Linux驱动框架及驱动加载
linux驱动开发(一)
linux驱动开发(⼀)1:驱动开发环境要进⾏linux驱动开发我们⾸先要有linux内核的源码树,并且这个linux内核的源码树要和开发板中的内核源码树要⼀直;⽐如说我们开发板中⽤的是linux kernel内核版本为2.6.35.7,在我们ubuntu虚拟机上必须要有同样版本的源码树,我们再编译好驱动的的时候,使⽤modinfo XXX命令会打印出⼀个版本号,这个版本号是与使⽤的源码树版本有关,如果开发板中源码树中版本与modinfo的版本信息不⼀致使⽆法安装驱动的;我们开发板必须设置好nfs挂载;这些在根⽂件系统⼀章有详细的介绍;2:开发驱动常⽤的⼏个命令lsmod :list moduel 把我们机器上所有的驱动打印出来,insmod:安装驱动rmmod:删除驱动modinfo:打印驱动信息3:写linux驱动⽂件和裸机程序有很⼤的不同,虽然都是操作硬件设备,但是由于写裸机程序的时候是我们直接写代码操作硬件设备,这只有⼀个层次;⽽我们写驱动程序⾸先要让linux内核通过⼀定的接⼝对接,并且要在linux内核注册,应⽤程序还要通过内核跟应⽤程序的接⼝相关api来对接;4:驱动的编译模式是固定的,以后编译驱动的就是就按照这个模式来套即可,下⾯我们来分下⼀下驱动的编译规则:#ubuntu的内核源码树,如果要编译在ubuntu中安装的模块就打开这2个#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build# 开发板的linux内核的源码树⽬录KERN_DIR = /root/driver/kernelobj-m += module_test.oall:make -C $(KERN_DIR) M=`pwd` modulescp:cp *.ko /root/porting_x210/rootfs/rootfs/driver_test.PHONY: cleanclean:make -C $(KERN_DIR) M=`pwd` modules cleanmake -C $(KERN_DIR) M=`PWD` modules这句话代码的作⽤就是到 KERN_DIR这个⽂件夹中 make modules把当前⽬录赋值给M,M作为参数传到主⽬录的Makefile中,实际上是主⽬录的makefile中有⽬标modules,下⾯有⼀定的规则来编译驱动;#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build我们在ubuntu中编译内核的时候⽤这两句代码,因为在ubuntu中为我们保留了⼀份linux内核的源码树,我们编译的时候直接调⽤那个源码树的主Makefile以及⼀些头⽂件、内核函数等;了解规则以后,我们设置好KERN_DIR、obj-m这两个变量以后直接make就可以了;经过编译会得到下⾯⼀些⽂件:下⾯我们可以使⽤lsmod命令来看⼀下我们ubuntu机器现有的⼀些驱动可以看到有很多的驱动,下⾯我们使⽤insmod XXX命令来安装驱动,在使⽤lsmod命令看⼀下实验现象可以看到我们刚才安装的驱动放在了第⼀个位置;使⽤modinfo来打印⼀下驱动信息modinfo xxx.ko这⾥注意vermagic 这个的1.8.0-41是你⽤的linux内核源码树的版本号,只有这个编译的版本号与运⾏的linux内核版本⼀致的时候,驱动程序才会被安装注意license:GPL linux内核开元项⽬的许可证⼀般都是GPL这⾥尽量设置为GPL,否则有些情况下会出现错误;下⾯使⽤rmmod xxx删除驱动;-------------------------------------------------------------------------------------5:下⾯我们分析⼀下驱动。
linux 驱动 list 使用方法
linux 驱动 list 使用方法1. Linux驱动list是一个重要的命令,可以列出系统中加载的所有驱动程序。
The Linux driver list is an important command that canlist all the loaded drivers in the system.2.通过使用lsmod命令,可以查看当前系统中加载的驱动程序列表。
By using the lsmod command, you can view the list of loaded drivers in the current system.3.驱动程序列表包括了每个驱动程序的名称、大小、使用次数等详细信息。
The driver list includes detailed information such as the name, size, and number of uses for each driver.4.使用modprobe命令可以动态加载或卸载驱动程序。
The modprobe command can be used to dynamically load or unload drivers.5.通过在命令后加入驱动程序的名称,可以具体操作某一个驱动程序。
By adding the name of the driver after the command, you can specifically operate on a particular driver.6.驱动程序列表对于系统管理员和开发人员来说非常有用。
The driver list is very useful for system administrators and developers.7.你可以使用grep命令来筛选特定的驱动程序。
You can use the grep command to filter specific drivers.8.使用insmod命令可以手动加载某个内核模块。
linux 加载raid驱动 dd文件写入U盘
打开页面后点击Red Hat Enterprise Linux 5 Server (x86)打开页面,选择Software - DriverDiskettes点击下载,
驱动文件名为cpq_cciss-3.6.26-5.rhel5.i686.dd.gz,解压成**.dd格式,
gunzip -d cpq_cciss-3.6.26-5.rhel5.i686.dd.gz
[root@myth mp]#ls
lost+found modinfo modules.alias modules.cgz modules.dep modules.pcimap pcitable rhdd
[root@myth mp]#cd ..
