Linux内核TTY驱动架构

合集下载

Linux系统关系族谱图:应用程序、内核、驱动程序、硬件详解

Linux系统关系族谱图:应用程序、内核、驱动程序、硬件详解

Linux系统关系族谱图:应用程序、内核、驱动程序、硬件详解目前,Linux软件工程师大致可分为两个层次:01Linux应用软件工程师(ApplicaTIon Software Engineer):主要利用C库函数和Linux API 进行应用软件的编写;从事这方面的开发工作,主要需要学习:符合linux posix标准的API函数及系统调用,linux 的多任务编程技巧:多进程、多线程、进程间通信、多任务之间的同步互斥等,嵌入式数据库的学习,UI编程:QT、miniGUI等。

02Linux固件工程师(Firmware Engineer):主要进行Bootloader、Linux的移植及Linux设备驱动程序的设计工作。

一般而言,固件工程师的要求要高于应用软件工程师的层次,而其中的Linux设备驱动编程又是Linux程序设计中比较复杂的部分,究其原因,主要包括如下几个方面:1 )设备驱动属于Linux内核的部分,编写Linux设备驱动需要有一定的Linux操作系统内核基础;需要了解部分linux内核的工作机制与系统组成2)编写Linux设备驱动需要对硬件的原理有相当的了解,大多数情况下我们是针对一个特定的嵌入式硬件平台编写驱动的,例如:针对特定的主机平台:可能是三星的2410、2440,也可能是atmel的,或者飞思卡尔的等等3 )Linux设备驱动中广泛涉及到多进程并发的同步、互斥等控制,容易出现bug;因为linux本身是一个多任务的工作环境,不可避免的会出现在同一时刻对同一设备发生并发操作4 )由于属于内核的一部分,Linux设备驱动的调试也相当复杂。

linux设备驱动没有一个很好的IDE环境进行单步、变量查看等调试辅助工具;linux驱动跟linux内核工作在同一层次,一旦发生问题,很容易造成内核的整体崩溃。

在任何一个计算机系统中,大至服务器、PC机、小至手机、mp3/mp4播放器,无论是复杂的大型服务器系统还是一个简单的流水灯单片机系统,都离不开驱动程序的身影,没有硬件的软件是空中楼阁,没有软件的硬件只是一堆废铁,硬件是底层的基础,是所有软件。

linux_虚拟串口实现方法_概述及解释说明

linux_虚拟串口实现方法_概述及解释说明

linux 虚拟串口实现方法概述及解释说明1. 引言1.1 概述本文将介绍Linux下实现虚拟串口的方法,并对每种方法进行解释说明。

虚拟串口指的是一种软件仿真的串口设备,可以模拟物理串口的功能,实现数据的收发和传输。

在Linux系统中,使用虚拟串口可以满足一些特定场景下的需求,如开发、测试和调试等。

1.2 文章结构本文按照以下结构进行组织:- 第一部分为引言,对文章进行概述,并介绍文章的结构和目标;- 第二部分将介绍虚拟串口的背景知识,包括串口通信原理、虚拟串口定义与作用以及Linux中虚拟串口的应用场景;- 第三部分将详细介绍Linux下实现虚拟串口的三种方法:内核模块方式、用户空间模拟方式和设备树(DT)方式;- 第四部分将对每种实现方法进行解释说明,包括其原理、特点和适用情况;- 第五部分为总结与展望,对文章内容进行总结并展望未来发展方向。

1.3 目的本文旨在提供一个全面且清晰的介绍Linux下实现虚拟串口方法的资料,帮助读者理解虚拟串口的概念和原理,并根据实际需求选择合适的实现方法。

通过阅读本文,读者将了解到不同实现方法的优缺点,以及它们在不同场景下的应用情况。

同时,本文也对未来虚拟串口技术的发展进行展望。

2. 虚拟串口的背景:2.1 串口通信的基本原理:串口是一种用于在计算机和外部设备之间进行数据传输的通信接口。

它通过一个物理连接,使用一组控制信号和数据信号来实现双向通信。

串口通信具有简单、可靠、广泛应用等特点,因此在许多领域都得到了广泛应用,如电脑与打印机、调制解调器、路由器等设备之间的连接。

2.2 虚拟串口的定义与作用:虚拟串口是对物理串口进行仿真或模拟的一种技术。

它通过软件方式模拟了一个不存在的串行接口,使得应用程序可以通过虚拟串口与外部设备进行通信。

虚拟串口具有操作灵活、易于扩展等特点,可以提供与物理串口相似或更强大的功能。

2.3 虚拟串口在Linux中的应用场景:在Linux系统中,虚拟串口广泛应用于各种嵌入式系统开发和调试场景。

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。

为此,的内核一般不能动态的增加新的功能。

为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。

利用这个机制“模块”(module)。

利用这个机制,可以)。

利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。

正是这种机制,走已经安装的模块。

正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。

和可扩充性。

内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。

严格来说,卸载的内核软件。

严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。

但是,另一方面,可安装模块的形式实现的。

但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。

密切相关的部分(如文件系统等)。

课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。

且创建好该系统中的硬件设备的列表树:/sys 文件系统。

(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。

)。

linux系统结构框架

linux系统结构框架

linux系统结构框架
Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。

内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。

1.内核:内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux 内核由如下几部分组成:内存管理、进程管理、设备驱动程序、文件系统和网络管理等。

