2020年四川省攀枝花中考数学试卷(附答案与解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2020年四川省攀枝花市中考试卷
数 学
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个
选项中,只有一项是符合题目要求的.
1.(3分)3的相反数是
( )
A .3-
B .3
C .1
3
- D .13
2.(3分)下列事件中,为必然事件的是
( )
A .明天要下雨
B .0a ≥
C .21-->
D .打开电视机,它正在播广告
3.(3分)如下图,平行线AB CD 、被直线EF 所截,过点B 作BG EF ⊥于点G ,已知
°150∠=,则B ∠=
( )
A .20°
B .30°
C .40°
D .50° 4.(3分)下列式子中正确的是
( )
A .235a a a -=
B .()1
a a --=
C .()2
233a a -=
D .33323a a a +=
5.(3分)若关于x 的方程20x x m --=没有实数根,则m 的值可以为 ( )
A .1-
B .14
-
C .0
D .1 6.(3分)下列说法中正确的是
( )
A .0.09的平方根是0.3 B
4=± C .0的立方根是0
D .1的立方根是1±
7.(3分)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019nCoV -.该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为10n a ⨯的形式,则n 为
( )
A .8-
B .7-
C .7
D .8
8.(3分)实数a b 、
的结果是
( )
A .2-
B .0
C .2a -
D .2b 9.(3分)如下图,直径6AB =的半圆,绕B 点顺时针旋转30°,此时点A 到了点A ',则图中阴影部分的面积是
( )
A .
2
π
B .
34
π
C .π
D .3π
10.(3分)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,
王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离()s km 与运动时间()t h 的函数关系大致如下图所示,下列说法中错误的是( )
A .两人出发1小时后相遇
B .赵明阳跑步的速度为8km/h
C .王浩月到达目的地时两人相距10km
D .王浩月比赵明阳提前1.5h 到目的地
二、填空题:本大题共6小题,每小题4分,共24分.
11.(4分)°sin 60=________.
12.(4分)因式分解:2a ab -=________.
13.(4分)如下图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM 课程兴趣小组的人数为120
人,则该校参加各兴趣小组的学生共有
________人
.
-------------在------------------
此
------------------
卷
------------------
上
-------------------
答
-------------------
题
-------------------
无
-------------------
效-------------
---
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
14.(4分)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门票反而合算.
15.(4分)如下图,已知锐角三角形ABC 内接于半径为2的O ,OD BC ⊥于点D ,
°60BAC ∠=,则OD =________.
16.(4分)如下图,在边长为4的正方形ABCD 中,点E F 、分别是BC CD 、的中点,
DE AF 、交于点G AF ,的中点为H ,连接BG DH 、.给出下列结论:
①AF DE ⊥;②8
5
DG =;③HD BG ∥;④ABG DHF △∽△.
其中正确的结论有________.(请填上所有正确结论的序号)
三、解答题:本大题共7小题,共66分.解答应写出文字说明、证明过程或
演算步骤.
17.已知3x =,将下面代数式先化简,再求值.()()()()()2
12231x x x x x -++-+--. 18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?
19.三角形三条边上的中线交于一点,这个点叫三角形的重心.如下图G 是ABC △的重心.求证:3AD GD =.
20.如图,过直线12y kx =+
上一点P 作PD x ⊥轴于点D ,线段PD 交函数()0m
y x x
=>)的图象于点C ,点C 为线段PD 的中点,点C 关于直线y x =的对称点C 的坐标为()13,
. (1)求k m 、的值; (2)求直线12y kx =+
与函数()0m
y x x
=>图象的交点坐标; (3)直接写出不等式
()1
02
m kx x x +>>的解集.
21.刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x 这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P (抽到数字4的卡
片)25
=
. (1)求这五张卡片上的数字的众数;
(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张. ①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;
②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.
22.如下图,开口向下的抛物线与x 轴交于点()()1020A B -,、,,与y 轴交于点()04C ,,点P 是第一象限内抛物线上的一点.
(1)求该抛物线所对应的函数解析式;
(2)设四边形CABP 的面积为S ,求S 的最大值.
23.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如下图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:
(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ? (2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确? (3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?