[root@myth mnt]#umount /dev/sdb
此处为方便重命名为p410.dd。找一台Linux机器,把文件拷贝到/tmp,U盘的设备名为sdb,
使用命令dd if=/tmp/megaraid_sas.img of=/dev/sdb,
具体如下:
[root@myth tmp]#dd if=/tmp/p410.dd of=/dev/sdb
如果驱动不正确则提示:Failed to mount drive disk
如果驱动正确则提示加载 usb-storage ,此时驱动已经完全加载
完成一次加载后提示是否再加载其他存储驱动,如果已经加载完则选择NO,系统加载驱动完成后提示校验光盘媒体,可根据情况选择跳过或者校验,继续系统安装。
2880+0 recordsin
2880+0 recordsout
1474560 bytes(1.5 MB) copied, 1.01765 s, 1.4 MB/s
linux下静态动态加载驱动程序的方法
linux下静态/动态加载驱动程序的方法linuxfrom:/bbs/viewthread.p hp?tid=91244linux下静态/动态加载驱动程序的方法说明:这是我最近给单位写的一篇文档,没有什么复杂的东东,对刚接触linuxdriver的朋友或许有点帮助。
文档本来是针对我们自己的产品的,有些地方(路径、mknod、动态分配主设备号等)本来应该改改,因为懒惰也没去改。
在LINUX下加载驱动程序可以采用动态和静态两种方式。
静态加载就是把驱动程序直接编译到内核里,系统启动后可以直接调用。
静态加载的缺点是调试起来比较麻烦,每次修改一个地方都要重新编译下载内核,效率较低。
动态加载利用了LINUX的modul e特性,可以在系统启动后用insmod命令把驱动程序(.o文件)添加上去,在不需要的时候用rmmod 命令来卸载。
在台式机上一般采用动态加载的方式。
在嵌入式产品里可以先用动态加载的方式来调试,调试完毕后再编译到内核里。
下面以我们的nHD板卡为例讲述一下加载驱动程序的方法。
假设我们需要添加一个名为mydrv的字符型设备驱动,主设备号为254,次设备号为0(只有一个从设备)。
静态加载的步骤如下:1、编写自己的驱动程序源文件mydrv.c,并放在firmware\uClinux-Samsung-2500\linux-2.4.x\drivers\char下面。
一个典型的字符型驱动的最后一般包括如下内容:static int mydrv_init(void){int ret;ret=register_chrdev(mydrv_major,"mydrv",&my_fops);if(ret==0)printk("register_chrdev succeed!\n");else printk("register_chrdev fail!\n");return0;}static__exit void mydrv_cleanup(void){unregister_chrdev(mydrv_major,"mydrv");printk("register_chrdev succeed!\n");return;}module_init(mydrv_init);module_exit(mydrv_cleanup);函数mydrv_init的任务是注册设备,mydrv_cleanup的任务是取消注册。
Linux设备驱动程序原理及框架-内核模块入门篇
Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。
为此,的内核一般不能动态的增加新的功能。
为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。
利用这个机制“模块”(module)。
利用这个机制,可以)。
利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。
正是这种机制,走已经安装的模块。
正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。
和可扩充性。
内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。
严格来说,卸载的内核软件。
严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。
但是,另一方面,可安装模块的形式实现的。
但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。
密切相关的部分(如文件系统等)。