2.Shell:shell是命令行解释器,可以为用户提供对系统的访问,也可以被用作程序或者脚本的命令行环境。

有多种shell可以选择,比如bash,zsh,ksh等。

3.文件系统:Linux系统使用一个基于文件的层级结构来组织和存储系统资源。

每个文件和目录都从根目录“/”开始,然后层层嵌套。

4.应用程序:Linux系统上可以运行各种应用程序,包括文本编辑器、浏览器、开发工具等。

应用程序为用户提供了使用系统的接口。

在更细致的层次结构上,Linux系统的内存管理分为几个主要组件,包括物理内存管理、虚拟内存管理以及内核内存管理等。

物理内存管理负责物理内存的分配和回收,虚拟内存管理则将物理内存映射到虚拟地址空间,并实现内存的共享和保护。

内核内存管理则负责内核空间的分配和释放,以及内核页面的交换等。

linux字符设备驱动

linux字符设备驱动

字符设备驱动1.主设备号和从设备号Linux使用设备号来标识字符设备。

设备号分为主设备号和从设备号。

·主设备号标识设备对应的驱动程序。

每个在内核中活动的字符设备驱动程序都有唯一的主设备号。

·从设备号只由设备驱动程序使用。

字符设备驱动程序使用从设备号区分管理的不同物理设备。

向系统增加一个驱动程序意味着要赋予它一个主设备号。

2.具体到LINUX系统里,设备驱动程序所提供的这组入口点由一个结构来向系统进行说明,此结构定义为:#include <linux/fs.h>struct file_operations {int (*lseek)(struct inode *inode,struct file *filp,off_t off,int pos);int (*read)(struct inode *inode,struct file *filp,char *buf, int count);int (*write)(struct inode *inode,struct file *filp,char *buf,int count);int (*readdir)(struct inode *inode,struct file *filp,struct dirent *dirent,int count);int (*select)(struct inode *inode,struct file *filp,int sel_type,select_table *wait);int (*ioctl) (struct inode *inode,struct file *filp,unsigned int cmd,unsigned int arg);int (*mmap) (void);int (*open) (struct inode *inode, struct file *filp);void (*release) (struct inode *inode, struct file *filp);int (*fsync) (struct inode *inode, struct file *filp);};3.驱动程序的初始化函数:Int Init_module (){Return register_chrdev(,,,)}驱动清除函数:V oid cleanup_module(){Unregister_chrdev(,);}用户输入命令insmod模块文件名称加载内核模块时,系统会检测此模块能否被加载,如果能被加载,内核件调用模块的初始化函数。

Linuxkernel驱动相关抽象概念及其实现之“bus,device,driver”

Linuxkernel驱动相关抽象概念及其实现之“bus,device,driver”

Linuxkernel驱动相关抽象概念及其实现之“bus,device,driver”bus,device,driver三个很重要的概念贯穿Linux内核驱动架构,特转载⼀篇博⽂:内核的开发者将总线,设备,驱动这三者⽤软件思想抽象了出来,巧妙的建⽴了其间的关系,使之更形象化。

结合前⾯所学的知识,总的来说其三者间的关系为bus有两条链表,分别⽤于挂接设备和驱动,指定了其⾃⾝bus的device或者driver最后都会分别连接到对应bus的这两条链表上,⽽总线⼜有其始端,为bus_kset,⼀个driver可以对应于⼏个设备,因此driver同样有其设备链表,⽤于挂接可以操作的设备,其⾃⾝也有bus挂接点,⽤于将⾃⾝挂接到对应bus(每个driver只属于⼀条总线),⽽对于device,⼀个设备只属于⼀条总线,只能有⼀个driver与其对应,因此对于device,都是单⼀的,⼀个driver挂接点,⼀个bus挂接点,device与bus相同的是都有始端,device为devices_kset,因此device的注册同时会出现在对应的bus⽬录和device总⽬录下。

好了,下⾯就以源码为例分别分析⼀下bus,device,driver的注册过程。

⼀、bus的注册bus的注册⽐较简单,⾸先来看⼀下bus的结构:1struct bus_type {2const char *name; //名字3struct bus_attribute *bus_attrs; //bus属性集4struct device_attribute *dev_attrs; //device属性集5struct driver_attribute *drv_attrs; //driver属性集6int (*match)(struct device *dev, struct device_driver *drv);7int (*uevent)(struct device *dev, struct kobj_uevent_env *env);8int (*probe)(struct device *dev);9int (*remove)(struct device *dev);10void (*shutdown)(struct device *dev);11int (*suspend)(struct device *dev, pm_message_t state);12int (*resume)(struct device *dev);13const struct dev_pm_ops *pm;14struct bus_type_private *p; //bus的私有成员15 };16//其中重点看⼀下私有成员结构体:17struct bus_type_private {18struct kset subsys; //bus内嵌的kset,代表其⾃⾝19struct kset *drivers_kset;20struct kset *devices_kset;21struct klist klist_devices; //包含devices链表及其操作函数22struct klist klist_drivers; //driver链表及其操作函数23struct blocking_notifier_head bus_notifier;24 unsigned int drivers_autoprobe:1; //匹配成功⾃动初始化标志25struct bus_type *bus;26 };⽆论是bus,driver,还是device其本⾝特征都放在私有成员⾥,其注册时,都会申请并填充这个结构体,下⾯具体分析⼀下bus的注册流程,从bus_register开始:1int bus_register(struct bus_type *bus)2 {3int retval;4struct bus_type_private *priv;5 priv = kzalloc(sizeof(struct bus_type_private), GFP_KERNEL); //进⼊时bus_type->bus_type_private为NULL6if (!priv) //该函数主要是对其的设置7return -ENOMEM;8 priv->bus = bus; //私有成员的bus回指该bus9 bus->p = priv; //初始化bus->p,即其私有属性10 BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier);11 retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name); //设置该bus的名字,bus是kset的封装12if (retval)13goto out;14//bus_kset即为所有bus的总起始端点15//围绕bus内嵌的kset初始化,和kset的初始化时围绕16 priv->subsys.kobj.kset = bus_kset; //kobj相似,没有parent时,就会⽤kset的kobj,此处即是17 priv->subsys.kobj.ktype = &bus_ktype; //属性操作级别统⼀为bus_ktype18 priv->drivers_autoprobe = 1; //设置该标志,当有driver注册时,会⾃动匹配devices19//上的设备并⽤probe初始化,20//当有device注册时也同样找到 driver并会初始化21 retval = kset_register(&priv->subsys); //注册kset,创建⽬录结构,以及层次关系22if (retval)23goto out;24 retval = bus_create_file(bus, &bus_attr_uevent); //当前bus⽬录下⽣成bus_attr_uevent属性⽂件25if (retval)26goto bus_uevent_fail;27 priv->devices_kset = kset_create_and_add("devices", NULL, //初始化bus⽬录下的devices⽬录,⾥⾯级联了该bus下设备,28 &priv->subsys.kobj); //仍然以kset为原型29if (!priv->devices_kset) {30 retval = -ENOMEM;31goto bus_devices_fail;32 }33 priv->drivers_kset = kset_create_and_add("drivers", NULL, //初始化bus⽬录下的drivers⽬录,⾥⾯级联了该bus下设备的driver34 &priv->subsys.kobj);35if (!priv->drivers_kset) {36 retval = -ENOMEM;37goto bus_drivers_fail;38 }39 klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put); //初始化klist_devices⾥的操作函数成员40 klist_init(&priv->klist_drivers, NULL, NULL); //klist_drivers⾥的操作函数置空41 retval = add_probe_files(bus); //增加bus_attr_drivers_probe和bus_attr_drivers_autoprobe42if (retval) //属性⽂件43goto bus_probe_files_fail;44 retval = bus_add_attrs(bus); //增加默认的属性⽂件45if (retval)46goto bus_attrs_fail;47 pr_debug("bus: '%s': registered/n", bus->name);48return0;49 bus_attrs_fail: //以下为错误处理50 remove_probe_files(bus);51 bus_probe_files_fail:52 kset_unregister(bus->p->drivers_kset);53 bus_drivers_fail:54 kset_unregister(bus->p->devices_kset);55 bus_devices_fail:56 bus_remove_file(bus, &bus_attr_uevent);57 bus_uevent_fail:58 kset_unregister(&bus->p->subsys);59out:60 kfree(bus->p);61 bus->p = NULL;62return retval;63 }由此可见,bus⼜是kset的封装,bus_register主要完成了其私有成员bus_type_private的初始化,并初始化了其下的两个⽬录devices和drivers,及其属性⽂件,bus有个⾃⼰的根⽬录也就是bus有个起始端点,是bus_kset,经过此番的注册,bus⽬录下将会出现我们注册的bus,并且其下会有device和driver两个⼦⽬录,代表它下⾯的driver和device链表。

linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解

linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解

linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解首先:1。

终端和控制台都不是个人电脑的概念,而是多人共用的小型中型大型计算机上的概念.一台主机,连很多终端,终端为主机提供了人机接口,每个人都通过终端使用主机的资源. 终端有字符哑终端和图形终端两种.控制台是另一种人机接口, 不通过终端与主机相连, 而是通过显示卡-显示器和键盘接口分别与主机相连, 这是人控制主机的第一人机接口.话回到个人计算机上,个人计算机只有控制台,没有终端. 当然愿意的话, 可以在串口上连一两台字符哑终端. 但是linux偏要按POSIX标准把个人计算机当成小型机来用,那么就在控制台上通过getty软件虚拟了六个字符哑终端(或者叫控制台终端tty1-tty6)(数量可以在/etc/inittab里自己调)和一个图型终端, 在虚拟图形终端中又可以通过软件(如rxvt)再虚拟无限多个虚拟字符哑终端(pts/0....). 记住,这全是虚拟的,用起来一样,但实际上并不是.所以在个人计算机上,只有一个实际的控制台,没有终端,所有终端都是在控制台上用软件模拟的.要把个人计算机当主机再通过串口或网卡外连真正的物理终端也可以,但由于真正的物理终端并不比个人计算机本身便宜,一般没有人这么做.2.如同其他UNIX类系统,Linux本身也是基于命令行的。

试试“Ctrl”+“Alt”+“Fx”。

这就是控制台,算是Linux的本来面目。

至于使用方法,除了多出登录注销外,其它操作和我们在linux图形界面(X—window)下的终端操作是一样的,在X-Window出问题或不运行X-Window的时候,操作主要在这里完成。

Linux在控制台下提供了不止一个(字符哑)终端,支持多用户同时登录,包括在本机同时登录。

控制台“Alt”+“Fx”能够切换到第x个(字符哑)终端。

如果需要从X-Window里跳到第(字符哑)终端,需要“Ctrl”+“Alt”+“Fx”。

linux设备驱动,tty串口编程

linux设备驱动,tty串口编程

linux设备驱动,tty串口编程2011-12-04 08:56:33分类:LINUXXC2440开发板上已经含有S3C2440的3个串口驱动,我们只要知道各个串口的设备名称就可以了,204 s3c2410_serial ,204是串口的主设备号。

s3c2410_serial是设备名称,在 dev目录下 ls 一下就可以发现ptyd0 s3c2410_serial0 ttysaptyd1 s3c2410_serial1 ttysbptyd2 s3c2410_serial2 ttyscs3c2410_serial0,s3c2410_serial1,s3c2410_serial2 分别是串口1、2、3的设备名称下面是测试源码,打开串口1、2,程序执行后,串口1的波特率变为9600,这时候你的串口终端就没有反应了(串口1波特率默认115200),把终端软件串口1 波特率改为9600后,连接终端,回车一下,然后输入几个‘1’后,画面如上图。

