精密和超精密加工技术的发展

合集下载

精密和超精密加工的机床设备

精密和超精密加工的机床设备
特点
高精度、高效率、高表面质量、 低误差、低能耗等。
应用领域
01
02
03
04
航空航天
制造飞机发动机叶片、涡轮盘 等关键部件。
汽车制造
加工发动机缸体、曲轴等精密 零部件。
能源领域
制造核聚变反应堆中的超导线 圈、太阳能电池板等。
医疗器械
制造人工关节、牙科种植体等 医疗器件。
发展历程与趋势
发展历程
从20世纪50年代开始,精密和超精密加工技术经历了从简单磨削 到复杂切削,再到超精密切削的发展过程。
航空航天领域的应用案例
案例一
某航空发动机制造企业使用超精密加 工机床,对涡轮叶片进行高精度磨削 和抛光,提高了发动机性能和可靠性 。
案例二
某飞机制造企业采用精密加工机床, 对机身结构件进行高精度切割和加工 ,确保飞机整体装配精度和质量。
汽车工业领域的应用案例
案例一
某汽车零部件制造企业使用精密加工 机床,对发动机缸体进行高精度加工, 提高缸体质量和性能,降低发动机故 障率。
柔性化
为了满足多品种、小批量生产的需求,未来精密和超精密加工机床将采用模块化设计、可 重构制造系统等技术,提高机床的加工范围和适应能力。
新材料、新工艺的应用
新材料
随着新材料技术的发展,未来精密和超精密加工机床将采用新型高强度、高硬 度、轻质材料,提高加工效率和加工质量。
ห้องสมุดไป่ตู้新工艺
为了满足复杂形状和特殊材料的加工需求,未来精密和超精密加工机床将采用 新的切削工艺、光整加工工艺和复合加工工艺等,提高加工精度和表面质量。
伺服驱动技术
采用先进的伺服驱动技术, 实现高精度的位置控制和 速度控制。
插补算法

超精密加工技术的发展现状

超精密加工技术的发展现状

超精密加工技术的发展现状超精密加工技术的发展现状,哎呀,真是个让人觉得又神奇又复杂的话题啊!咱们得先了解一下超精密加工是什么。

它其实就是用极高的精度来加工材料,想想看,能把东西做到这么精准,真是令人叹为观止。

现在的制造业可离不开它,尤其是在航空、医疗、电子这些领域,越是高端的东西,越离不开超精密加工。

想象一下,微米级别的加工,那得多细腻啊!说真的,这技术的发展,真的是让人感觉到科技的力量。

在这过程中,咱们得提到几项关键技术,比如说光刻、超声波加工,还有激光加工。

光刻技术可谓是个“大明星”,在芯片制造中大显身手,像是在细致的画布上作画,光线勾勒出无数精致的图案。

超声波加工呢,哎,别小看它,利用声波的振动来加工,能把很多材料轻松处理掉,真是个“小帮手”。

激光加工嘛,嘿,那可是一把双刃剑,精准又快速,火花四溅的场景让人忍不住想为它点赞。

不过,话说回来,技术再先进,也得面对一些挑战。

比如说,成本问题。

超精密加工的设备可不是白菜价,维护保养更是个大开销。

这让很多小企业在这条路上犹豫不决,真是让人心疼。

材料的选择也非常重要,有些材料在超精密加工中表现得特别好,而有些则像个“死胖子”,怎么都弄不动。

为了追求更好的效果,研究人员们可是费尽心思,真是“煞费苦心”啊。

还有就是人才的培养。

这方面可不能马虎,超精密加工需要的人才既要有理论知识,又要有丰富的实践经验。

现在的大学里,很多学校已经开始设置相关课程,目的就是希望能培养出更多的技术人才,未来可得靠他们“撑门面”呢。

真心希望越来越多的人能加入这个行业,给我们带来更多的惊喜。

说到应用,超精密加工的舞台可大了!像航天器、手术刀、手机的内部零件等等,几乎无处不在。

你看看,航天器上那些复杂的零部件,没有超精密加工,恐怕就飞不起来了!还有手术刀,医生可不能用个普通的刀子,精细的切口直接关系到手术的成功与否,这可是关乎生命的大事啊!而手机的微小零件,哪个能离开超精密加工的加持?所以说,这技术的重要性,不用多说,大家都懂。

精密和超精密加工代表了加工精度发展的不同阶段

精密和超精密加工代表了加工精度发展的不同阶段

1、精密和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段2、什么叫精密加工?加工精度在0.1~1µm,加工表面粗糙度在Ra0.02~0.1µm之间的加工方法称为精密加工。

3、什么叫超精密加工?加工精度高于0.1µm,加工表面粗糙度小于Ra0.01µm之间的加工方法称为超精密加工。

4、以下哪些是精密和超精密加工的分类?A.去除加工B.结合加工;C.变形加工;D.切削加工;E.磨粒加工F.特种加工;G.复合加工;5、影响精密与超精密加工的因素有哪些?加工机理、被加工材料、加工设备及其基础元部件、加工工具、检测与误差补偿、工作环境等。

