天大物理化学简明教程习题答案
天津大学第五版-物理化学课后习题答案(全)
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
天津大学-第五版-物理化学上习题答案
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(÷)=小时1-3 0℃、的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为。
充以4℃水之后,总质量为。
若改用充以25℃、的某碳氢化合物气体,则总质量为。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
第一章习题答案
《物理化学简明教程》第1章习题解答1.1 解:等压p 1= p 2=p exW = -p ex (V 2-V 1)=p 1V 1-p 2V 2=nR (T 1-T 2)= 1⨯ 8.314 ⨯ (-1) = -8.314 J 1.2 解:(1)据理想气体状态方程nRT pV =,得 333m 1094224101000300314810-⨯=⨯⨯⨯==..p nRT V 外压始终维持恒定,系统对环境做功331001024.942102494.2ex W p V J -=-∆=⨯⨯⨯=-(2)2122212213433()()11()11108.31430010010() 2.2510J 10010100010ex ex ex ex W p V p V V nRT nRT p p p nRT p p p =-∆=--=--=--=-⨯⨯⨯⨯-=-⨯⨯⨯(3)等温可逆膨胀:212112334--ln -ln100010-10 3.314300ln10010-5.7410v v W p dVV nRT V p nRT p ===⨯=⨯⨯⨯⨯=⨯⎰1.3 解:(1) W = -p ex (V s -V l ) = p ex m (1/ρl -1/ρs ) = 105 ⨯ 1 ⨯ 18 ⨯ 10 -3 ⨯ ( 1/1⨯103-1/0.92⨯103 ) = -0.157 J(2) W = - p ex (V g -V l ) = pm/ρl - pV g = pnM/ρl –nRT = 105⨯1⨯18⨯10 -3 /11⨯103 -1⨯ 8.314 ⨯373.15 = -3101 J1.4 解: 最少功即为可逆压缩功 (1)对理想气体10 mol ,300 K1000 kPa,V 1 10 mol ,300 K 100 kPa,V 21513221118.314423.15100.035181 m 35.181 L ln 101.08.314423.15ln 35.1814425.45 JnRT V p V W pdV nRT V ⨯⨯=====-=-=-⨯⨯=⎰(2)对范德华气体2002362306310()()422.51037.0710NH a n p V nb nRTVa Pa m molb m mol ----+-==⨯⋅⋅=⨯⋅ 求V 132211101100()0p V nRT nb p V n a b -++=忽略300n a b 项,则有2211101102210110110116556525255321()0()()42(18.314423.15137.071010)210(18.314423.15137.071010)4101422.5102100.035097(m )35.097(L)p V nRT nb p V n a nRT nb p nRT nb p p n a V p W pdV ----++=+++-=⨯⨯+⨯⨯⨯=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯⨯+⨯===-=-⎰220210222000102136326()ln ()1010137.0710422.510118.314423.15ln ()0.0351137.07100.0351(4426.6737.963)4338.71 Ja n nRTdVV nb V V nb a n a n W nRT V nb V V ------⎡⎤-=-+-⎢⎥-⎣⎦⎡⎤⨯-⨯⨯⨯⨯=-⨯⨯+⎢⎥-⨯⨯⎣⎦=--+=⎰ 1.5 解: (1) ,221(H O,g)()135(673.15373.15)10.50KJ p m Q n C T T =⨯-=⨯⨯-= (2)()⎰⎰++==2121d d 2m T T T T ,p T cT bT a n T C n Q()()()⎥⎦⎤⎢⎣⎡-+-+-=31322122123121T T c T T b T T a n ()()()1336223molJ 37367310002231373673104914211004001629mol 1---⋅⎥⎦⎤⎢⎣⎡-⨯⨯--⨯⨯+-⨯=...