这时用telnet工具登陆开发板,执行ps 查看现有运行的程序,找到tty [root@XC2440 /root]# psPID USER TIME COMMAND1 root 0:04 init2 root 0:00 [kthreadd]3 root 0:00 [ksoftirqd/0]5 root 0:00 [kworker/u:0]6 root 0:00 [khelper]7 root 0:00 [kworker/u:1]10 root 0:00 [netns]236 root 0:00 [sync_supers]238 root 0:00 [bdi-default]240 root 0:00 [kblockd]249 root 0:00 [khubd]252 root 0:00 [kseriod]258 root 0:00 [kmmcd]347 root 0:00 [rpciod]349 root 0:00 [kworker/0:1]355 root 0:00 [kswapd0]356 root 0:00 [aio]357 root 0:00 [nfsiod]358 root 0:00 [crypto]901 root 0:00 [mtdblock0]906 root 0:00 [mtdblock1]911 root 0:00 [mtdblock2]916 root 0:00 [mtdblock3]1028 root 0:00 [usbhid_resumer]1049 root 0:00 [yaffs-bg-1]1060 root 0:00 vsftpd /etc/vsftpd.conf1065 root 0:00 -/bin/sh1067 root 0:00 /usr/sbin/telnetd -l /bin/login1070 root 0:18 /usr/local/qtopia/bin/qpe -qws1071 root 0:00 boa1072 root 0:00 [kworker/0:2]1085 root 0:02 /usr/local/qtopia/bin/quicklauncher1086 root 0:00 /usr/local/qtopia/bin/qss1089 root 0:02 /usr/local/qtopia/bin/quicklauncher1098 root 0:00 [flush-31:3]1100 root 0:00 ./tty1101 root 0:00 -ash1104 root 0:00 ps[root@XC2440 /root]# kill 1100执行 kill 1100 后tty测试程序就被终止了,这时串口终端就可以用了,回车一下Terminated[@XC2440 pub]#Please press Enter to activate this console.Processing /etc/profile...Done[root@XC2440 /]#[root@XC2440 /]#测试代码如下:#include <errno.h>#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/ioctl.h>#include <sys/types.h>#include <errno.h>#include <termios.h>#include <sys/time.h>#include <signal.h>#include <string.h>#include <fcntl.h>#include <asm/param.h>#include "pthread.h"//#include "serial_set.h"/******************************************************************* * 函数名称: set_opt* 功能描述:设置串口基本参数* 输入参数: fd 打开的串口标识符(通过open_port函数返回)nSpeed 波特率 2400、4800、9600、115200nBits 数据位 7、8nEvent 奇偶校验 'O' 'N' 'E'nStop 停止位 1、2* 输出参数:无* 返回值: 0 设置成功-1 设置过程出错* 其它说明:无* 修改日期版本号修改人修改内容*-------------------------------------------------------------------- * 2010/09/27 V1.0 *** 创建函数***********************************************************************/int set_opt(int fd,int nSpeed, int nBits, char nEvent, int nStop) {struct termios newtio,oldtio;//保存测试现有串口参数设置,在这里如果串口号等出错,会有相关的出错信息if ( tcgetattr( fd,&oldtio) != 0){perror("SetupSerial 1");return -1;}//extern void bzero(void *s, int n); 置字节字符串s的前n个字节为零bzero( &newtio, sizeof( newtio ) );//设置字符大小newtio.c_cflag |= CLOCAL | CREAD;newtio.c_cflag &= ~CSIZE;//设置数据位switch( nBits ){case 7:newtio.c_cflag |= CS7;break;case 8:newtio.c_cflag |= CS8;break;}//设置校验位switch( nEvent ){case 'O':newtio.c_cflag |= PARENB;newtio.c_cflag |= PARODD;newtio.c_iflag |= (INPCK | ISTRIP);break;case 'E':newtio.c_iflag |= (INPCK | ISTRIP);newtio.c_cflag &= ~PARODD; break;case 'N':newtio.c_cflag &= ~PARENB; break;}//设置波特率switch( nSpeed ){case 2400:cfsetispeed(&newtio, B2400); cfsetospeed(&newtio, B2400); break;case 4800:cfsetispeed(&newtio, B4800); cfsetospeed(&newtio, B4800); break;case 9600:cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break;case 115200:cfsetispeed(&newtio, B115200); cfsetospeed(&newtio, B115200); break;default:cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break;}//设置停止位if( nStop == 1 )newtio.c_cflag &= ~CSTOPB; else if ( nStop == 2 )//设置等待时间和最小接收字符newtio.c_cc[VTIME] = 0;newtio.c_cc[VMIN] = 0;//处理未接收字符tcflush(fd,TCIFLUSH);//激活新配置if((tcsetattr(fd,TCSANOW,&newtio))!=0){perror("com set error");//打印com set error及出错原因return -1;}printf("set done!\n");return 0;}/******************************************************************** *** 函数名称: open_port* 功能描述:打开指定串口* 输入参数: fd 文件描述符comport 串口号(1、2、3)* 输出参数:无* 返回值:出错返回 -1成功返回 fd文件描述符* 其它说明:无* 修改日期版本号修改人修改内容*-------------------------------------------------------------------- * 2010/09/27 V1.0 *** 创建函数********************************************************************* **//*static struct uart_driver s3c24xx_uart_drv = {.owner = THIS_MODULE,.dev_name = "s3c2410_serial",.nr = CONFIG_SERIAL_SAMSUNG_UARTS,.cons = S3C24XX_SERIAL_CONSOLE,.driver_name = S3C24XX_SERIAL_NAME,.major = S3C24XX_SERIAL_MAJOR,.minor = S3C24XX_SERIAL_MINOR,};*/int open_port(int fd,int comport){//char *dev[]={"/dev/ttyS0","/dev/ttyS1","/dev/ttyS2"}; long vdisable;//没用//打开串口if (comport==1){//fd = open("/dev/ttySAC0",O_RDWR|O_NOCTTY|O_NDELAY);fd = open("/dev/s3c2410_serial0",O_RDWR|O_NOCTTY|O_NDELAY); if (-1 == fd){perror("Can't Open s3c2410_serial0");return(-1);}elseprintf("open s3c2410_serial0 .....\n");}else if(comport==2){fd = open("/dev/s3c2410_serial1",O_RDWR|O_NOCTTY|O_NDELAY); if (-1 == fd){perror("Can't Open s3c2410_serial1");return(-1);}elseprintf("open s3c2410_serial1 .....\n");}else if (comport==3){fd = open("/dev/s3c2410_serial2",O_RDWR|O_NOCTTY|O_NDELAY);if (-1 == fd){perror("Can't Open s3c2410_serial2");return(-1);}elseprintf("open s3c2410_serial2 .....\n");}else if (comport==4){fd = open("/dev/s3c2410_serial3",O_RDWR|O_NOCTTY|O_NDELAY);if (-1 == fd){perror("Can't Open s3c2410_serial3");return(-1);}elseprintf("open s3c2410_serial3 .....\n");}//恢复串口的状态为阻塞状态,用于等待串口数据的读入if(fcntl(fd, F_SETFL, 0) < 0)printf("fcntl failed!\n");elseprintf("fcntl=%d\n",fcntl(fd, F_SETFL,0));//测试打开的文件描述符是否引用一个终端设备,以进一步确认串口是否正确打开if(isatty(STDIN_FILENO)==0)printf("standard input is not a terminal device\n");elseprintf("isatty success!\n");printf("fd-open=%d\n",fd);return fd;}unsigned int val=0;int main(int argc, char **argv){long ret=0;int receNum=0,receFlag=0;unsigned char ReceBuf[512],SendBuf[512];int fd,fdd;int nread,i;unsigned char buff[512];struct timeval timeout;bzero(buff, 512);if((fdd=open_port(fdd,2)) < 0)//打开串口 2{printf("open_port error2\n");return -1;}if((i=set_opt(fdd,9600,8,'N',1)) < 0)//设置串口 9600 8 N 1 {printf("set_opt error2\n");return -1;}printf("fd=%d\n",fdd);if((fd=open_port(fd,1)) < 0)//打开串口 1{printf("open_port error1\n");return -1;}if((i=set_opt(fd,9600,8,'N',1)) < 0)//设置串口 9600 8 N 1 {printf("set_opt error1\n");return -1;}printf("fd=%d\n",fd);_sec=1;//设置定时器_usec=0;while (1){nread = read(fd,buff,256);//读串口数据非阻塞if(nread>0){memcpy(&ReceBuf[receNum],buff,nread);receFlag=2;receNum +=nread; if(receNum>511)receNum=0;printf("nread = %d\n",nread);printf("%s\n",buff);bzero(buff,nread);//清空}else{//printf("main\n");if(receFlag>1)receFlag--;if(receFlag==1){write(fd,ReceBuf,receNum);//写数据receNum=0;receFlag=0;}_sec=0;_usec=20000;//设置时间 20MS 读取一下串口数据ret=select(0,NULL,NULL,NULL,&timeout);}}close(fdd);close(fd);return 0;}。

linux设备驱动之8250串口驱动

linux设备驱动之8250串口驱动

linux设备驱动之8250串口驱动一:前言前一段时间自己实践了一下8250芯片串口驱动的编写。

今天就在此基础上分析一下linux kernel自带的串口驱动。

毕竟只有对比专业的驱动代码才能更好的进步,同以往一样,基于linix kernel2.6.25.相应驱动代码位于:linux-2.6.25/drivers/serial/8250.c。