6、我国今后发展精密与超精密加工技术的重点研究内容包括什么?(1)超精密加工的加工机理;(2)超精密加工设备制造技术;(3)超精密加工刀具、磨具及刃磨技术;(4)精密测量技术及误差补偿技术;(5)超精密加工工作环境条件。

7、举例说明超精密切削的应用范围有哪些?陀螺仪、激光反射镜、天文望远镜的反射镜、红外反射镜和红外透镜、雷达的波导管内腔、计算机磁盘、激光打印机的多面棱镜、录像机的磁头、复印机的硒鼓、菲尼尔透镜等由有色金属和非金属材料制成的零件。

8、超精密切削速度是如何选择的?超精密切削实际速度的选择根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、金刚石刀具的尺寸寿命甚高,高速切削时刀具磨损亦甚慢,因此刀具是否磨损以加工表面质量是否下降超差为依据,切削速度并不受刀具寿命的制约。

10、单晶金刚石刀具破损或磨损不能继续使用的标志是?加工表面粗糙度超过规定值。

11、简述超精密切削时切削参数对积屑瘤生成的影响?见书本P13-14。

12、简述超精密切削时积屑瘤对切削力和加工表面粗糙度的影响?见书本P14-15。

13、分别用1-2句话总结切削速度、进给量、修光刃、切削刃、背吃刀量变化对加工表面质量的影响?在常用超精密切削速度范围内,切削速度对加工表面粗糙度基本无影响;带有修光刃的刀具,当f<0.02mm/r时,进给量再减小对表面粗糙度影响不大;修光刃的长度过长,对加工表面粗糙度影响不大。

超精密加工技术在未来机械领域的发展前景概述

超精密加工技术在未来机械领域的发展前景概述

超精密加工技术在未来机械领域的发展前景概述超精密加工技术在未来机械领域的发展前景[前言]近二十年以来机械制造业正以迅猛的发展步伐向精密加工、超精密加工发展,在未来的发展过程中精密加工、超精密加工将成为在国际竞争、市场竞争中取胜的关键技术。

现代制造业之所发要致力于提高加工精度,其主要原因在于提高产品的性能和质量,提高其质量的稳定性和性能的可靠性,促进产品的小型化、功能性强,零件互换性好,产品的装配、调试生产率高,并促进制造装配自动化。

随着制造业的发展,现在的精密机械加工正在从微米、亚微米级工艺发展,在今后的加工中,普通机械加工、精密加工与超精密加工精度可分别达到1μm、0.01μm、0.001μm(即1nm),而且超精密加工正在向原子级加工精度逼进(0.1nm)。

随着极限加工精度的不断提高,为科学技术的发展和进步创造了条件,也为机械冷加工提供了良好的物质手段。

关键词超精密加工发展趋势发展策略后续研发一、引言我们一提到超精密这个词语,就觉得它比较神秘,但跟任何其他复杂的高新技术一样,经过一段时间的熟悉、适应,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是如此。

实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。

超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。

二、正文超精密加工当前是指被加工零件的尺寸和形状精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,目前正在向纳米级加工技术发展。