课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。
且创建好该系统中的硬件设备的列表树:/sys 文件系统。
(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。
)。
如何在Linux系统中安装驱动程序
如何在Linux系统中安装驱动程序Linux系统作为一个开源的操作系统,广泛应用于各种设备和领域。
而安装驱动程序是在Linux系统中使用外部硬件设备的关键步骤之一。
在本文中,我们将学习如何在Linux系统中安装驱动程序的方法和步骤。
1. 检查硬件设备在安装驱动程序之前,首先需要确定硬件设备的型号和制造商。
可以通过查询设备的型号或者查看设备的相关文档来获取这些信息。
这是非常重要的,因为不同的设备可能需要不同的驱动程序来正确地工作。
2. 更新系统在安装驱动程序之前,确保你的Linux系统已经是最新的状态。
可以通过在终端中运行以下命令来更新系统:```sudo apt-get updatesudo apt-get upgrade```更新系统可以确保你拥有最新的软件包和驱动程序,以获得更好的兼容性和性能。
3. 查找合适的驱动程序一般来说,大部分硬件设备的驱动程序都可以在Linux系统的软件仓库中找到。
可以通过使用包管理器(如apt、yum等)来查找并安装合适的驱动程序。
运行以下命令来搜索并安装特定的驱动程序:```sudo apt-cache search 驱动程序名称sudo apt-get install 驱动程序名称```注意替换“驱动程序名称”为具体的驱动程序名称。
安装驱动程序可能需要输入管理员密码和确认安装。
如果你无法在软件仓库中找到合适的驱动程序,可以转向设备的制造商网站或者开源社区来获取。
下载驱动程序后,根据驱动程序提供的文档和说明来安装。
4. 编译和安装驱动程序有些驱动程序可能需要手动编译和安装。
在这种情况下,你需要确保你的系统已经安装了编译工具(如GCC、make等)。
在终端中切换到驱动程序所在的目录,并按照以下步骤进行编译和安装:```./configuremakesudo make install```以上命令将分别进行配置、编译和安装驱动程序。
在进行安装之前,可能需要输入一些配置选项或者确认安装。
Linux引导与配置文件加载过程
Linux引导及配置文件加载过程解读文章分类:操作系统??本文包括3部分内容1、 Linux的引导过程2、 Linux 的运行级别3、 /etc/inittab与/etc/rc.d/ 与/etc/rc.d/init.d的关系关键词:Linux引导过程、运行级别、inittab与 init.d 与 rc.d一、 Linux的引导过程系统加电之后,首先进行的硬件自检,然后是bootloader对系统的初始化,加载内核。
内核被加载到内存中之后,就开始执行我们的系统设置了。
一旦内核启动运行,对硬件的检测就会决定需要对哪些设备驱动程序进行初始化。
从这里开始,内核就能够挂装根文件系统(这个过程类似于Windows识别并存取C盘的过程)。
内核挂装了根文件系统,并已初始化所有的设备驱动程序和数据结构等之后,就通过启动一个叫init的用户级程序,完成引导进程。
二、运行级别(run level)Init进程是系统启动之后的第一个用户进程,所以它的pid(进程编号)始终为1。
init 进程上来首先做的事是去读取/etc/目录下 inittab文件中initdefault id值,这个值称为运行级别(run-level)。
它决定了系统启动之后运行于什么级别。
运行级别决定了系统启动的绝大部分行为和目的。
这个级别从0到 6 ,具有不同的功能。
不同的运行级定义如下:# 0 - 停机(千万别把initdefault设置为0,否则系统永远无法启动)# 1 - 单用户模式# 2 - 多用户,没有 NFS# 3 - 完全多用户模式(标准的运行级)# 4 –系统保留的# 5 - X11 (x window)# 6 - 重新启动(千万不要把initdefault 设置为6,否则将一直在重启)三、 /etc/rc.d/与/etc/rc.d/init.d的关系先解释一下init.d。
这个目录存放的是一些脚本,一般是linux以rpm包安装时设定的一些服务的启动脚本。
Linux网络驱动开发步骤
Linux网络设备驱动程序开发Linux系统对网络设备驱动的体系结构如下图所示,划分为4层:开发网络设备驱动程序,我们需要完成的主要工作是编写设备驱动功能层的相关函数以填充net_device数据结构的内容并将net_device注册入内核。
各层介绍一、网络设备接口层网络设备接口层为网络设备定义了统一、抽象的数据结构net_device结构体,包含网络设备的属性描述和操作接口。