2020年四川省攀枝花市中考试卷
数学答案解析
一、 1.【答案】A
【解析】解:根据相反数的含义,可得3的相反数是:3-.故选:A . 2.【答案】B
【解析】解:根据题意,结合必然事件的定义可得:
A 、明天要下雨不一定发生,不是必然事件,故选项不合题意;
B 、一个数的绝对值为非负数,故是必然事件,故选项符合题意;
C 、21-->,是不可能事件,故选项不合题意;
D 、打开电视机,它不一定正在播广告,有可能是其他节目,故不是必然事件,故选项不
合题意; 故选:B . 3.【答案】C
【解析】解:延长BG ,交CD 于H ,
°150∠=∵, °250∠=∴,
AB CD ∵∥, B BHD ∠=∠∴,
BG EF ⊥∵,
°90FGH ∠=∴, °902B BHD ∠=∠=-∠∴
°°9050=- °40=.
故选:C .
4.【答案】D
【解析】解:2a 和3a 不是同类项,不能合并,因此选项A 不正确;
()1
1a a
--=-,因此选项B 不正确;
()
2
239a a -=,因此选项C 不正确;
33323a a a +=,因此选项D 正确;
故选:D . 5.【答案】A
【解析】解:∵关于x 的方程²0x x m --=没有实数根,
()()2
141140m m =--⨯⨯-=+∴△<,
解得:1
4
m -<, 故选:A . 6.【答案】C
【解析】解:A .0.09的平方根是0.3±,故此选项错误; B
4=,故此选项错误; C .0的立方根是0,故此选项正确; D .1的立方根是1,故此选项错误; 故选:C . 7.【答案】A
【解析】解:0.000000012用科学记数法表示为81.210-⨯,
8n =-∴,
故选:A . 8.【答案】A
【解析】解:由数轴可知21a --<<,12b <<,
10100a b a b +--∴<,>,<,
11a b a b =++--- ()()()11a b a b =-++-+-
11a b a b =--+-+-
2=-
故选:A . 9.【答案】D
【解析】解:∵半圆AB ,绕B 点顺时针旋转30°,
A B ABA AB S S S S ''=+-阴影半圆扇形半圆∴ ABA S '=扇形 2
630
360
π=
3π=,
故选:D . 10.【答案】C
【解析】解:由图象可知,
两人出发1小时后相遇,故选项A 正确;
赵明阳跑步的速度为()2438km/h ÷=,故选项B 正确; 王浩月的速度为:()241816km/h ÷-=,
王浩月从开始到到达目的地用的时间为:()2416 1.5h ÷=, 故王浩月到达目的地时两人相距()8 1.512km ⨯=,故选项C 错误; 王浩月比赵明阳提前3 1.5 1.5h -=到目的地,故选项D 正确; 故选:C . 二、 11
.
【解析】解:°sin60.
. 12.【答案】()()11a b b +-
【解析】解:原式()
()()2111a b a b b =-=+-, 故答案为:()()11a b b +- 13.【答案】600
【解析】解:∵参加STEAM 课程兴趣小组的人数为120人,百分比为20%, ∴参加各兴趣小组的学生共有12020%600÷=(人), 故答案为:600. 14.【答案】33
【解析】解:设x 人进公园,
若购满40张票则需要:()4051404160⨯-=⨯=(元), 故5160x >时, 解得:32x >,
则当有32人时,购买32张票和40张票的价格相同, 则再多1人时买40张票较合算;
32133+=(人).
则至少要有33人去世纪公园,买40张票反而合算. 故答案为:33. 15.【答案】1
【解析】解:连接OB 和OC ,
ABC ∵△内接于半径为2的O ,°60BAC ∠=, °1202BOC OB OC ∠===∴,,
OD BC OB OC ⊥=∵,, °60BOD COD ∠=∠=∴,
°30OBD ∠=∴,
1
12
OD OB ==∴,
故答案为:1.
16.【答案】①④
【解析】解:∵四边形ABCD 为正方形,
°90ADC BCD AD CD ∠=∠==∴,,
E ∵和
F 分别为BC 和CD 中点,
2DF EC ==∴,
()ADF DCE SAS ∴△≌△,
AFD DEC FAD EDC ∠=∠∠=∠∴,, °90EDC DEC ∠+∠=∵, °90EDC AFD ∠+∠=∴,
°
90DGF ∠=∴,即DE AF ⊥,故①正确;
1
422AD DF CD ===∵,,
AF ==∴,
DG AD DF AF =⨯÷=∴ H ∵为AF 中点,
1
2HD HF AF ===∴
HDF HFD ∠=∠∴,
AB DC ∵∥,
HDF HFD BAG ∠=∠=∠∴,
45
AG AB ==∵,,
AB AB AG
DH HF DF
===
∴, ABG DHF ∴△∽△,故④正确; ABG DHF ∠=∠∴,而AB AG ≠,
则ABG ∠和AGB ∠不相等, 故AGB DHF ∠≠∠,
故HD 与BG 不平行,故③错误;
故答案为:①④.