二:8250串口驱动初始化相应的初始化函数为serial8250_init().代码如下:static int __init serial8250_init(void){int ret, i;if (nr_uarts > UART_NR)nr_uarts = UART_NR;printk(KERN_INFO "Serial: 8250/16550 driver $Revision: 1.90 $ ""%d ports, IRQ sharing %sabled\n", nr_uarts,share_irqs ? "en" : "dis");for (i = 0; i < NR_IRQS; i++)spin_lock_init(&irq_lists[i].lock);ret = uart_register_driver(&serial8250_reg);if (ret)goto out;serial8250_isa_devs = platform_device_alloc("serial8250",PLAT8250_DEV_LEGACY);if (!serial8250_isa_devs) {ret = -ENOMEM;goto unreg_uart_drv;}ret = platform_device_add(serial8250_isa_devs);if (ret)goto put_dev;serial8250_register_ports(&serial8250_reg, &serial8250_isa_devs->dev);ret = platform_driver_register(&serial8250_isa_driver);if (ret == 0)goto out;platform_device_del(serial8250_isa_devs);put_dev:platform_device_put(serial8250_isa_devs);unreg_uart_drv:uart_unregister_driver(&serial8250_reg);out:return ret;}这段代码涉及到的知识要求,如platform ,uart等我们在之前都已经做过详细的分析。

linux下devicedriver

linux下devicedriver

发信人: olly (剑胆琴心), 信区: Linux标题: LINUX下的设备驱动程序三、UNIX系统下的设备驱动程序3.1、UNIX下设备驱动程序的基本结构在UNIX系统里,对用户程序而言,设备驱动程序隐藏了设备的具体细节,对各种不同设备提供了一致的接口,一般来说是把设备映射为一个特殊的设备文件,用户程序可以象对其它文件一样对此设备文件进行操作。

UNIX对硬件设备支持两个标准接口:块特别设备文件和字符特别设备文件,通过块(字符)特别设备文件存取的设备称为块(字符)设备或具有块(字符)设备接口。

块设备接口仅支持面向块的I/O操作,所有I/O操作都通过在内核地址空间中的I/O缓冲区进行,它可以支持几乎任意长度和任意位置上的I/O请求,即提供随机存取的功能。

字符设备接口支持面向字符的I/O操作,它不经过系统的快速缓存,所以它们负责管理自己的缓冲区结构。

字符设备接口只支持顺序存取的功能,一般不能进行任意长度的I/O请求,而是限制I/O请求的长度必须是设备要求的基本块长的倍数。

显然,本程序所驱动的串行卡只能提供顺序存取的功能,属于是字符设备,因此后面的讨论在两种设备有所区别时都只涉及字符型设备接口。

设备由一个主设备号和一个次设备号标识。

主设备号唯一标识了设备类型,即设备驱动程序类型,它是块设备表或字符设备表中设备表项的索引。

次设备号仅由设备驱动程序解释,一般用于识别在若干可能的硬件设备中,I/O请求所涉及到的那个设备。

设备驱动程序可以分为三个主要组成部分:(1) 自动配置和初始化子程序,负责检测所要驱动的硬件设备是否存在和是否能正常工作。

如果该设备正常,则对这个设备及其相关的、设备驱动程序需要的软件状态进行初始化。

这部分驱动程序仅在初始化的时候被调用一次。

(2) 服务于I/O请求的子程序,又称为驱动程序的上半部分。

调用这部分是由于系统调用的结果。

这部分程序在执行的时候,系统仍认为是和进行调用的进程属于同一个进程,只是由用户态变成了核心态,具有进行此系统调用的用户程序的运行环境,因此可以在其中调用sleep()等与进程运行环境有关的函数。

linux驱动工程师面试题整理.doc

linux驱动工程师面试题整理.doc

1、字符型驱动设备你是怎么创建设备文件的,就是/dev/下面的设备文件,供上层应用程序打开使用的文件?答:niknod命令结合设备的主设备号和次设备号,可创建一个设备文件。

评:这只是其中一种方式,也叫手动创建设备文件。

还有UDEV/MDEV自动创建设备文件的方式,UDEV/MDEV是运行在用户态的程序,可以动态管理设备文件,包括•创建和删除设备文件,运行在用八态意味着系统要运行Z后。

那么在系统启动期间还有dcvfs创建了设备文件。

一共有三种方式可以创建设备文件。

2、写一个中断服务需要注意哪些?如果中断产生之后要做比较多的事情你是怎么做的?答:中断处理例程应该尽量短,把能放在后半段(tasklet,等待队列等)的任务尽量放在后半段。

评:写一个屮断服务程序要注意快进快出,在中断服务程序里面尽量快速釆集信息,包括硬件信息,然后推出中断,要做其它事情可以使用工作队列或者tasklet方式。

也就是中断上半部和下半部。

第二:中断服务程序中不能有阻塞操作。

为什么?大家可以讨论。

第三:屮断服务程序注意返回值,要用操作系统定义的宏做为返回值,而不是自己定义的OK, FAIL 之类的。

3、自旋锁和信号量在互斥使用时需要注意哪些?在中断服务程序里面的互斥是使用自旋锁还是信号量?还是两者都能用?为什么?答:使用自旋锁的进程不能睡眠,使用信号暈的进程可以睡眠。

屮断服务例程屮的互斥使用的是白旋锁,原因是在屮断处理例程屮,硬屮断是关闭的,这样会丢失可能到来的屮断。

4、原子操作你怎么理解?为了实现一个互斥,自己定义一个变量作为标记来作为一个资源只有一个使用者行不行?答:原子操作指的是无法被打断的操作。

我没懂第二句是什么意思,口己定义一个变量怎么可能标记资源的使用情况?其他进程又看不见这个变量评:第二句话的意思是:定义一个变量,比如int flag =0;if (flag == 0){flag = 1;操作临界区;flag = 0;}这样对否?5、insmod 一个驱动模块,会执行模块中的哪个函数?rmmod呢?这两个函数在设计上要注意哪些?遇到过卸载驱动出现异常没?是什么问题引起的?答:insmod调用init函数,rmmod调用exit函数。