超精密加工技术在国际上处于领先地位的国家是美国、英国和日本。

美国是开展超精密加工技术研究最早的国家,也是迄今处于领先地位的国家。

英国的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,是当今世界上精密工程的研究中心之一。

超精密加工技术的理论和应用研究

超精密加工技术的理论和应用研究

超精密加工技术的理论和应用研究超精密加工技术是指在微米和纳米级别下进行的精密加工过程。

随着现代科技的不断发展,超精密加工技术越来越受到重视,并广泛应用于电子、光学、航空航天和生物医疗等领域。

1. 超精密加工技术的发展历程超精密加工技术的发展历程可以追溯到20世纪50年代末期,当时主要应用于金属和陶瓷的球面加工和制造。

随着微电子技术的不断进步,超精密加工技术被广泛运用于微电子制造和微机电系统(MEMS)中,如晶体管、光学元件、压电陶瓷和生物芯片等。

在后来的发展中,超精密加工技术逐渐扩展到玻璃、塑料和石英等非金属材料的加工上。

同时,超精密加工技术还被应用于卫星、航天器和精密仪器的制造和维修中。

2. 超精密加工技术的理论基础超精密加工技术的理论基础主要涉及到两个方面:加工力学和加工控制。

加工力学研究表明,超精密加工过程中的切削作用受到材料本身的特性、切削工具的形状和刃口尺寸、切削速度和切削深度的影响。

因此,了解加工物料的相关特性并选择适当的切削参数,对加工质量和加工效率的提高具有重要意义。

加工控制方面的研究主要涉及到加工路径规划、加工速度和切削深度的控制以及加工设备的精度检测等。

3. 超精密加工技术在电子制造领域中的应用在电子制造领域中,超精密加工技术被广泛应用于半导体器件的制造和加工。

例如,通过超精密加工技术制作的半导体器件可以达到微米甚至纳米级别的精度,从而大大提高了器件的性能和稳定性。

此外,超精密加工技术还可以用于电子元器件的制造,如阻值、电容器和电感器等。

通过超精密加工技术制作的电子元器件具有更好的性能和精度,可以提高电路的稳定性和可靠性。

4. 超精密加工技术在航空航天领域中的应用在航空航天领域中,超精密加工技术主要应用于航空发动机部件的制造和维修。

例如,通过超精密加工技术制造的涡轮叶片具有更好的气动性能和材料特性,可以提高发动机的性能和效率。

同时,超精密加工技术还可以用于航空航天器件的制造和加工,如导航系统和通信设备等。

精密和超精密加工机床的现状及发展对策

精密和超精密加工机床的现状及发展对策
表2 KSX-815 超精密平面磨床主要指标
工作台尺寸 (宽×长) 800 mm×1 500 mm
最大加工高度
500 mm
最大通过宽度
1 100 mm
工作台进给速度
0.01~30 m/min
砂轮尺寸 (外径×宽) Φ510 mm×100 mm
砂轮转速
1 000~4 000 r/min
砂轮最小进刀量
0.2 μm
在高精度加工的范畴内, 根据精度水平的不 同, 分为 3 个档次:
2

Oct. 2010
第27卷 第10期 Vol.27 No.10
精 度 为 0.3~3 μm, 粗 糙 度 为 0.03~0.3 μm 的 为 精密加工;
精 度 为 0.03~0.3 μm, 粗 糙 度 为 0.005~0.03 μm 的称作超精密加工, 或亚微米加工;
年度 2000 2003 2006 2007
表1 我国机床进出口情况 (亿 美元)
产值 21.97 23.80 64.00 111.9
出口 2.99 3.80 11.90 16.50
进口 18.90 41.60 72.40 70.70
消费 37.88 67.00 131.10 166.10
由于国外对我们封锁禁运一些重要的高精度机 床设备和仪器, 而这些精密设备仪器正是国防和尖 端技术发展所迫切需要的, 因此, 我们必须投入必 要的人力物力, 自主发展精密和超精密加工机床, 使我国的国防和科技发展不会受制于人。
磨头0 mm/min
磨头的横向进给速度 1~4 000 mm/min
砂轮轴驱动电机
11 kW (4P)
机床尺寸 (宽×长×高) 约3 600 mm×5 800 mm×3 700 mm

精密超精密加工技术的发展及应用

精密超精密加工技术的发展及应用

精密超精密加工技术的发展及应用1、概述精密和超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。

随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅速发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切⑴。

目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

"]我国是制造业大国,近年来在精密加工技术和精密机床设备制造上也小有成就。

但是和发达国家制造强国相比,我国目前仍有差距。

我国每年虽有大量机电产品出口,但多数是技术含量较低、价格亦较便宜的中低档产品;而从国外进口的则大多是技术含量高、价格昂贵的高档产品。

2、国内外精密超精密加工技术发展通常按照加工精度划分,机械加工可分为一般加工、精密加工和超精密加工三个阶段。

目前,精密加工是指精密加工精度为1-0.1 m表面粗糙度为]RaO.1-O.O1 口的加工技术。

但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

」20世纪60年代初期,随着航天、宇航的发展,精密超精密加工技术首先在美国被提出,并由于得到了政府和军方的财政支持而迅速发展。

到了20世纪70年代,日本也成立了超精密加工技术委员会并制定了相应发展规划,将该技术列入高新技术产业,经过多年的发展,使得日本在民用光学、电子及信息产品等产业处于世界领先地位[2]。

2.1国外发展超精密加工发展到今天,已经取得了重大进展,超精密加工以不再是一种孤立的加工方法和单纯的工艺问题,而成为一项包含内容极其广泛的系统工程。

超精密加工是以每个加工点局部的材料微观变形或去除作用的总和所体现的。

其加工机理随着加工单位(加工应力作用的范围)和工件材料的不均质程度(材料缺陷或因加工产生缺陷)不同而异,如图1所示⑻。

发展精密和超精密加工技术的重要性

发展精密和超精密加工技术的重要性

发展精密和超精密加工技术的重要性精密和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工,精密加工,超精密加工三个阶段精密加工;加工精度在0.1 -1um,讲表面粗糙度在Ra 0.02-0.1um之间的加工方法称为精密加工超精密加工;加工精度高于0.1um,加工表面粗糙度小于Ra 0.01um的加工方法称为超精密加工。

(微细加工、超微细加工、光整加工、精整加工等)二提高加工精度的原因提高制造精度后可提高产品的性能和质量,提高产品稳定性和可靠性;促进产品小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

三发展超精密加工的重要性1 超精密加工是国家制造工业水平的重要标志之一超精密加工所能达到的精度、表面粗糙度、加工尺寸范围和几何形状是一个国家制造技术水平的重要标志之一。

金刚石刀具切削刃钝圆半径的大小是金刚石刀具超精密切削的一个关键技术参数,日本声称已达到2nm,而我国尚处于亚微米水平,相差一个数量级(国际上公认0.1nm~100nm为纳米尺度空间,100nm~1000nm为亚微米体系,小于1个纳米为原子团簇);金刚石微粉砂轮超精密磨削在日本已用于生产,使制造水平有了大幅度提高,突出地解决了超精密磨削磨料加工效率低的问题。