= 10.85kJ1.6 解:1122522151112,21,21,11536.010*******K1.210()()(1)1.210201014502.5(1)24000.0J290v v m v m v m p V nRT p V nRT p T T p p V p V TQ U nC T T C T T C RT R T R R -==⨯=⨯=⨯=⨯=∆=-=⨯-=⨯-⨯⨯⨯=⨯-=1.7 解 经过计算,列出下列方框图过程(1)=a+b 过程a 为恒压过程 321()101325(11.222.4)101134.84J a W p V V -=--=--⨯=,21213()1()2318.314(136.5273)1702.29J 22837.13Ja v m a a a a U nC T T R T T Q H U W ∆=-=⨯-=⨯⨯-=-=∆=∆-=-过程b 为恒容过程0b W =,21,213()18.314(546136.5)5106.874J25()18.314(546136.5)8511.458J2b b v m b p m U Q nC T T H nC T T ∆==-=⨯⨯-=∆=-=⨯⨯-= 11111134.84J 2269.74J 3404.584J 5674.33Ja b a b a b a b W W W Q Q Q U U U H H H ∴=+==+=∆=∆+∆=∆=∆+∆=过程(2)= c+d 过程c 为恒温过程ab恒温可逆1mol 理气273K 22.4 L p1mol 理气136.5K ,11.2L ,p1mol 理气273K ,5.6L ,4p1mol 理气 546K 11.2 L 4pcd恒压恒容恒压21005.6ln18.314273ln 3146.503J 22.4c c c c U H V Q W nRT V ∆=∆==-==⨯⨯=- 过程d 为恒压过程321,212222224()4101325(11.2 5.6)102269.68J 5()18.314(546273)5674.305J23404.62J 876.82J 2527.80J 3404.62J 5674.305Jd d d p m d d d c d c d c d W p V V Q H nC T T U Q W W W W Q Q Q U Q W H H H -=--=-⨯-⨯=-=∆=-=⨯⨯-=∆=+=∴=+==+=∆=+=∆=∆+∆=比较两过程数据,有12121212,,,Q Q W W U U H H ≠≠∆=∆∆=∆,说明Q 和W 是途径函数,而U ,H 是状态函数。
天津大学-第五版-物理化学上习题答案
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(÷)=小时1-3 0℃、的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为。
充以4℃水之后,总质量为。
若改用充以25℃、的某碳氢化合物气体,则总质量为。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
《物理化学》课后习题答案(天津大学第四版)
因此,由标准摩尔生成焓
由标准摩尔燃烧焓
2.37 已知25 °C甲酸甲脂(HCOOCH3, l)的标准摩尔燃烧焓 为 ,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水 (H2O, l)及二氧化碳(CO2, g)的标准摩尔生成焓 分别 为 、 、 及 应用这些数据求25 °C时下列反应的标准摩尔反应焓。 解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓
2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与 100 kPa的大气相通,以维持容器内空气的压力恒定。今利用加热器 件使器内的空气由0 °C加热至20 °C,问需供给容器内的空气多少 热量。已知空气的 假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:在该问题中,容器内的空气的压力恒定,但物质量随温度 而改变
-46.11
NO2(g) 33.18
90.25
HNO3(l) -174.10
-241.818
Fe2O3(s) -824.2
-285.830 CO(g) -110.525
(1) (2) (3)
2.35 应用附录中有关物资的热化学数据,计算 25 °C时反应 的标准摩尔反应焓,要求: (1) 应用25 °C的标准摩尔生成焓数据; (2) 应用25 °C的标准摩尔燃烧焓数据。 解:查表知
可由
表出(Kirchhoff公式)
设甲烷的物质量为1 mol,则 最后得到
,
,
,
第三章 热力学第二定律
3.1 卡诺热机在 的高温热源和 的低温热源间工作。 求(1) 热机效率 ; (2) 当向环境作功 时,系统从高温热源吸收的热 及 向低温热源放出的热 。
天津大学《物理化学》第四版上、下册部分习题解答
面向21世纪课程教材 天津大学物理化学教研室编 高等教育出版社《物理化学》(上、下册)第四版习题解答上册P94(热力学第一定律):15.恒容绝热,ΔU=Q V =0ΔU=ΔU Ar +ΔU Cu =(nC V ,m ΔT)Ar +(nC p,m ΔT)Cu =4(20.786-R)(T -273.15)+2×24.435(T -423.15)=0 T=347.38KΔH=ΔH Ar +ΔH Cu =(nC p,m ΔT)Ar +(nC p,m ΔT)Cu =4×20.786(347.38-273.15)+2×24.435(347.38-423.15)=2469J 19.恒压绝热,ΔH=Q p =0ΔH=ΔH A +ΔH B =(nC p,m ΔT)A +(nC p,m ΔT)B =2×2.5R(T -273.15)+5×3.5R(T -373.15)=0 T=350.93KW=ΔU=ΔU A +ΔU B =(nC V ,m ΔT)A +(nC V ,m ΔT)B =2×1.5R(350.93-273.15)+5×2.5R(350.93-373.15)= -369.2J 35.