linux设备驱动程序的设计与实现

linux设备驱动程序的设计与实现

linux设备驱动程序的设计与实现
Linux设备驱动程序的设计与实现是一个涉及底层系统编程和硬件交互的复杂过程。

下面是一个简单的步骤指南,以帮助你开始设计和实现Linux设备驱动程序:
1. 了解硬件:首先,你需要熟悉你要驱动的硬件设备的规格和特性。

这包括硬件的内存空间、I/O端口、中断请求等。

2. 选择驱动程序模型:Linux支持多种设备驱动程序模型,包括字符设备、块设备、网络设备等。

根据你的硬件设备和需求,选择合适的驱动程序模型。

3. 编写Makefile:Makefile是一个文本文件,用于描述如何编译和链接你的设备驱动程序。

它告诉Linux内核构建系统如何找到并编译你的代码。

4. 编写设备驱动程序:在Linux内核源代码树中创建一个新的驱动程序模块,并编写相应的C代码。

这包括设备注册、初始化和卸载函数,以及支持读写和配置硬件的函数。

5. 测试和调试:编译你的设备驱动程序,并将其加载到运行中的Linux内核中。

使用各种测试工具和方法来验证驱动程序的正确性和稳定性。

6. 文档和发布:编写清晰的文档,描述你的设备驱动程序的用途、用法和已知问题。

发布你的代码以供其他人使
用和改进。

Linux 内核变更导致驱动经常出现的错误记录

Linux 内核变更导致驱动经常出现的错误记录

9: error: implicit declaration of function ‘usb_buffer_free’
解决方法: 用usb_free_coherent()替代,
说明:
USB: rename usb_buffer_alloc() and usb_buffer_free()
kgid_t egid; /* effective GID of the task */
kuid_t fsuid; /* UID for VFS ops */
kgid_t fsgid; /* GID for VFS ops */
解决方法: 删除, 新版本中此标志被移除
kuid_t suid; /* saved UID of the task */
kgid_t sgid; /* saved GID of the task */
kuid_t euid; /* effective UID of the task */
For more clearance what the functions actually do,
usb_buffer_alloc() is renamed to usb_alloc_coherent()
usb_buffer_free() is renamed to usb_free_coherent()
Linux 内核变更导致驱动经常出现的错误记录
1: error: CFLAGS was changed in xxx. Fix it to use ccflags-y。
解决方法: export KBUILD_NOPEDANTIC=1
解决方法: 修改Makefile中的 CFLAGS 为 EXTRA_CFLAGS 或 ccflags-y

linux内核初始化及启动之用户模式开始

linux内核初始化及启动之用户模式开始

linux内核初始化及启动之用户模式开始2006-08-27 08:00作者:余涛出处:天极开发责任编辑:方舟设备的初始化init()--->do_basic_init()--->pci_init(),初始化PCI,检测系统的PCI设备。

此信息,在linux启动过程中都会出现。

对Socket的初始化,socket_init(),Netlink 一种路由器管理协议(linux-2.4.22\net\core\Rtnetlink.c,Routing netlink socket interface: protocol independent part。

其中RT是route路由的意思。

这句输出是在create产生rtnetlink的socket套接字时的一个调试输出。

)此信息,在linux启动过程中都会出现。

启动交换守护进程kswapd,进程IO操作例程kpiodkswapd可以配合kpiod运行。

进程有时候无事可做,当它运行时也不一定需要把其所有的代码和数据都放在内存中。

这就意味着我们可以通过把运行中程序不用的内容切换到交换分区来更好的是利用内存。

大约每隔1秒,kswapd醒来并检查内存情况。

如果在硬盘的东西要读入内存,或者内存可用空间不足,kpiod就会被调用来做移入/移出操作。

kswapd负责检查,kpiod负责移动。

加载日志块设备驱动。

日志块设备是用来对文件系统进行日志记录的一个块设备。

日志文件系统是在传统文件系统的基础上,加入文件系统更改的日志记录。

它的设计思想是:跟踪记录文件系统的变化,并将变化内容记录入日志。

日志文件系统在磁盘分区中保存有日志记录,写操作首先是对记录文件进行操作,若整个写操作由于某种原因(如系统掉电)而中断,系统重启时,会根据日志记录来恢复中断前的写操作。