2 精密和超精密加工是先进制造技术的基础和关键计算机工业的发展不仅要在软件上,还要在硬件上,即在集成电路芯片上有很强的能力,我国集成电路的制造水平约束了计算机工业的发展。

美国制造工程研究者提出的汽车制造业的“两毫米工程”(车身尺寸变动量控制在2mm以内)使汽车质量赶上欧、日水平,其中的举措都是实实在在的制造技术。

3 国防工业上的需求陀螺仪的加工涉及多项超精密加工,导弹系统的陀螺仪质量直接影响其命中率,1kg的陀螺转子,其质量中心偏离其对称轴0.0005μm,则会引起100m的射程误差和50m的轨道误差。

大型天体望远镜的透镜、直径达 2.4m,形状精度为0.01μm,如著名的哈勃太空望远镜,能观察140亿光年的天体(六轴CNC研磨抛光机)(图)。

超精密加工技术的发展与应用

超精密加工技术的发展与应用

超精密加工技术的发展与应用随着科技的不断进步,越来越多的精密加工技术被研发出来,其中超精密加工技术就是其中之一。

它是一种高精度、高效率、高质量的加工技术,已经被广泛应用于制造业、电子类、生物医药等领域。

本文将详细介绍超精密加工技术的发展与应用。

一、发展历史超精密加工技术起源于1960年代,当时主要是应用于光学元件的制造。

随着计算机技术的发展以及加工设备的不断改进,超精密加工技术也得到了迅速发展。

在1970年代初期,开发出了“单点钻磨”工艺。

1980年代的日本、美国等国家开始发展大型超精密车削和磨削加工技术,使得超精密加工技术不断地向更高精度和更微小的加工方向扩展。

1990年代初期,精密切割加工技术也被广泛应用。

现在,超精密加工技术已经扩展到了非常小的尺寸和微弱的信号等方面,例如半导体微电子学、纳米技术和激光微加工技术等。

二、超精密加工技术的分类超精密加工技术主要包括以下几个方面:1. 单点钻磨加工技术:它是超精密加工技术的早期研究领域,是一种利用单晶金刚石工具进行金属材料的磨削加工,以达到高精度、高质量的目的。

2. 超精密车削和磨削加工技术:它是大型载具和航空航天工业中的重要加工领域之一。

其加工精度可以达到亚微米级别。

3. 切割加工技术:它是一种低成本、高产量、高精度的超精密加工技术,例如线切割、等离子切割、激光切割等。

4. 电解加工技术:它采用电化学溶解的原理,可以加工金属和非金属材料,具有处理复杂形状、非常薄和非常脆的材料的优势。

三、超精密加工技术的应用超精密加工技术已经被广泛应用于以下领域:1. 光学和光电子学领域:用于制造精密光学元件,例如照相机镜头、透镜、天文望远镜等。

在光电子学领域,它还用于制造控制光电器件、激光微加工和激光雕刻等。

2. 航空航天工业:用于制造发动机的精密零部件、航空结构件、导向和控制元件等。

此外,它还广泛应用于卫星制造、航天器自动交会与对接、卫星制导与控制等。

3. 生物医学领域:用于制造人造人体植入物、医疗器械、医疗器材零部件等。

精密与超精密加工技术

精密与超精密加工技术

第二章精密与超精密加工技术一.概述二.超精密切削加工技术三.超精密磨削技术四.超精密研磨抛光技术五、超精密加工装备与环境一、概述1、精密和超精密加工技术的发展是从上世纪 70年代开始,主要集中在美、日、英等国,精密和超精密加工在尖端技术和现代武器制造中占非常重要的地位,是机械制造业最主要发展的方向之一。

2、精密和超精密加工技术在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。

3、当代的超精密加工技术是现代制造技术的前沿,也是明天制造技术的基础。

超精密加工是国家制造工业水平的重要标志之一。

4、加工精度进化5、机械工业提高加工精度的效益。

1)提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;2)促进产品的小型化;3)增强零件的互换性,提高装配生产率,并促进自动化装配;6、在不同的历史时期,不同的科学技术发展水平情况下,对精密与超精密加工技术有不同的理解。

1)精密和超精密加工是一个十分广泛的领域,它包括了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法。

2)精密和超精密只是相对而言,其间的界限随时间的推移而不断变化,因而精密和超精密在不同的时期必须使用不同的尺度来区分。

3)1983年日本的 Taniguchi教授在考查了许多超精密加工实例的基础上对超精密加工的现状进行完整的综述,并对其发展趋势进行了预测。

7、超精密加工技术的现状1)超精密加工技术是一门综合性的系统工程,它的发展综合地利用了机床、工具、计量、环境技术、微电子技术、计算机技术、数控技术等的进步。

2)精密加工和超精密加工已从单一的技术方法发展为制造系统工程,简称精密工程。

它以人、技术、组织为基础,涉及超微量去除、结合、变形加工技术,高稳定性和高净化的加工环境,检测与误差补偿,工况监测与质量控制,被加工材料等。

二、超精密切削加工技术超精密切削技术是60年代发展起来的新技术,它在国防和尖端技术的发展中起着重要的作用;超精密切削是使用精密的单晶天然金刚石刀具加工有色金属和非金属;超精密切削可代替研磨等很费工的精加工工序,不仅节省工时,还提高加工精度和表面质量。