主要包含如下几部分:(1)全局信息。
char name[IFNAMESIZ]; //name是网络设备的名称int (*init)(struct net_device *dev); /*init 为设备初始化函数指针,如果这个指针被设置了,则网络设备被注册时将调用该函数完成对net_device 结构体的初始化。
设备驱动程序可以不实现这个函数并将其赋值为NULL。
*/(2)硬件信息。
unsigned long mem_end; //设备所使用的共享内存的起始地址unsigned long mem_start; //设备所使用的共享内存的结束地址unsigned long base_addr; //网络设备I/O 基地址unsigned char irq; //设备使用的中断号unsigned char if_port; //多端口设备使用哪一个端口,该字段仅针对多端口设备unsigned char dma; //指定分配给设备的DMA通道(3)接口信息。
unsigned short hard_header_len; //网络设备的硬件头长度,以太网设备为ETH_HLEN-14unsigned short type; //接口的硬件类型unsigned mtu; //最大传输单元(MTU)unsigned char dev_addr[MAX_ADDR_LEN]; //存放设备的硬件地址unsigned char broadcast[MAX_ADDR_LEN]; /*存放设备的广播地址, 以太网设备的广播地址为6个0xFF。
linux字符驱动框架(用户态的read,write,poll是怎么操作驱动的)
linux字符驱动框架(⽤户态的read,write,poll是怎么操作驱动的)前⾔这篇⽂章是通过对⼀个简单字符设备驱动的操作来解释,⽤户态的读写操作是怎么映射到具体设备的。
因为针对不同版本的linux内核,驱动的接⼝函数⼀直有变化,这贴出我测试的系统信息:root@ubuntu:~/share/dev/cdev-2# cat /etc/os-release |grep -i verVERSION="16.04.5 LTS (Xenial Xerus)"VERSION_ID="16.04"VERSION_CODENAME=xenialroot@ubuntu:~/share/dev/cdev-2#root@ubuntu:~/share/dev/cdev-2# uname -r4.15.0-33-generic字符驱动这⾥给出了⼀个不怎么标准的驱动,定义了⼀个结构体 struct dev,其中buffer成员模拟驱动的寄存器。
由wr,rd作为读写指针,len作为缓存buffer的长度。
具体步骤如下:1. 定义 init 函数,exit函数,这是在 insmod,rmmod时候调⽤的。
2. 定义驱动打开函数open,这是在⽤户态打开设备时候调⽤的。
3. 定义release函数,这是在⽤户态关闭设备时候⽤到的。
4. 定义read,write,poll函数,并挂接到 file_operations结构体中,所有⽤户态的read,write,poll都会最终调到这些函数。
chardev.c/*参考:深⼊浅出linux设备驱动开发*/#include <linux/module.h>#include <linux/init.h>#include <linux/fs.h>#include <linux/uaccess.h>#include <linux/wait.h>#include <linux/semaphore.h>#include <linux/sched.h>#include <linux/cdev.h>#include <linux/types.h>#include <linux/kdev_t.h>#include <linux/device.h>#include <linux/poll.h>#define MAXNUM 100#define MAJOR_NUM 400 //主设备号 ,没有被使⽤struct dev{struct cdev devm; //字符设备struct semaphore sem;int flag;poll_table* table;wait_queue_head_t outq;//等待队列,实现阻塞操作char buffer[MAXNUM+1]; //字符缓冲区char *rd,*wr,*end; //读,写,尾指针}globalvar;static struct class *my_class;int major=MAJOR_NUM;static