(1) Δr H øm =Δf H øm,酯+2Δf H øm,水-2Δf H øm,醇-Δf H øm,氧= -379.07+2(-285.83)-2(-238.66)-0= -473.41kJ .mol -1 (2) Δr H øm =2Δc H øm,醇+Δc H øm,氧-Δc H øm,酯-2Δc H øm,水=2(-726.51)+0-(-979.5)-0= -473.52 kJ .mol -137.由 HCOOCH 3+2O 2==2CO 2+2H 2OΔc H øm,酯=Δr H øm =2Δf H øm,二氧化碳+2Δf H øm,水-Δf H øm,酯 Δf H øm,酯=2Δf H øm,二氧化碳+2Δf H øm,水-Δc H øm,酯=2(-393.509)+2(-285.83)-(-979.5)= -379.178 kJ .mol -1由 HCOOH+CH 3OH==HCOOCH 3+H 2O Δr H øm =Δf H øm,酯+Δf H øm,水-Δf H øm,酸-Δf H øm,醇= -379.178+(-285.83)-(-424.72)-(-238.66)= -1.628 kJ .mol -1P155(热力学第二定律):1. (1) η=1-T 2/T 1=1-300/600=0.5(2) η= -W/Q 1Q 1= -W/η=100/0.5=200kJ 循环 ΔU=0,-W=Q=Q 1+Q 2 -Q 2=Q 1+W=200-100=100kJ10.理想气体恒温 ΔU=0,ΔS 系统=nR ln (p 1/p 2)=1×8.3145ln (100/50)=5.763J .K -1(1) Q= -W=nRT ln (p 1/p 2) =1×8.3145×300ln (100/50)=1729J 可逆 ΔS 总=0(2) Q= -W=p ex ΔV=22111247J 2nRT nRT p nRT p p -==⎛⎫⎪⎝⎭-11247 4.157J K 300Q Q S T T--∆====-⋅环境环境环境ΔS 总=ΔS 系统+ΔS 环境=5.763-4.157=1.606J .K -1 (3) Q= -W=0 ΔS 环境=0ΔS 总=ΔS 系统+ΔS 环境=5.763J .K -1 19.恒压绝热,ΔH=Q p =0ΔH=ΔH 冷+ΔH 热=(C p ΔT)冷+(C p ΔT)热 =100×4.184(T -300.15)+200×4.184(T -345.15)=0 T=330.15KΔS=ΔS 冷+ΔS 热=C p,冷ln (T/T 1)+C p,热ln (T/T 1) =100×4.184ln (330.15/300.15)+200×4.184 ln (330.15/345.15)=2.678J .K -1 23.恒压 Q=ΔH=n Δvap H m =(1000/32.042)×35.32=1102.3kJW= -p ex ΔV= -p(V g -V l )= -pV g = -nRT= -(1000/32.042)×8.3145×337.80= -87655J ΔU=Q+W=1102.3-87.655=1014.6kJ可逆相变 ΔS=ΔH/T=1102.3/337.80=3.2632kJ .K -136. H 2O(l) 101.325kPa ,393.15K H 2O(g)ΔH 1=C p ΔT=1×4.224(-20)= -84.48kJ ΔH 3=C p ΔT=1×2.033×20= 40.66kJ ΔS 1=C p ln (T 2/T 1)=4.224ln (373.15/393.15) ΔS 3=C p ln (T 2/T 1)=2.033ln (393.15/373.15)=-0.2205kJ .K -1 =0.1061kJ .K -1H 2O(l) 101.325kPa,373.15KH 2O(g)ΔH 2=2257.4kJΔS 2=ΔH 2/T=2257.4/373.15=6.0496kJ .K -1ΔH=ΔH 1+ΔH 2+ΔH 3= -84.48+2257.4+40.66=2213.58kJ ΔS=ΔS 1+ΔS 2+ΔS 3= -0.2205+6.0496+0.1061=5.9352kJ .K -1 ΔG=ΔH -T ΔS=2213.58-393.15×5.9352= -119.84kJ或由22112211T T T p T T p T T T H H C dTC dT S S T∆=∆+∆∆∆=∆+⎰⎰计算40.(1) Δr H øm =2Δf H øm,CO +2Δf H øm,H2-Δf H øm,CH4-Δf H øm,CO2=2(-110.525)+0-(-74.81)-(-393.509)=247.269kJ .mol -1 Δr S øm =2S øm,CO +2S øm,H2-S øm,CH4-S øm,CO2=2×197.674+2×130.684-186.264-213.74=256.712J .K -1.mol -1 Δr G øm =Δr H øm -T Δr S øm =247.269-298.15×256.712/1000=170.730 kJ .mol -1 (2) Δr G øm =2Δf G øm,CO +2Δf G øm,H2-Δf G øm,CH4-Δf G øm,CO2=2(-137.168)+0-(-50.72)-(-394.359)=170.743kJ .mol -1(3) 反应物(150kPa) 产物(50kPa)ΔS 1=nR ln (p 1/p 2)=2R ln (150/100)=6.742 ΔS 2=nR ln (p 1/p 2)=4R ln (100/50)=23.053 ΔG 1=-nRT ln (p 1/p 2)=-2010 ΔG 1=-nRT ln (p 1/p 2)=-6873反应物(100kPa) 产物(100kPa)Δr S øm Δr G ømΔr S m =Δr S øm +ΔS 1+ΔS 2=256.712+6.742+23.053=286.507J .K -1.mol -1Δr G m =Δr G øm +ΔG 1+ΔG 2=170.743-2.010-6.873=161.860 kJ .mol -1 或 先求出各压力下的S m 、Δf G m 值或 由等温方程Δr G m =Δr G øm +RT ln J p (见第五章化学平衡) P208(多组分系统热力学):2. (1)/////(1)/0.095/0.1801580.01040.095/0.180158(10.095)/0.0180153B B BB BB B AB B A AB B B An m M mw M x n n m M m M mw M m w M ===+++-==+-(2) -3/0.0951036.5546mol m /0.180158B B B B B Bn m M w c V m M ρρ⨯=====⋅(3) -1//0.095/0.1801580.583mol kg (1)10.095B B BB B B AAB n m M mw M b m m m w =====⋅--7. k B =p B /x B =101.325/0.0425=2384kPa由 p=p A +p B =p A *x A +k B x B 101.325=10.0(1-x B )+2384x B x B =0.03847//36.4610.03847///36.461100/78.114B B BB B B AB B A AB n m M m x n n m M m M m ====+++m B =1.867g24.b B =ΔT f /K f =0.200/1.86=0.1075mol .kg -1**1000/18.01533.167 3.161kPa 1000/18.01530.1075A A A A A A Bn p p p x p n n ===⋅=⨯=++25.-30.400010000.16136mol m 8.3145298.15B c RT∏⨯===⋅⨯4-13/10 6.2010g mol0.16136110B B BB B B B n m M c VV m M c V-=====⨯⋅⨯⨯27.b B =ΔT f /K f =0.56/1.86=0.301mol .kg -1(1) Π=c B RT=ρb B RT=1000×0.301×8.3145×310.15=7.76×105Pa(2) /B B B BB An n m M b m m Vρ=≈=30.301100010342.30103g B B B m b VM ρ-==⨯⨯⨯=P245(化学平衡):5. 反应之间的关系为:(3)=2(2)-(1)故 Δr G øm,3=2Δr G øm,2-Δr G øm,1-RTlnK ø3=2(-RTlnK ø2)-(-RTlnK ø1) K ø3=( K ø2)2/ K ø16. SO 2Cl 2 == SO 2 + Cl 2开始压力 0 44.786 47.836 平衡压力 p 44.786-p 47.836-p平衡总压Σ=p+44.786-p+47.836-p=86.096 得p=6.526kPa22222222(44.786 6.526)(47.836 6.526)2.4226.526100SOCl SO ClSO Cl SO Cl p p p p ppK p p ppφφφφφ⋅⋅--====⋅⨯8. (1) PCl 5 == PCl 3 + Cl 2开始量 1 0 0平衡量 1-a a a 平衡总量Σ=1+a摩尔分数 1 111αααααα-+++ 325210.31211PCl ClPCl p p p p p p K p pppφφφφφφαααα⋅⋅+===-⋅+⎛⎫ ⎪⎝⎭代入p=200kPa ,p ø=100kPa ,得a =0.367 (2) PCl 5 == PCl 3 + Cl 2 开始量 1 0 5平衡量 1-a a 5+a 平衡总量Σ=6+a摩尔分数 15 666αααααα-++++ 3255660.31216PClClPCl p p p p pp p p K p pppφφφφφφφαααααα+⋅⋅⋅++===-⋅+⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭代入p=101.325kPa ,p ø=100kPa ,得a =0.26810.32266.66/20.1111100NH H Sp p K p p φφφ=⋅==⎛⎫ ⎪⎝⎭(1) NH 4HS (s) == NH 3 + H 2S 开始压 0 39.99平衡压 p 39.99+p 平衡总压Σ=39.99+2p 3239.990.111110010018.87kPa39.99277.73kPaNH H Sp p p p K ppp p φφφ+=⋅=⋅==∑=+=(2) 即要求Δr G m >0,也即J p =32NH H Sp p ppφφ⋅>K ø6.6660.1111100100p⨯> p>166.7kPa17.AgCl 的溶度积即反应AgCl==Ag ++Cl -的平衡常数Δr G øm =Δf G øm,Ag++Δf G øm,Cl --Δf G øm,AgCl=77.107+(-131.22)-(-109.789)=55.676kJ .mol -1105-355.6761000ln 22.4598.3145298.151.7610 1.3310mol dmr m G K RTK s c c φφφ--+-∆⨯=-=-=-⨯=⨯====⨯⋅下册P46(电化学): 10.