精密和超精密加工技术的发展

精密和超精密加工技术的发展

科技资讯科技资讯S I N &T NOL OGY I NFORM TI ON 2008N O .14SCI ENC E &TEC HNO LO GY I N F O RM ATI O N 工业技术国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

目前,我国每年需进口大量国内尚不能生产的精密数控机床设备和仪器。

为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。

下面是对国内外精密和超精密加工技术的最新发展情况的介绍。

1精密机床技术的发展精密机床是精密加工的基础当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。

瑞士DI XI 公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r /m i n 。

瑞士M I KROM 公司的高速精密五轴加工中心的主轴最高转速为42000r /m i n,定位精度达5μm ,已达到过去坐标镗床的精度。

从这两台机床的性能可知,现在的加工中心与高速切削机床间已不再有严格的界限划分。

2使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件都需要利用金刚石超精密切削来加工。

使用单晶金刚石刀具在超精密机床上进行超精密切削,可加工出光洁度极高的镜面。

超精密切削的切削厚度可极小,最小切削厚度可至1nm 。

超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5~0.01μm 。

因刃口半径甚小,过去对刃口的测量极为困难,现已可用原子力显微镜(AF M )进行测量。

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识一、引言精密加工技术是一种高精度、高效率的制造方法,广泛应用于电子、航空航天、医疗器械等领域。

而超精密加工技术则是在精密加工技术的基础上进一步提高了加工的精度和表面质量。

本文将对精密和超精密加工技术进行深入的探讨和分析。

二、精密加工技术的概念和应用精密加工技术是一种通过在加工过程中控制和调整各种工艺参数,使加工零件达到高精度要求的加工方法。

它主要包括数控加工、激光加工、电火花加工等多种技术手段。

精密加工技术在电子领域的应用尤为广泛,如半导体芯片加工、PCB板制造等。

三、精密加工技术的特点和优势1. 高精度:精密加工技术可以实现亚微米甚至纳米级别的加工精度,满足对零件精度要求极高的应用领域。

2. 高效率:精密加工技术采用自动化控制和高速切削等方法,加工效率高,能够大大提高生产效率和产品质量。

3. 灵活性:精密加工技术具有灵活性强的特点,可以根据不同产品的要求进行个性化加工,满足市场需求的多样化。

四、超精密加工技术的概念和原理超精密加工技术是在精密加工技术的基础上,通过进一步提高加工设备的精度和加工工艺的控制精度,实现更高精度加工的一种技术手段。

超精密加工技术主要包括超精密车削、超精密磨削、超精密拓扑等方法。

五、超精密加工技术的应用领域超精密加工技术在光学仪器、航空航天、精密仪器等领域具有广泛的应用。

例如,在光学仪器领域,超精密加工技术可以用于制造高精度的光学元件,提高光学系统的分辨率和成像质量。

六、精密和超精密加工技术的发展趋势随着科技的进步和工业制造的需求,精密和超精密加工技术也在不断发展和创新。

未来的发展趋势主要包括以下几个方面:1. 加工精度的提高:随着需求的增加,对加工精度的要求也越来越高,未来的精密和超精密加工技术将进一步提高加工的精度和表面质量。

2. 加工效率的提高:随着自动化技术和智能化技术的发展,精密和超精密加工技术将更加高效,加工速度更快,生产效率更高。

精密与超精密加工技术

精密与超精密加工技术

空气静压轴承主轴能够得到高于轴承零件本身的回转精度。
2) 导轨及进给驱动装置:动作灵活,无爬行等不连续动作, 直线精度 好。通常采用空气静压导轨 。
空气静压导轨
精密与超精密加工技术
摩擦驱动原理图
精密与超精密加工技术
(3)超精密加工的工作环境
超精密加工必须在超稳定的环境下进行,主要衡量指标有三个:
等离子体辅助抛光(PACE)
等离子体辅助抛光又称化学蒸发加工(chemical vaporization machining, CVM),是在真空环境下进行将化学气体(通常为卤素类气体,如CF、Cl2等) 激发成活性等离子体,与加工面产生化学反应,生成挥发性物质从而达到 材料去除的目的。这种加工方法实用化的一种就是等离子腐蚀。
金刚石的热传导率是矿物中最大的,切削加工中发热量非常小。
精密与超精密加工技术
天然金刚石的加工多采用研磨加工方法,通常采用空气轴承 研磨机,由于振动小,可达到很低的粗糙度和极小的刃口半径。
精密与超精密加工技术
1)刀尖的磨损 在切削距离到达100km以前,后刀面磨损急剧上升,以后磨损逐渐减 慢。 注:由于积屑瘤的原因,一般将研磨好的锋利刀尖有意加工成理想的 稳定的磨损状态。
精密与超精密加工技术
(1)超精密加工刀具
超精密加工要求刀具能均匀地去除不大于工件加工精度且厚度极薄 的金属层或非金属层。 超精密切削中的加工刀具,一般指天然单晶金刚石刀具。超精密切 削中必须保证金刚石刀具的刀面与刃口质量。 超精密磨削的加工刀具砂轮的磨料品级与力度均匀性在加工中十分 重要。
精密与超精密加工技术
精密与超精密加工技术
7、超精密加工的发展趋势
高精度、高效率 工艺整合化 两极化(大型化、微型化) 在线检测 智能化 绿色化