ssize_t globalvar_read(struct file *,char *,size_t ,loff_t *);static ssize_t globalvar_write(struct file *,const char *,size_t ,loff_t *);static int globalvar_open(struct inode *inode,struct file *filp);static int globalvar_release(struct inode *inode,struct file *filp);static unsigned int globalvar_poll(struct file* filp, poll_table* wait);/*结构体file_operations在头⽂件 linux/fs.h中定义,⽤来存储驱动内核模块提供的对设备进⾏各种操作的函数的指针。
linux安装显卡驱动命令
linux安装显卡驱动命令windows下的显卡驱动安装想必大家都很熟悉,呢么linux系统要如何安装显卡驱动呢?下面由店铺为大家整理了linux安装显卡驱动命令的相关知识,希望大家喜欢!linux安装显卡驱动1. 简介通常情况下,Intel显卡驱动已经被集成在linux发行包里面了,用户无需单独安装。
这篇指导是为那些自己从头开始编译最新版本驱动的人而写的。
当你想订制显卡驱动或者了解更多的时候,这篇文章就会管用。
本篇第3部分对2D图形驱动的编译作了介绍。
因为有些人可能只对2D图形感兴趣,他们想要了解一些2D的新特性以及哪些bug被修正了。
第4,5部分则介绍了整个代码的编译,其中也包括了3D图形驱动。
2. 获取源代码要使Intel显卡芯片组工作起来,以下组件是必需的:1)内核模块agpgart和drm;内核驱动模块的源码在Linux内核中。
2)libdrm;libdrm被包含在freedesktop drm的源码里;3)Xorg 2D 驱动:xf86-video-intel;4)Mesa 和3D驱动;要获得上述组件详细的下载地址,可以参考:/download.html.3. 2D驱动编译要测试或者使用最新的Intel X驱动,你不需要更新其它的组件,比如Mesa或DRM驱动。
要编译驱动,你需要安装一些开发包(下面的列表是以Fedora平台下的驱动编译需求为例)。
- autoconf- automake- libtool- hwdata (for PCIIDs)-xorg-x11-server-Xorg >= 1.3.0.0-6-xorg-x11-server-sdk >= 1.3.0.0-6- libXvMC-devel- mesa-libGL-devel>= 6.5-9- libdrm-devel>= 2.0-1如果上面的软件包都有了,那么编译就非常的简单了:$ ./autogen$ make$ sudo -c"make install"注意:上面的环境取决于你的Linux发行版本,你可能需要一些额外的编译选项,比如--prefix=, --exec-prefix=,--libdir=, --sysconfdir=等等,还取决于你的X server的安装。
linux 开发新驱动步骤
linux 开发新驱动步骤Linux作为一款开源的操作系统,其内核源码也是开放的,因此,许多开发人员在Linux上进行驱动开发。
本文将介绍在Linux上进行新驱动开发的步骤。
第一步:确定驱动类型和接口在进行驱动开发前,需要确定驱动类型和接口。
驱动类型包括字符设备驱动、块设备驱动、网络设备驱动等。
接口包括设备文件、系统调用、ioctl等。
根据驱动类型和接口的不同,驱动开发的流程也有所不同。
第二步:了解Linux内核结构和API驱动开发需要熟悉Linux内核的结构和API。
Linux内核由许多模块组成,每个模块都有自己的功能。
API是应用程序接口,提供了许多函数和数据结构,开发人员可以使用这些函数和数据结构完成驱动开发。
第三步:编写驱动代码在了解了Linux内核结构和API后,就可以编写驱动代码了。
驱动代码需要按照Linux内核的编码规范编写,确保代码风格统一、可读性好、可维护性强等。
在编写代码时,需要使用API提供的函数和数据结构完成相应的功能。
第四步:编译驱动代码和内核模块驱动代码编写完成后,需要编译成内核模块。
编译内核模块需要使用内核源码中的Makefile文件。
编译完成后,会生成一个.ko文件,这个文件就是内核模块。
第五步:加载和卸载内核模块内核模块编译完成后,需要加载到Linux系统中。
可以使用insmod命令加载内核模块,使用rmmod命令卸载内核模块。