Λm =κ/c=0.0368/(0.05×1000)=0.000736Ω-1.m 2.mol -1Λm ∞=λ+∞+λ-∞=0.034982+0.00409=0.039072Ω-1.m 2.mol -1 a =Λm /Λm ∞=0.000736/0.039072=0.018842250.050.01884 1.80910110.01884c K φαα-⨯===⨯--19.(1) Pb + Hg 2SO 4 == PbSO 4 + 2Hg(2) Δr G m = -zFE= -2×96485×0.9647= -186.16×103J .mol -1 Δr S m =zF(∂E/∂T)p =2×96485×1.74×10-4=33.58J .K -1.mol -1 Δr H m =Δr G m +T Δr S m = -186.16×103+298.15×33.58= -176.15×103 J .mol -1 Q r,m =T Δr S m =298.15×33.58=10.01×103 J .mol -1 21.Ag + 0.5Hg 2Cl 2 == AgCl + HgΔr S m =S m,AgCl +S m,Hg -S m,Ag -0.5S m,Hg2Cl2=96.2+77.4-42.55-0.5×195.8=33.15J .K -1.mol -1 Δr G m =Δr H m -T Δr S m =5435-298.15×33.15= -4449J .mol -14-144490.04611V19648533.15 3.43610V K 196485r m r m pG E zFS E T zF -∆=-==⨯∆∂===⨯⋅∂⨯⎛⎫ ⎪⎝⎭35.负极反应:2Sb+3H 2O -6e →Sb 2O 3+6H +6*21210.05916lg 0.05916lg 0.05916pH60.05916pH 0.05916pH 0.34510.228pH pH 3.98 5.960.059160.05916H H a a E E E E φφφφϕϕϕϕϕϕϕϕ++----+-+-=+=+=-=-=-+=+--=+=+=37.(1) 反应Fe 2++Ag +==Fe 3++Ag 相应电池为:Pt|Fe 2+,Fe 3+||Ag +|AgE ø=φ+ø-φ-ø=0.7994-0.770=0.0294V1964850.0294ln 1.1448.3145298.153.14zFE K RTK φφφ⨯⨯===⨯=(2) Fe 2+ + Ag + == Fe 3+ + Ag 开始浓度 0 0 0.05 平衡浓度 x x 0.05-x2-30.05 3.140.0439mol dmx K xx φ-===⋅40.(1) 溴化银电极的标准电势即银电极的非标准电势,||||130.05916lg 0.05916lg4.88100.79940.05916lg0.07105V1sp Ag AgBr Br Ag Ag Ag Ag Ag Ag Ag BrK a a φφφϕϕϕϕ-++++--==+=+⨯=+=(2) AgBr 的Δf G øm 即反应Ag+0.5Br 2==AgBr 的Δr G øm该反应相应电池为:Ag,AgBr|Br -|Br 2,Pt E ø=φ+ø-φ-ø=1.065-0.07105=0.99395V Δr G m ø= -zFE ø= -1×96485×0.99395= -95.901×103J .mol -1 P191(界面现象):3.汞γ乙醚-汞=γ水-汞+γ乙醚-水cos θ 0.379=0.375+0.0107cos θ θ=68.050 4. 02lnr p Mp RTrγρ=920.072750.018015ln1.07722.337998.38.3145293.15106.863kPar r p p -⨯⨯==⨯⨯⨯=6. 对水中气泡,66220.05885 1.17710Pa 0.110p r γ-⨯∆===-⨯-⨯ 对空中水滴,66220.05885 1.17710Pa 0.110p rγ-⨯∆===⨯⨯P289(化学动力学):7. CH 3NNCH 3 == C 2H 6 + N 2t=0 21.332 0 0 t=1000s p 21.332-p 21.332-p 总压Σ= p+(21.332-p)+(21.332-p)=22.732得 p=19.932kPa一级反应5-10141/2511121.332l n l n 6.78810s100019.932l n 2l n 21.02110s 6.78810p k t p t k --===⨯===⨯⨯9. 由题意 r 0=k 1c 0=1×10-3r=k 1c=0.25×10-3 两式相除,得 c 0/c=4一级反应 -1011/2111ln ln 40.0231min60ln 2ln 230.0min0.0231c k t c t k ======c 0=1×10-3/k 1=1×10-3/0.0231=0.0433mol .dm -313.