﹣1)2+的顶点.解答:解:(1)∵二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).∴抛物线的对称轴为直线x=1;(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=2,在Rt△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为(1,),∴点A′为抛物线y=﹣(x﹣1)2+的顶点.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.23.(9分)(2017•泉州)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表类别时间t(小时)人数A t<0.5 10B 0.5≤t<1 20C 1≤t<1.5 15D t≥1.5 a(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?考点:条形统计图;用样本估计总体;统计表分析:(1)用抽查的学生的总人数减去A,B,C三类的人数即为D类的人数也就是a的值,并补全统计图;(2)先求出课外阅读时间不少于1小时的学生占的比例,再乘以1300即可.解答:解:(1)50﹣10﹣20﹣15=5(名),故a的值为5,条形统计图如下:(2)1300×=520(名),答:估计该校共有520名学生课外阅读时间不少于1小时.点评:本题主要考查样本的条形图的知识和分析问题以及解决问题的能力,属于基础题.24.(9分)(2017•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B 处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用分析:(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.解答:解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.点评:本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0≤t≤1时,d2﹣d1>10;当1<t≤3时,d1﹣d2>10,分类讨论是解题关键.25.(12分)(2017•泉州)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.考点:四边形综合题分析:(1)①根据有两组对边互相平行的四边形是平行四边形即可求得,②根据△ADF∽△ABC推出对应边的相似比,然后进行转换,即可得出h与x之间的函数关系式,根据平行四边形的面积公式,很容易得出面积S关于h的二次函数表达式,求出顶点坐标,就可得出面积s最大时h的值.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.解答:解:(1)①∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形.②作AG⊥BC,交BC于G,交DF于H,∵∠ACB=45°,AC=24cm∴AG==12,设DF=EC=x,平行四边形的高为h,则AH=12h,∵DF∥BC,∴=,∵BC=20cm,即:=∴x=×20,∵S=xh=x•×20=20h﹣h2.∴﹣=﹣=6,∵AH=12,∴AF=FC,∴在AC中点处剪四边形DECF,能使它的面积最大.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.理由:对角线互相垂直平分的四边形是菱形.点评:本题考查了相似三角形的判定及性质、菱形的判定、二次函数的最值.关键在于根据相似三角形及已知条件求出相关线段的表达式,求出二次函数表达式,即可求出结论.26.(14分)(2017•泉州)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.考点:反比例函数综合题;待定系数法求反比例函数解析式;勾股定理;矩形的判定与性质;垂径定理;直线与圆的位置关系;锐角三角函数的定义专题:压轴题;探究型.分析:(1)设反比例函数的关系式y=,然后把点P的坐标(2,1)代入即可.(2)①先求出直线y=﹣x+3与x、y轴交点坐标,然后运用勾股定理即可求出△A′BC 的周长;过点C作CD⊥AB,垂足为D,运用面积法可以求出CD长,从而求出sin∠BA′C的值.②由于BC=2,sin∠BMC=,因此点M在以BC为弦,半径为m的⊙E上,因而点M应是⊙E与x轴的交点.然后对⊙E与x轴的位置关系进行讨论,只需运用矩形的判定与性质、勾股定理等知识就可求出满足要求的点M的坐标.解答:解:(1)设反比例函数的关系式y=.∵点P(2,1)在反比例函数y=的图象上,∴k=2×1=2.∴反比例函数的关系式y=.(2)①过点C作CD⊥AB,垂足为D,如图1所示.当x=0时,y=0+3=3,则点B的坐标为(0,3).OB=3.当y=0时,0=﹣x+3,解得x=3,则点A的坐标为(3,0),OA=3.∵点A关于y轴的对称点为A′,∴OA′=OA=3.∵PC⊥y轴,点P(2,1),∴OC=1,PC=2.∴BC=2.∵∠AOB=90°,OA′=OB=3,OC=1,∴A′B=3,A′C=.∴△A′BC的周长为3++2.∵S△ABC=BC•A′O=A′B•CD,∴BC•A′O=A′B•CD.∴2×3=3×CD.∴CD=.∵CD⊥A′B,∴sin∠BA′C===.∴△A′BC的周长为3++2,sin∠BA′C的值为.②当1<m<2时,作经过点B、C且半径为m的⊙E,连接CE并延长,交⊙E于点P,连接BP,过点E作EG⊥OB,垂足为G,过点E作EH⊥x轴,垂足为H,如图2①所示.∵CP是⊙E的直径,∴∠PBC=90°.∴sin∠BPC===.∵sin∠BMC=,∴∠BMC=∠BPC.∴点M在⊙E上.∵点M在x轴上∴点M是⊙E与x轴的交点.∵EG⊥BC,∴BG=GC=1.∴OG=2.∵∠EHO=∠GOH=∠OGE=90°,∴四边形OGEH是矩形.∴EH=OG=2,EG=OH.∵1<m<2,∴EH>EC.∴⊙E与x轴相离.∴x轴上不存在点M,使得sin∠BMC=.②当m=2时,EH=EC.∴⊙E与x轴相切.Ⅰ.切点在x轴的正半轴上时,如图2②所示.∴点M与点H重合.∵EG⊥OG,GC=1,EC=m,∴EG==.∴OM=OH=EG=.∴点M的坐标为(,0).Ⅱ.切点在x轴的负半轴上时,同理可得:点M的坐标为(﹣,0).③当m>2时,EH<EC.∴⊙E与x轴相交.Ⅰ.交点在x轴的正半轴上时,设交点为M、M′,连接EM,如图2③所示.∵∠EHM=90°,EM=m,EH=2,∴MH===.∵EH⊥MM′,∴MH=M′H.∴M′H═.∵∠EGC=90°,GC=1,EC=m,∴EG===.∴OH=EG=.∴OM=OH﹣MH=﹣,∴OM′=OH+HM′=+,∴M(﹣,0)、M′(+,0).Ⅱ.交点在x轴的负半轴上时,同理可得:M(﹣+,0)、M′(﹣﹣,0).综上所述:当1<m<2时,满足要求的点M不存在;当m=2时,满足要求的点M的坐标为(,0)和(﹣,0);当m>2时,满足要求的点M的坐标为(﹣,0)、(+,0)、(﹣+,0)、(﹣﹣,0).点评:本题考查了用待定系数法求反比例函数的关系式、勾股定理、三角函数的定义、矩形的判定与性质、直线与圆的位置关系、垂径定理等知识,考查了用面积法求三角形的高,考查了通过构造辅助圆解决问题,综合性比较强,难度系数比较大.由BC=2,sin∠BMC=联想到点M在以BC为弦,半径为m的⊙E上是解决本题的关键.。