精密和超精密加工现状与发展趋势.doc

精密和超精密加工现状与发展趋势.doc

精密和超精密加工现状与发展趋势核心提示:当前精密和超精密加工精度从微米到亚微米,乃至纳米,在汽车、家电、IT电子信息高技术领域和军用、民用工业有广泛应用。

同时,精密和超精密加工技术的发展也促进了机械、模具、液压、电子、半导体、光学、传感器和测量技术及金属加工工业的发展。

一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。

a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

国外超精密加工技术的现状和发展趋势

国外超精密加工技术的现状和发展趋势

国外超精密加工技术的现状和发展趋势1. 引言在当今世界,超精密加工技术已经成为了制造业的重要组成部分。

随着科技的不断发展,国外的超精密加工技术也取得了长足的进步。

本文将从多个角度对国外超精密加工技术的现状和发展趋势进行评估和探讨。

2. 现状分析超精密加工技术是指在微米或纳米级别进行加工的技术,其精度和表面质量要求非常高。

当前,国外一些先进制造业发达国家,如日本、德国和美国等,都在超精密加工技术领域具有举足轻重的地位。

这些国家的企业和研究机构不断推动着超精密加工技术的发展,不断推陈出新,取得了许多创新成果。

3. 技术发展趋势未来,国外超精密加工技术将朝着更高精度、更复杂形状、更多材料的加工方向发展。

随着人工智能、大数据和物联网等新一代信息技术的不断涌现,超精密加工技术将更加智能化、数字化和柔性化。

新型材料、纳米技术的应用,也将极大地拓展超精密加工技术的应用范围。

4. 我的观点我认为,国外超精密加工技术的快速发展将为全球制造业带来深远影响。

随着超精密加工技术在航空航天、医疗器械、电子器件等领域的广泛应用,将极大地推动相关产业的发展。

超精密加工技术的不断突破也将为人类社会带来更多便利和可能性。

5. 总结国外超精密加工技术的现状和发展趋势令人振奋。

技术不断创新,应用领域不断拓展,为制造业注入了新的活力。

我对超精密加工技术的未来充满信心,相信它将在全球范围内发挥越来越重要的作用。

通过本文的介绍和分析,相信您已经对国外超精密加工技术的现状和发展趋势有了更深入的了解。

希望本文能够为您带来一些启发和思考,并对您在相关领域的学习和工作有所帮助。

超精密加工技术在国外的发展已经取得了显著的进步,但仍有许多挑战和机遇。

在不断推动超精密加工技术的发展的国外也在积极探索新的技术路径和应用领域,以应对日益复杂的市场需求和竞争压力。

国外超精密加工技术在材料加工和表面处理方面取得了重大突破。

随着新型材料的广泛应用和纳米技术的发展,超精密加工技术已经能够处理更多种类的材料,包括金属、陶瓷、复合材料等。

精密与超精密加工技术的重要性

精密与超精密加工技术的重要性

精密与超精密加工技术的重要性0.引言超精密加工技术是现代高科技产业和科学技术的发展基础,引领了现代制造科学的重要发展方向。

以超精密加工技术为支撑的高性能武器在现代战争中起着非常重要的作用。

以超精密加工技术为支撑的三代半导体器件为电子以及信息产业的发展奠定了良好的基础。

现代科学技术的发展都以超精密加工技术为支撑。

超精密加工应用范围广泛,从软金属到半导体、玻璃、陶瓷等非金属材料,几乎所有的材料都可利用超精密加工技术进行加工。

随着现代工业技术的发展,超精密加工在经济社会发展中起着非常重要的作用,而且它对国防、航空航天、核能等高新技术领域也有着重要的影响,在当今社会,超精密加工应用了机械技术发展的新成果以及计算机等高新技术,它是一个国家科学技术水平和综合国力的重要标志,因此受到各工业发达国家的高度重视。

1.精密与超精密加工技术的地位和作用精密和超精密加工是先进制造技术的基础和关键。

在现代工业中,汽车、计算机、家用电器、办公用品、火车、飞机、火箭、导弹、人造卫星等的生产制造均离不开精密和超精密加工.它是制造技术中的真本事、真功夫。

例如集成电路芯片生产与精密和超精密加工关系密切,它将直接影响计算机、自动控制等技术的发展;又如导弹上的陀螺仪经超精密加工后,提高了精度,使导弹的命中精度由500m提高到50~150m[1]。

超精密加工是衡量一个国家工业水平的重要标志之一。

目前,世界上只有少数几个工业发达的国家能够生产制造集成电路芯片的设备[1],如美国、日本等,这说明了它们的制造水平是高超的,因为制造集成电路芯片的设备需要很高的超精密加工技术。