二级反应 3-1-1201111110.0333d m m o l m i n1010.251k t c c =-=-=⋅⋅-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 23.由题意,半衰期与初压成反比,可知该反应为二级反应-1-1201/2110.00493kPa s 101.3252k p t ===⋅⨯30.1111lna E k k R T T =--⎛⎫⎪⎝⎭-1103.3100011ln1.56060.2928.3145353.15338.151.390minkk ⨯=--==⎛⎫⎪⎝⎭由速率常数的单位可知反应为一级反应,故1/2ln 2ln 20.4987min 1.390t k === 37.由动力学方程()11001ln1nnc kt cc kt c n --=-=-或可知:反应从某相同初始浓度c 0到达某一定浓度c 时,k 与t 成反比。
2023年大学_物理化学简明教程(邵谦著)课后答案下载
2023年物理化学简明教程(邵谦著)课后答案下载2023年物理化学简明教程(邵谦著)课后答案下载绪论0.1 物理化学的研究对象及其重要意义0.2 物理化学的研究方法0.3 学习物理化学的方法第一章热力学第一定律(一)热力学概论1.1 热力学的研究对象1.2 几个基本概念(二)热力学第一定律1.3 能量守恒--热力学第一定律1.4 体积功1.5 定容及定压下的热1.6 理想气体的热力学能和焓1.7 热容1.8 理想气体的绝热过程1.9 实际气体的节流膨胀(三)热化学1.10 化学反应的热效应1.11 生成焓及燃烧焓1.12 反应焓与温度的关系--基尔霍夫方程思考题第二章热力学第二定律2.1 自发过程的共同特征2.2 热力学第二定律的经典表述2.3 卡诺循环与卡诺定理2.4 熵的概念2.5 熵变的计算及其应用2.6 熵的物理意义及规定熵的计算2.7 亥姆霍兹函数与吉布斯函数2.8 热力学函数的?些重要关系式2.9 厶C的计算__2.10 非平衡态热力学简介思考题第三章化学势3.1 偏摩尔量3.2 化学势3.3 气体物质的化学势3.4 理想液态混合物中物质的化学势 3.5 理想稀溶液中物质的化学势3.6 不挥发性溶质理想稀溶液的依数性 3.7 非理想多组分系统中物质的化学势思考题第四章化学平衡4.1 化学反应的方向和限度4.2 反应的标准吉布斯函数变化4.3 平衡常数的各种表示法4.4 平衡常数的实验测定4.5 温度对平衡常数的影响4.6 其他因素对化学平衡的影响思考题第五章多相平衡5.1 相律(一)单组分系统5.2 克劳修斯一克拉佩龙方程5.3 水的相图(二)二组分系统5.4 完全互溶的双液系统__5.5 部分互溶的双液系统__5.6 完全不互溶的双液系统5.7 简单低共熔混合物的固一液系统 5.8 有化合物生成的固一液系统__5.9 有固溶体生成的固一液系统(三)三组分系统5.10 三角坐标图组成表示法__5.11 二盐一水系统__5.12 部分互溶的三组分系统思考题第六章统计热力学初步6.1 引言6.2 玻耳兹曼分布6.3 分子配分函数6.4 分子配分函数的求算及应用第七章电化学(一)电解质溶液7.1 离子的迁移7.2 电解质溶液的电导7.3 电导测定的应用示例7.4 强电解质的活度和活度系数__7.5 强电解质溶液理论简介(二)可逆电池电动势7.6 可逆电池7.7 可逆电池热力学7.8 电极电势7.9 由电极电势计算电池电动势7.10 电极电势及电池电动势的应用(三)不可逆电极过程7.11 电极的.极化7.12 电解时的电极反应7.13 金属的腐蚀与防护__7.14 化学?源简介第八章表面现象与分散系统(一)表面现象8.1 表面吉布斯函数与表面张力 8.2 纯液体的表面现象8.3 气体在固体表面上的吸附 8.4 溶液的表面吸附8.5 表面活性剂及其作用(二)分散系统8.6 分散系统的分类8.7 溶胶的光学及力学性质8.8 溶胶的电性质8.9 溶胶的聚沉和絮凝8.10 溶胶的制备与净化__8.11 高分子溶液思考题第九章化学动力学基本原理9.1 引言9.2 反应速率和速率方程9.3 简单级数反应的动力学规律9.4 反应级数的测定9.5 温度对反应速率的影响9.6 双分子反应的简单碰撞理论9.7 基元反应的过渡态理论大意__9.8 单分子反应理论简介思考题第十章复合反应动力学10.1 典型复合反应动力学10.2 复合反应近似处理方法10.3 链反应__10.4 反应机理的探索和确定示例10.5 催化反应10.6 光化学概要__10.7 快速反应与分子反应动力学研究方法简介思考题附录Ⅰ.某些单质、化合物的摩尔热容、标准摩尔生成焓、标准摩尔生成吉布斯函数及标准摩尔熵Ⅱ.某些有机化合物的标准摩尔燃烧焓(298K)Ⅲ.不同能量单位的换算关系Ⅳ.元素的相对原子质量表Ⅴ.常用数学公式Ⅵ.常见物理和化学常数物理化学简明教程(邵谦著):内容简介本教材自8月出版以来,受到了广大读者,特别是相关高校师生的厚爱,并被许多高校选作教材。
天津大学-第五版-物理化学上习题答案
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(÷)=小时1-3 0℃、的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为。
充以4℃水之后,总质量为。
若改用充以25℃、的某碳氢化合物气体,则总质量为。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学简明教程习题答案
第七章电化学用铂电极电解溶液。