三、
17.【答案】解:()()()()()2
12231x x x x x -++-+--
22212433x x x x x x =+-+-+--+
236x x =-
将3x =代入,原式27189=-=. 18.【答案】解:设这些学生共有x 人, 根据题意得
268
x x
-=, 解得48x =.
答:这些学生共有48人. 19.【答案】证明:连接DE ,
∵点G 是ABC △的重心,
∴点E 和点D 分别是AB 和BC 的中点, DE ∴是ABC △的中位线,
DE AC ∴∥且1
2
DE AC =,
DEG ACG ∴△∽△, DE DG
AC AG =
∴, 12DG
AG =
∴, 13
DG AD =∴,
3AD DG =∴,
即3AD GD =.
20.【答案】解:(1)C '∵的坐标为()13,
, 代入()0m
y x x
=
>中, 得:133m =⨯=,
C ∵和C '关于直线y x =对称, ∴点C 的坐标为()31,,
∵点C 为PD 中点,
∴点()32P ,
, 将点P 代入12
y kx =+
, ∴解得:1
2
k =;
k ∴和m 的值分别为:132
,; (2)联立:11
223y x y x
⎧=+⎪⎪
⎨
⎪=⎪⎩
,得:260x x +-=, 解得:1223x x ==-,(舍),
∴直线12y kx =+与函数()0m y x x =>图象的交点坐标为322⎛⎫
⎪⎝⎭
,;
(3)∵两个函数的交点为:322⎛⎫
⎪⎝⎭,,
由图象可知:当3
02
x <<时,反比例函数图象在一次函数图象上面,
∴不等式()102m kx x x +>>的解集为:3
02
x <<.
21.【答案】解:(1)∵2、4、6、8、x 这五个数字中,P (抽到数字4的卡片)2
5
=
, 则数字4的卡片有2张,即4x =,
∴五个数字分别为2、4、4、6、8,
则众数为:4; (2)①不同,理由是:
原来五个数字的中位数为:4,
抽走数字2后,剩余数字为4、4、6、8, 则中位数为:
46
52
+=, 所以前后两次的中位数不一样; ②根据题意画树状图如下:
可得共有16种等可能的结果,其中两次都抽到数字4的情况有4种, 则黎昕两次都抽到数字4的概率为:
41164
=. 22.【答案】解:(1)()()()102004A B C -∵,
,,,,, 设抛物线表达式为:()()12y a x x =+-, 将C 代入得:42a =-, 解得:2a =-,
∴该抛物线的解析式为:()()2212224y x x x x =-+-=-++;
(2)连接OP ,设点P 坐标为()
22240m m m m -++,,>,
()()()102004A B C -∵,,,,,,
可得:142OA OC OB ===,,,
OAC OCP OPB CABP S S S S S ==++△△△四边形∴
()2111
=1442224222
m m m ⨯⨯+⨯+⨯⨯-++ 2246m m =-++
()2
218m =--+,
当1m =时,S 最大,最大值为8.
23.【答案】(1)解:设王诗嬑的影长为xcm , 由题意可得:
90150
72x
=
, 解得:120x =,
经检验:120x =是分式方程的解。
答:王诗嬑的影子长为120cm 。
(2)正确,因为高圆柱在地面的影子与MN 垂直,所以太阳光的光线与MN 垂直,则在
斜坡上的影子也与MN 垂直,则过斜坡上的影子的横截面与MN 垂直,而横截面与地面垂直,高圆柱也与地面垂直,所以高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;
(3)如图,AB 为高圆柱,AF 为太阳光,CDE △为斜坡,CF 为圆柱在斜坡上的影子, 过点F 作FG CE ⊥于点G , 由题意可得:100100BC CF ==,,
∵斜坡坡度1:0.75i =,
140.753
DE FG CE CG ===∴, ∴设4m 3m FG CG ==,,在CFG △中,()()2
2
243100m m +=,
解得:20m =,
6080CG FG ==∴,, 160BG BC CG =+=∴,
过点F 作FH AB ⊥于点H ,
∵同一时刻,90cm 矮圆柱的影子落在地面上,其长为72cm ,
FG BE AB BE FH AB ⊥⊥⊥,,,
可知四边形HBGF 为矩形,
9072AH AH
HF BG
==
∴, 9090
1602007272
AH BG =⨯=⨯=∴,
20080280AB AH BH AH FG =+=+=+=∴
故高圆柱的高度为280cm .。