日本的工业在二次世界大战后能够高速发展到今天的水平,与它高度重视与发展精密加工技术有密切关系。

精密和超精密加工技术是工厂提高加工技术水平的关键。

一个机械工厂要提高加工技术水平,提高工程技术人员和工人的技术素质.提高产品加工质量.抓精密和超精密加工技术、生产精密产品是行之有效的举措。

精密和超精密加工技术现状和发展趋势

精密和超精密加工技术现状和发展趋势

精密和超精密加工技术现状和发展趋势1.引言国际上在超精密加工技术方面处于领先地位的国家有美国、德国和日本发达国家中,美国、日本、德国等在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。

由于加工技术水平的发展,精密和超精密加工划分的界限逐渐向前推移,但在具体数值上没有确切的定义。

被加工零件的尺寸精度在 1.0~0.1μm,表面粗糙度Ra在0.1~0.03μm之间的加工方法称为精密加工。

超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刃磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。

2.发展现状美国是开展研究最早的国家,也是迄今处于世界领先地位的国家。

早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件。

20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”,对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。

如美国劳伦斯利弗莫尔国家实验室已经研制出一台大型光学金刚石车床(Large Op tics Diam ond Turn ing Machine, LODTM ), 是一台最大加工直径为1.63m的立式车床,定位精度可达28nm,借助在线误差补偿能力,它已实现了距离超过1m而直线度误差只有±25nm 的加工。

在美国能源部支持下,LLI实验室和Y-12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM—3型)。

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望精密加工技术是一种在当今制造业中非常重要的技术,它的发展与制造业的发展息息相关。

精密加工技术是通过对材料进行高精度的加工来制造出各种精密零部件,这些精密零部件被广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

现阶段,精密加工技术已经取得了很大的进步,各种高精度的加工设备和加工工艺层出不穷。

在这些技术发展的基础上,超精密加工技术应运而生。

超精密加工技术是一种相对于精密加工技术更加高端、更加精密的加工技术,它可以实现对材料的超高精度加工,甚至可以达到纳米级的精度。

这种技术对于一些特殊材料的加工非常重要,比如硬质合金、钢、陶瓷等材料。

超精密加工技术的发展展望是非常乐观的。

随着科学技术的不断进步,各种先进的加工设备和工艺将不断涌现。

在这种趋势下,超精密加工技术将会得到更加广泛的应用。

在汽车工业中,超精密加工技术可以用于制造高压油泵的零部件,提高汽车发动机燃油的利用率;在医疗器械领域,超精密加工技术可以用于制造各种医疗器械的零部件,提高医疗器械的精度和安全性。

在未来的发展中,我们还可以看到超精密加工技术将会在航空航天领域得到更广泛的应用。

超精密加工技术可以制造出更加轻巧和高强度的航空零部件,提高航空器的性能和安全性。

超精密加工技术在电子产品领域也有很大的潜力,它可以制造出更小巧、更精密的电子元件,提高电子产品的性能和可靠性。

精密加工技术和超精密加工技术的发展是非常重要的。

它们直接关系到制造业的发展和产品的质量。

相信随着科学技术的不断进步,这些技术将会取得更大的突破,为各个领域带来更多的创新和发展。

精密与超精密加工技术的现状和发展展望精密加工技术是制造业中至关重要的一环,它的发展与制造业的发展密不可分。

精密加工技术通过对材料进行高精度的加工,制造出各种精密零部件,广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

当前,精密加工技术已取得了长足的发展,各种高精度加工设备和工艺不断涌现。

超精密加工技术的发展及对策

超精密加工技术的发展及对策

超精密加工技术的发展及对策随着科技的不断进步,超精密加工技术已经成为当今制造业中的重要一环。

超精密加工技术是指通过高度精密的加工设备和工艺,在微米级别甚至更小的范围内进行精细加工,以达到高精度、高质量的加工效果。

这种技术被广泛应用于半导体、光学、航空航天、医疗器械等领域,对提高产品的性能和品质起到至关重要的作用。

本文将从超精密加工技术的发展历程、应用领域和未来发展趋势等方面进行探讨,并提出相应的对策,以期为推动超精密加工技术的发展贡献一份力量。

一、超精密加工技术的发展历程超精密加工技术的发展可以追溯到20世纪50年代末期,当时主要应用于半导体制造领域。

随着计算机技术和光学技术的发展,超精密加工技术得到了进一步的推广和应用。

1980年代,日本开始大力发展超精密加工技术,成为当时的领导者。

1990年代,随着微电子技术和光学技术的迅速发展,超精密加工技术的应用领域不断扩大,涉及到了半导体、光学、生物医学等多个领域。

2000年以后,随着纳米技术的兴起,超精密加工技术的精度要求进一步提高,同时也呈现出多样化、高效化、智能化的趋势。

二、超精密加工技术的应用领域1.半导体领域半导体是超精密加工技术最早应用的领域之一,它对超精密加工技术的精度和稳定性要求极高。

半导体元件的制造需要高度精密的加工设备和工艺,以确保产品的质量和稳定性。

超精密加工技术可以制造出微米级别的半导体元件,如芯片、传感器等,为信息技术的发展提供了重要支持。

2.光学领域光学领域是超精密加工技术的另一个重要领域。

在光学领域,超精密加工技术可以制造出高精度的光学元件,如镜片、棱镜、光纤等,这些元件在光学仪器、通讯、医疗设备等领域有着广泛的应用。

3.医疗器械领域超精密加工技术在医疗器械领域也有着广泛的应用。

例如,在手术中使用的微型器械、人工关节等都需要高精度的加工技术来制造,以确保手术的安全性和成功率。

4.航空航天领域航空航天领域是超精密加工技术的另一个应用领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精密和超精密加工技术的发展
我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。