在日志文件系统中,所有的文件系统的变化都被记录到日志,每隔一定时间,文件系统会将更新后的元数据及文件内容写入磁盘。

linux操作系统的基本体系结构

linux操作系统的基本体系结构

linux操作系统的基本体系结构一、内核(Kernel)Linux操作系统的核心是内核,它负责管理系统资源、控制硬件设备、调度进程和提供基本的系统服务。

Linux内核采用单内核结构,包含了操作系统的大部分核心功能和驱动程序。

内核是操作系统的核心组件,它提供了操作系统运行所必须的基本功能。

Linux内核具有以下特点:1、多任务处理:Linux内核支持多任务处理,可以同时运行多个程序,并实现多个程序之间的切换和管理。

2、硬件管理:Linux内核负责管理硬件设备,与硬件设备交互,控制硬件设备的工作状态。

3、内存管理:Linux内核负责管理系统的内存,包括内存的分配、释放、映射和交换等操作。

4、文件系统:Linux内核支持多种文件系统,包括ext4、NTFS、FAT等,负责文件的读写、管理和保护。

5、进程管理:Linux内核管理系统进程,包括进程的创建、调度、挂起、唤醒和终止等操作。

6、网络通信:Linux内核支持网络通信功能,包括TCP/IP协议栈、网卡驱动等,实现网络数据传输和通信。

二、ShellShell是Linux操作系统的命令解释器,用户通过Shell与操作系统进行交互。

Shell接受用户的命令,并将其转换为对应的系统调用,最终由内核执行。

Linux系统中常用的Shell有Bash、Zsh等,用户可以根据自己的喜好选择不同的Shell。

Shell具有以下功能:1、命令解释:Shell接受用户输入的命令,并将其翻译为操作系统可以执行的命令。

2、执行程序:Shell可以执行各种程序、脚本和命令,包括系统工具、应用程序等。

3、环境控制:Shell可以设置环境变量、别名和路径等,帮助用户管理系统环境。

4、文件处理:Shell可以处理文件操作,包括创建、删除、复制、移动等。

5、脚本编程:Shell支持脚本编程,用户可以编写Shell脚本来自动执行一系列操作。

三、系统工具Linux操作系统提供了丰富的系统工具,帮助用户管理系统和执行各种任务。

linux系统框架介绍

linux系统框架介绍

linux系统框架介绍Linux系统框架介绍Linux是一种开源的操作系统,其设计基于Unix操作系统,并且具有高度的可定制性和灵活性。

Linux系统的框架是其架构的基础,它定义了系统的组织结构和各个组件之间的关系。

在本文中,我们将对Linux系统的框架进行详细介绍。

Linux系统的框架可以分为五个主要部分:内核空间、系统调用接口、标准C库、Shell和应用程序。

1. 内核空间:Linux内核是操作系统的核心部分,它提供了各种基本功能,如进程管理、内存管理、文件系统、设备驱动程序等。

内核空间是内核代码运行的环境,只能被特权进程访问。

内核空间包含了多个子系统,每个子系统负责特定的功能,通过模块化的方式组织起来,使得内核具有高度的可扩展性和可定制性。

2. 系统调用接口:系统调用是用户程序与内核之间的接口,它允许用户程序访问内核提供的功能。

Linux系统提供了大量的系统调用,包括文件操作、进程管理、网络通信等。

用户程序通过调用系统调用接口来请求内核执行特定的操作,内核在接收到请求后执行相应的功能并返回结果。

3. 标准C库:标准C库是一组函数库,提供了一些常用的函数和工具,以帮助程序员开发应用程序。

标准C库提供了对C语言标准函数的封装和扩展,使得开发者可以更方便地编写应用程序。

在Linux系统中,常用的标准C库是GNU C库(glibc),它是一个功能强大的库,包含了大量的函数和工具。

4. Shell:Shell是Linux系统的命令行解释器,它允许用户通过输入命令来与系统交互。

Shell解释器接收用户输入的命令,并将其解释为相应的系统调用或应用程序。

Linux系统中常用的Shell解释器有Bash、Csh、Ksh等。

Shell提供了丰富的命令和功能,使得用户可以通过命令行方式完成各种任务。

5. 应用程序:应用程序是用户直接使用的软件,可以是系统自带的工具,也可以是用户自己开发的程序。

Linux系统提供了大量的应用程序,包括文本编辑器、图形界面工具、网络应用等。

对于Linux内核tty设备的一点理解

对于Linux内核tty设备的一点理解

对于Linux内核tty设备的一点理解虽然一直做嵌入式Linux,宿主机和开发板通信天天都在用tty设备通信,但是其实自己对TTY设备及终端的概念认识几乎是0。

对于Linux内核的终端、tty、控制台等概念的认识很模糊。

由于在学习的时候碰到了重定向console的问题,所以借机学习下tty的知识。

以下是我对tty的认识总结,信息来源于网络和内核文档。

参考资料见文章末尾。

tty 一词源于Teletypes,或Teletypewriters,它是最早出现的一种终端设备,类似电传打字机,由Teletype公司生产。

最初tty是指连接到Unix系统上的物理或者虚拟终端。

终端是一种字符型设备,通常使用tty来统称各种类型的终端设备。

随着时间的推移,当通过串行口能够建立起终端连接后,这个名字也用来指任何的串口设备。

它还有多种类,例如串口(ttySn、ttySACn、ttyOn)、USB到串口的转换器(ttyUSBn),还有需要特殊处理才能正常工作的调制解调器(比如传统的WinModem类设备)等。

tty虚拟设备支持虚拟控制台,它能通过键盘及网络连接或者通过xterm会话登录到计算机上。

其实起初终端和控制台都不是个人电脑的概念,而是多人共用的小型中型大型计算机上的概念。

终端为主机提供了人机接口,每个人都通过终端使用主机的资源。

终端有字符终端和图形终端两种。

一台主机可以连很多终端。

控制台是一种特殊的人机接口, 是人控制主机的第一人机接口。

而主机对于控制台的信任度高于其他终端。

对此还可以结合内核启动代码中init进程打开/dev/console和执行两次sys_dup(0),以及标准输入、标准输出、标准出错,还有就是进程fork后的标准输入输出的复制情况来一起理解。

而个人计算机只有控制台,没有终端。

当然愿意的话,可以在串口上连一两台字符哑终端。

但是linux按POSIX标准把个人计算机当成小型机来用,在控制台上通过getty软件虚拟了六个字符哑终端(或者叫虚拟控制台终端tty1-tty6)(数量可以在/etc/inittab里自己调整)和一个图型终端, 在虚拟图形终端中又可以通过软件(如rxvt)再虚拟无限多个伪终端(pts/0等)。

原子嵌入式linux驱动开发详解

原子嵌入式linux驱动开发详解

原子嵌入式linux驱动开发详解原子嵌入式Linux驱动开发详解:Linux操作系统一直都是工业控制、物联网、安防等领域中嵌入式设备的首选操作系统。

Linux系统的优良特性使其成为用户和开发者的首选,而Linux内核驱动则是面向嵌入式应用领域核心技术之一。

它是嵌入式设备在硬件及软件之间接口的重要组成部分。

本文将详细介绍使用原子嵌入式Linux驱动进行嵌入式设备驱动的开发,并且介绍使用原子嵌入式Linux驱动实现并行的多线程驱动。

一、嵌入式设备驱动的基本原理:所谓嵌入式设备驱动,就是处理器与外部设备之间进行数据传递的程序,将设备中的信息读取到处理器中,或将处理器中的信息发送至设备中。

嵌入式设备驱动的核心逻辑是控制输入输出模块,以完成外部信息的读取和发送任务。

在Linux系统下,设备驱动一般以内核模块存在,片上驱动是一个相对独立的模块,不妨做一番详细的介绍。

二、原子嵌入式Linux驱动的使用:原子嵌入式Linux驱动根据功能的不同划分成了两类,即原子操作和读写自旋锁。

这两类驱动的使用方法不同,且有自己的特殊应用场景。

1、原子操作:在多线程的情况下,通过锁来保证同一时间只能有一个线程操作共享资源是一种常见的方法。

原子操作则是一种替代锁的方式,在多线程操作共享资源的情况下采用原子操作方式相对于锁来说会更加高效。

原子操作是一种特殊的指令操作,执行完原子操作之后,CPU不允许其他线程读写该地址的值,因此可以避免竞争。

下面是一个使用原子操作的例子:radio_chan = atomic_read(&radio->chan);digital_chan =atomic_read(&radio->digital_chan);radio_write_register(radio, 0x0011, 2,&radio_chan);radio_write_register(radio, 0x5111, 2,&digital_chan);在上述代码中,使用了atomic_read来获得变量radio_chan和digital_chan的值,这两个变量是共享资源,这里使用原子操作来避免竞争和冲突。

高级字符驱动操作说明

高级字符驱动操作说明

高级字符驱动操作说明1. 简介高级字符驱动是Linux系统中的一种驱动类型,它用于实现对字符设备的控制和管理。

本文将介绍如何使用高级字符驱动进行设备操作,并提供示例代码和详细说明。

2. 准备工作在开始使用高级字符驱动之前,您需要确保以下准备工作已完成:•确认您的系统支持字符设备。

您可以通过执行命令ls /dev来查看/dev目录下是否存在类似tty、ttyS等字符设备的文件。

•确认您具备编写驱动程序的基本知识,包括C语言编程和Linux系统编程的基础知识。

3. 编写高级字符驱动程序编写高级字符驱动程序的一般步骤如下:3.1. 创建驱动源文件首先,您需要创建一个新的C源文件,用于编写驱动程序的代码。

您可以选择使用任何文本编辑器,如vi或nano。

3.2. 包含必要的头文件在驱动程序的源文件中,您需要包含一些必要的头文件,以便能够使用Linux内核提供的函数和数据结构。

常用的头文件包括linux/module.h、linux/init.h、linux/fs.h等。

示例代码如下:#include <linux/module.h>#include <linux/init.h>#include <linux/fs.h>3.3. 实现驱动的初始化和退出函数在驱动程序中,您需要实现一个初始化函数和一个退出函数,分别在模块加载和卸载时被调用。