通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的(2) 在的27 ℃,100 kPa下的解:电极反应为电极反应的反应进度为因此:用Pb(s)电极电解Pb(NO3)2溶液,已知溶液浓度为每1g水中含有Pb(NO3)×10-2g。
用银电极电解溶液。
通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。
求溶液中的和。
解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差:已知25 ℃时溶液的电导率为。
一电导池中充以此溶液,在25 ℃时测得其电阻为。
在同一电导池中装入同样体积的质量浓度为的溶液,测得电阻为。
计算(1)电导池系数;(2)溶液的电导率;(3)溶液的摩尔电导率。
解:(1)电导池系数为(2)溶液的电导率(3)溶液的摩尔电导率25 ℃时将电导率为的溶液装入一电导池中,测得其电阻为。
在同一电导池中装入的溶液,测得电阻为。
利用表7.3.2中的数据计算的解离度及解离常熟。
解:查表知无限稀释摩尔电导率为因此,已知25 ℃时水的离子积,、和的分别等于,和。
求25 ℃时纯水的电导率。
解:水的无限稀释摩尔电导率为纯水的电导率电池电动势与温度的关系为(1)写出电池反应;(2)计算25 ℃时该反应的以及电池恒温可逆放电时该反应过程的。
解:(1)电池反应为(2)25 ℃时因此,在电池中,进行如下两个电池反应:应用表7.7.1的数据计算两个电池反应的。
解:电池的电动势与电池反应的计量式无关,因此写出下列各电池的电池反应。
应用表7.7.1的数据计算25 ℃时各电池的电动势、各电池反应的摩尔Gibbs函数变及标准平衡常数,并指明的电池反应能否自发进行。
解:(1)电池反应根据Nernst方程(2)电池反应(3)电池反应应用表7.4.1的数据计算下列电池在25 ℃时的电动势。
物理化学简明教程习题答案
第七章电化学7.1 用铂电极电解溶液。
通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的?(2) 在的27 ℃,100 kPa下的?解:电极反应为电极反应的反应进度为因此:7.2 用Pb(s)电极电解Pb(NO3)2溶液,已知溶液浓度为每1g水中含有Pb(NO3)21.66×10-2g。
7.3 用银电极电解溶液。
通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。
求溶液中的和。
解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差:7.4 已知25 ℃时溶液的电导率为。
一电导池中充以此溶液,在25 ℃时测得其电阻为。
在同一电导池中装入同样体积的质量浓度为的溶液,测得电阻为。
计算(1)电导池系数;(2)溶液的电导率;(3)溶液的摩尔电导率。
解:(1)电导池系数为(2)溶液的电导率(3)溶液的摩尔电导率7.5 25 ℃时将电导率为的溶液装入一电导池中,测得其电阻为。
在同一电导池中装入的溶液,测得电阻为。
利用表7.3.2中的数据计算的解离度及解离常熟。
解:查表知无限稀释摩尔电导率为因此,7.7 已知25 ℃时水的离子积,、和的分别等于,和。
求25 ℃时纯水的电导率。
解:水的无限稀释摩尔电导率为纯水的电导率7.10 电池电动势与温度的关系为(1)写出电池反应;(2)计算25 ℃时该反应的以及电池恒温可逆放电时该反应过程的。
解:(1)电池反应为(2)25 ℃时因此,7.20 在电池中,进行如下两个电池反应:应用表7.7.1的数据计算两个电池反应的。
解:电池的电动势与电池反应的计量式无关,因此7.13 写出下列各电池的电池反应。
应用表7.7.1的数据计算25 ℃时各电池的电动势、各电池反应的摩尔Gibbs函数变及标准平衡常数,并指明的电池反应能否自发进行。
解:(1)电池反应根据Nernst方程(2)电池反应(3)电池反应7.14 应用表7.4.1的数据计算下列电池在25 ℃时的电动势。
物理化学简明教程考试试题及答案
2。指明电泳方向;
3.比较MgSO4,Na2SO4,AlCl3电解质对此溶胶的聚沉能力并简述原因
解:KI过量,稳定剂为KI
正极
AlCl3〉MgSO4〉Na2SO4
胶团显负电,故由哈迪—叔采规则,反离子价数越高,聚沉能力越强。
4. 40℃时,某反应 为一级反应,设反应初始速率 =1。00×10—3mol·dm—3·min—1,20分钟后,反应速率变为 =0。25×10-3mol·dm—3·min—1,试求40℃时:
5.已知FeO (s) + C (s) = CO (g) + Fe (s),反应的 且都不随温度而变化,欲使反应正向进行,则一定 ( A )
A.高温有利B。低温有利C。与温度无关D。与压力有关
6。1mol理想气体完成从V1,p1到V2,p2的过程后,其熵变应如何计算 ( A )
A, B.
C. D。无公式计算
A。标准还原电极电势最大者
B.标准还原电极电势最小者
C。极化后实际上的不可逆还原电势最大者
D.极化后实际上的不可逆还原电势最小者
11。下列哪种反应类型不是复合反应?(D)
A。对行反应B.平行反应C.连串反应D.基元反应
12。二级反应的速率常数的单位可以是: D
A。 B. C. D。
13。关于反应级数,下列说法中正确的是: D
4。固体表面对气体的吸附,依照固体表面分子与气体分子间作用力的不同,可以分为物理吸附和化学吸附。物理吸附的作用力是范德华力;化学吸附的作用力则是化学键力。
5。由光化学第二定律可知:在光化学的初级过程中,系统每吸收1摩尔光子,则活化1摩尔分子.