但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。

目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。

下面对国内外精密和超精密加工技术的最新发展情况介绍如下。

精密机床技术的发展精密机床是精密加工的基础。

当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。

瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。

瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。

从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。

使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。

使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。

超精密切削的切削厚度可极小,最小切削厚度可至1nm。

超精
密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。

因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地
进行测量。

超精密切削机理的研究对超精密切削机理的研究近年来有了不少进展。

例如,超精密切削脆性材料时,加工表面可以不产生脆性破裂痕迹而获得镜面,这涉及到极薄切削时脆性材料塑性切除的脆塑转换问题,最近对此提出了不少新见解。

由超精密切削玻璃的实验结果可见,开始时切削厚度甚小,切除机理为塑性去除,加工表面无脆性破损痕迹。

随着切削厚度的增大,塑性切除逐渐转化为脆性破裂去除,加工表面可见到明显的脆性破损痕迹。

目前,使用计算机仿真和分子动力学模拟等方法对超精密切削过程及机理的研究获得了很好效果,一方面深化了对极薄层材料切削去除机理的认识,同时可以对超精密切削效果作出比较准确的预报。

由超精密切削所形成加工表面的计算机仿真模拟预测和计算机仿真预测超精密切削单晶铝不同晶面时的切削力可以看到,由于晶体的各向异性,导致在不同方向的切削力是不相等的。

利用对超精密切削过程的分子动力学模拟,可以对超精密切削极薄层材料的动态切除过程进行观察和分析,并能对切除过程进行动画演示。

新的金刚石刀具晶体定向方法由于金刚石硬度极高,且晶体各向异性,因此单晶金刚石刀具的刃磨极为困难。

制造金刚石刀具及刃磨时都需要对晶体定向,过去的晶体定向方法主要是使用X光晶体定向仪,仪器昂贵,且定向操作相当繁琐。

哈尔滨工业大学成功开发了一种新的激光晶体定向方法,所用设备较简单,且定向操作方便,可使金刚石晶体定向大大简化。

超精密加工机床的进展国外超精密机床的发展情况研发超精密机床是发展超精密加工的重要前提条件。

近年来发达国家已成功开发了多种先进的超精密加工机床。

超精密机床的发展方向
是:进一步提高超精密机床的精度,发展大型超精密机床,发展多功能和高效专
用超精密机床。

美、英、德等国在上世纪七十年代:日本在八十年代:即开始生产超精密机床产品,并可批量供货。

在大型超精密机床方面,美国的LLL国家实验室于1986年研制成功两台大型超精金刚石车床:一台为加工直径2.1m的卧式DTM-3金
刚石车床,另一台为加工直径1.65m的LODTM立式大型光学金刚石车床。


中,LODTM立式大型光学金刚石车床被公认为世界上精度最高的超精密机床。

美国后来又研制出大型6轴数控精密研磨机,用于大型光学反射镜的精密研磨加工。

英国的Cranfield精密加工中心于1991年研制成功OAGM-2500多功能三坐标联动数控磨床:工作台面积2500mm×2500mm:,可加工:磨削、车削:和测量精密自由曲面。

该机床采用加工件拼合方法,还可加工出天文望远镜中直径7.5m的大型反射镜。

日本的多功能和高效专用超精密机床发展较快,对日本微电子和家电工业的发展起到了很好的促进作用。

我国超精密机床的发展情况在过去相当长一段时期,由于受到西方国家的禁运限制,我国进口国外超精密机床严重受限。

但当1998年我国自己的数控超精密机床研制成功后,西方国家马上对我国开禁,我国现在已经进口了多台超精密机床。

我国北京机床研究所、航空精密机械研究所、哈尔滨工业大学等单位现在已能生产若干种超精密数控金刚石机床,如北京机床研究所研制的加工直径800mm的超精密车床和哈尔滨工业大学研制的超精密车床,这两台机床均有两坐标精密数控系统和两坐标激光在线测量系统,可以加工非球回转曲面;还有哈尔滨工业大学研制了加工KDP晶体大平面的超精密铣床。

KDP晶体可用于光学倍频,是大功率激光系统中的重要元件。

必须承认,在超?密机床技术方面,我们与国外先进水平相比还有相当大的差距,国产超精密机床的质量
水平尚待进一步提高。

在大型超精密机床方面,目前美、英、俄等国都拥有自行开发的大型超精密机床,而我国由于没有大型超精密机床,因此无法加工大直径曲面反射镜等大型超精密零件,国外对这些大型超精密零件的出口有严格限制,从而严重影响了我国国防尖端技术的发展。

现在我国正在加紧研制加工直径1m以上的立式超精密机床。

在多功能和高效专用超精密机床方面,目前我国基本上仍是空白。

相关文档
最新文档