这些函数可以使用module_init和module_exit宏来定义。

示例代码如下:static int __init mydriver_init(void) {// 初始化操作,如注册字符设备等return 0;}static void __exit mydriver_exit(void) {// 退出操作,如注销字符设备等}module_init(mydriver_init);module_exit(mydriver_exit);3.4. 实现驱动的文件操作函数驱动程序需要实现一系列文件操作函数,以处理用户空间和设备之间的数据传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MX51的TTY驱动架构
2012-12-28 一、任务目标
以uart为实例分析整理TTY驱动架构。

二、层次架构
图1
在linux内核中,串行设备多种多样,内核开发者为了让驱动开发者尽量简单(可复用的东西多),构建了如图1所示的串行设备层次架构。

tty core里是最基本的字符驱动,经过线路规程处理的数据,通过tty core提供的数据交互机制与用户空间通信。


图1中线路规程表示对上层或下层传过来数据的处理,不同的处理方式对应不同的协议,如红外、ppp拨号等等。

serial core是对tty驱动进行了封装,与硬件无关,给底层uart驱动开发提供API,针对具体硬件的操作全在uart驱动中实现。

因为uart同时涉及到以上三层,所以本文档以uart为例,阐述TTY。

三、数据结构设计
1. 数据结构
uart驱动中定义了2个重要的数据结构,struct uart_driver mxc_reg,和struct uart_mxc_port mxc_port[8]。

a. struct uart_driver mxc_reg
uart_driver是serial_core提供的重要结构体,下面是代码定义的uart_driver 实例,变量的解释见对应注释。

具体结构体见数据结构关系图。

b. struct uart_mxr_port mxc_ports[8]
mxc_ports[]数组是自定义的uart_mxc_port数组,数组大小为8,在mx51中只用到前3个。

mxc_ports[]中包含的最重要的结构体是struct uart_port{},它们之间的关系详见数据结构关系图。

2. 数据结构关系图
四、uart注册及初始化
1. uart注册
uart驱动程序入口:
在mxcuart_init()函数中,我们重点分析uart_register_driver(struct uart_driver *),对于platform_driver_register(),详见平台设备注册文档分析。

下面重点分析uart_register_driver(struct uart_driver *)
在uart_register_driver()中,构建了tty_driver,并将uart_driver中的相关成员赋值给tty_driver,最终调用到tty_register_driver(struct tty_driver *)。

在tty_register_driver(struct tty_driver *)中,最终注册了8个字符设备驱动,其操作函数为tty_fops。

下面分析不同层次间几个operations函数的关系,如图:
在上面前3层中,每一层都给自己的下一层提供了操作函数的接口,tty_core 是一个字符设备驱动,实现了字符设备提供的struct file_operations{},同时给自己的下层提供了struct tty_operations {}操作接口。

serial_core使用了tty_core提供的struct tty_operations {}操作接口,同时给自己的下层提供了struct uart_ops {}操作接口。

在后面的打开、数据读写过程中我们将会看到具体的层层调用关系。

到这里uart注册告一段落。

2. uart初始化
uart平台设备在/arch/arm/mach-mx5/serial.c中arch_initcall(mxc_init_uart)注册,注册了3个平台设备。

uart平台驱动和uart平台设备通过名字“mxcintuart”匹配,匹配成功调用uart平台驱动中的mxcuart_probe()。

在mxcuart_probe 中主要是将平台资源给mxc_ports中的uart_port ,然后调用uart_add_one_port(),它根据uart_port{}中的line拿到uart_driver{}中对应的
uart_state{},然后配置好这个port并调用tty_register_device()注册该port。

匹配成功后将调用到mxcuart_probe()。

五、uart打开
在介绍uart打开、读写数据时,首先需要先回顾下不同层次间几个operations函数的关系图,接下来先从总体上分析其大致流程,然后具体分析细节。

下面分5个步骤介绍uart打开的具体细节:
●用户空间
●字符驱动
●tty_core
●serial_core
●uart驱动
1. 用户空间
用户空间通过具体的设备节点拿到主次设备号,通过VFS找到具体的字符驱动设备。

这一过程非常复杂,详细VFS文档分析。

2. 字符驱动
字符驱动会调用tty_core向它注册的file_operations中的tty_open()。

在上述流程中tty_init_dev需要重点概述下:
3. tty_core
在执行到tty_open()时,会调用serial_core向它注册的tty_operations中的uart_open()。

4. serial_core
如上图代码,在tty_core中调用到了serial_core向它注册的uart_open(),同时uart_open()中也用到了uart驱动向它注册的uart_ops中的startup()。

上面注册了中断处理函数,这个函数极为重要,数据接收和发送都要用到它。

此中断是接收发送共用的,当收到中断信号时通过判断相应的寄存器位来区分是接收中断还是发送中断。

5. uart驱动
uart驱动做为tty的一个实例,就是按照serial_core提供的注册接口注册,并实现其uart_ops中的回调函数,这些函数大多是与具体硬件操作相关的。

六、uart写数据
uart写数据是由用户空间发起的,同样我们先从总体上了解它的流程,再具体讲其细节。

下面分6个步骤介绍uart打开的具体细节:
●用户空间
●字符驱动
●线路规程
●tty_core
●serial_core
●uart驱动
1. 用户空间
用户空间调用write(),通过打开设备节点返回的文件描述符调到tty_core注册的tty_write()。

2. 字符驱动
字符驱动中的tty_write()会从用户空间拷贝数据,然后调用线路规程的write()函数。

3. 线路规程
线路规程就是对写入或者读到的数据按照指定的协议进行处理。

不同的线路规程处理数据的方式不一样,这里我们用到的是N_TTY,后续单独分析N_TTY,这里我们只要知道数据经过了它,它对输入的数据进行了处理。

4. tty_core
线路规程会把处理后的数据给到tty_core层,通过调用serial_core注册的uart_write()。

5. serial_core
在上图中可以看到,最后面调用到了uart驱动向serial_core注册的start_tx(),具体的实现是mxcuart_start_tx()函数,它触发了中断,程序将进入中断处理流程。

6. uart驱动
uart中实现了中断处理函数,这里面会将数据一个一个写入寄存器。

下面通过图示的方法,结合数据结构关系图,说明具体数据的走向。

七、uart读数据
uart读数据流程
1.mxcuart_rx_chars(umxc);
uart_insert_char(&umxc->port, status, MXC_UARTURXD_OVRRUN, ch, flag);
tty_insert_flip_char(tty, ch, flag);。

相关文档
最新文档