6.链反应一般由链的引发、链的传递和链的终止三个步骤构成。
物理化学(天大第五版全册)课后习题答案
物理化学(天大第五版全册)课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:11TT p V p V VT V V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(÷)=小时1-3 0℃、的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为。
充以4℃水之后,总质量为。
若改用充以25℃、的某碳氢化合物气体,则总质量为。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章气体的pVT性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度。
解:将甲烷(Mw =16.042g/mol)看成理想气体: PV=nRT , PV =mRT/ Mw甲烷在标准状况下的密度为=m/V= PMw/RT=10116.042/8.314515(kg/m3)=0.716 kg/m31.3 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ MwMw= mRT/ PV=(25.0163-25.0000)×8.314×298.15/(13330×100×10-6)M w =30.31(g/mol)1.4 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.5 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.6 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.3147⨯10-3mol(y1⨯30+(1-y1) ⨯58)⨯8.3147⨯10-3=0.3897y1=0.401 P1=40.63kPay2=0.599 P2=60.69kPa1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.81.9 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为因此1.10 25℃时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10℃,使部分水蒸气凝结为水。
试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。
已知25℃及10℃时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。
解:该过程图示如下设系统为理想气体混合物,则1.11 有某温度下的2dm3湿空气,其压力为101.325kPa,相对湿度为60%。
设空气中O2与N2的体积分数分别为0.21与0.79,求水蒸气、O2与N2的分体积。
已知该温度下水的饱和蒸汽压为20.55kPa(相对湿度即该温度下水蒸气的分压与水的饱和蒸汽压之比)。
1.12 一密闭刚性容器中充满了空气,并有少量的水。
但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。
若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。
设容器中始终有水存在,且可忽略水的任何体积变化。
300 K时水的饱和蒸气压为3.567 kPa。
解:将气相看作理想气体,在300 K时空气的分压为由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压为由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压1.13 CO2气体在40℃时的摩尔体积为0.381 dm3·mol-1。
设CO2为范德华气体,试求其压力,并比较与实验值 5066.3 kPa的相对误差。
1.14 今有0℃,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.15试由波义尔温度T B的定义式,证明范德华气体的T B可表示为T B=a/(bR)式中a,b 为范德华常数。
1.16把25℃的氧气充入40dm 3的氧气钢瓶中,压力达202.7×102kPa 。
试用普遍化压缩因子图求钢瓶中氧气的质量。
解:氧气的T C =-118.57℃,P C =5.043MPa氧气的T r =298.15/(273.15-118.57)=1.93, P r =20.27/5.043=4.02 Z=0.95 PV=ZnRTn=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol) 氧气的质量m=344.3×32/1000=11(kg)第二章 热力学第一定律2.1 1mol 水蒸气(H 2O,g)在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体,W =-p amb ΔV =-p(V l -V g ) ≈ pVg = nRT = 3.102kJ2.2 始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到-28.47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.3 某理想气体Cv,m=1.5R。
今有该气体5mol在恒容下温度升高50℃。
求过程的W,Q,ΔH和ΔU。
解: 理想气体恒容升温过程 n = 5mol CV,m= 3/2RQ V =ΔU = n CV,mΔT = 5×1.5R×50 = 3.118kJW = 0ΔH = ΔU + nRΔT = n C p,mΔT= n (CV,m+ R)ΔT = 5×2.5R×50 = 5.196kJ2.4 2mol某理想气体,Cp,m=7/2R。
由始态100kPa,50dm3,先恒容加热使压力升高至200kPa,再恒压冷却使体积缩小至25dm3。
求整个过程的W,Q,ΔH和ΔU。
解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.5 1mol某理想气体于27℃、101.325kPa的始态下,现受某恒定外压恒温压缩至平衡态,再恒容升温至97.0℃、250.00 kPa。
求过程的W、Q、△U、△H。
已知气体的C=20.92 J·K·mol-1。
V,m2.62.7 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4 mol的Ar(g)及150℃,2 mol 的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。
已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。
解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则2.8 单原子理想气体A与双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。
今该混合气体绝热反抗恒外压膨胀到平衡态。
求末态温度及过程的。
解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。
因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.9 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0℃的单原子理想气体A及5 mol,100℃的双原子理想气体B,两气体的压力均为100 kPa。
活塞外的压力维持在100 kPa不变。
今将容器内的隔板撤去,使两种气体混合达到平衡态。
求末态的温度T及过程的。
解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此O, l)在100℃的饱和蒸气压,在此温度、压力下水的摩尔蒸发焓2.10 已知水(H2。
求在在100℃,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。
设水蒸气适用理想气体状态方程式。
解:该过程为可逆相变2.11已知水(H2O,l)在100℃的饱和蒸气压p s=101.325kPa,在此温度、压力下水的摩尔蒸发焓。
试分别求算下列两过程的W,Q,ΔU和ΔH。
(水蒸气可按理想气体处理)(1)在100℃,101.325kPa条件下,1kg水蒸发为水蒸气(2)在恒定100℃的真空容器中,1kg 水全部蒸发为水蒸气,并且水蒸气压力恰好为101.325kPa。
解: (1)题给过程的始末态和过程特性如下:n = m/M = 1kg/18.015g·mol-1 = 55.509mol题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算n(Δvap H m)=2257 kJW=-p ambΔV =-p(V g -V l )≈-pVg = -n g RT=-172.2kJΔU = Q p + W =2084.79kJ(2)真空容器中W=0kJ2.12 已知100 kPa下冰的熔点为0 ℃,此时冰的比熔化焓热J·g-1. 水和冰的平均定压热容分别为及。