在加载和卸载内核模块时,需要注意依赖关系,确保依赖的模块已经加载或卸载。
第六步:调试和测试驱动开发完成后,需要进行调试和测试。
可以使用printk函数输出调试信息,在/var/log/messages文件中查看。
测试时需要模拟各种可能的情况,确保驱动程序的稳定性和可靠性。
Linux驱动开发需要掌握Linux内核结构和API,熟悉驱动类型和接口,按照编码规范编写驱动代码,并进行编译、加载、调试和测试。
只有掌握了这些技能,才能进行高效、稳定和可靠的驱动开发。
linux驱动面试题
linux驱动面试题Linux驱动是指在Linux操作系统中,用于控制与硬件之间的交互和通信的软件模块。
在Linux的工作环境中,驱动程序起着至关重要的作用。
如果你准备参加Linux驱动的面试,以下是一些常见的Linux驱动面试题,希望可以对你有所帮助。
一、简述Linux驱动的作用和功能。
Linux驱动是一种软件模块,用来控制硬件设备与操作系统之间的通信和交互。
它负责将输入/输出请求传递给硬件设备,并处理来自硬件设备的中断和事件。
Linux驱动的功能包括设备初始化和配置、数据传输和处理以及错误处理等。
二、请简要介绍Linux驱动程序的加载过程。
当系统启动时,Linux内核首先会加载核心模块和驱动程序模块。
驱动程序模块是以目标硬件设备为基础的,它们包含了与设备通信所需的函数和数据结构。
一般情况下,系统会根据硬件设备信息自动加载对应的驱动程序模块。
加载驱动程序模块需要通过insmod或modprobe命令进行,这些命令可以在启动时自动执行。
三、请简述Linux驱动程序的实现方式。
Linux驱动程序的实现方式包括内核空间驱动和用户空间驱动。
内核空间驱动是指驱动程序运行在内核空间,直接与硬件设备进行交互。
用户空间驱动是指驱动程序运行在用户空间,通过系统调用和内核模块实现与硬件设备的通信。
内核空间驱动的优势是性能更好,但需要对内核进行编译和加载,而用户空间驱动的优势是开发更加容易,但性能会稍差。
四、请介绍Linux驱动程序中常用的数据结构和函数。
在Linux驱动程序中,常用的数据结构有file结构体、inode结构体和cdev结构体等。
file结构体用于表示一个打开的设备文件,可以通过它传递与设备相关的信息。
inode结构体用于表示一个文件的元数据信息,包括文件的权限、大小和创建时间等。
cdev结构体用于表示一个字符设备,包含了设备文件的操作函数和设备号等信息。
常用的函数包括register_chrdev、unregister_chrdev、request_irq和release_irq等。
linux驱动启动顺序
linux驱动启动顺序⾸先,我们可以查看Linux内核编译完成后的System.map⽂件,在这个⽂件中我们可以看到macb(dm9161驱动模块)链接到了dm9000驱动之前,如下所⽰:c03b6d40 t __initcall_tun_init6c03b6d44 t __initcall_macb_init6c03b6d48 t __initcall_dm9000_init6c03b6d4c t __initcall_ppp_init6c03b6d50 t __initcall_ppp_async_init6我尝试修改arch/arm/mach-at91/board-sam9260ek.c中DM9000和DM916设备添加的顺序,即先添加 dm9000,后添加dm9161。
编译后运⾏发现,结果还是⼀样。
⾃⼰想了想,这也在情理之中。
因为这个出现这个问题的主要原因是这两个驱动加载的先后顺序,⽽不是设备添加的先后顺序。
在Linux内核中维护着两个链,⼀个设备链,⼀个驱动链,他们两个就像情侣⼀样互相依赖,互相纠缠在⼀起的。
当我们新添加⼀个设备时,他会被加⼊到设备链上,这时内核这个红娘会就会到驱动链上给他找他的另外⼀半(驱动),看是否有哪个驱动看上了他(这个驱动是否⽀持这个设备),如果找到了这个驱动,那么设备就能够使⽤(⼤家纠缠到⼀块了,该⼲嘛就⼲嘛去了)。
⽽如果没有找到,那么设备就只能默默地在那⾥等待他的另⼀半的出现。
下⾯是arch/arm/mach-at91/board-sam9260ek.c添加设备的代码:static void __init ek_board_init(void){ /* Serial */at91_add_device_serial(); /* USB Host */at91_add_device_usbh(&ek_usbh_data); /* USB Device */at91_add_device_udc(&ek_udc_data); /* SPI */at91_add_device_spi(ek_spi_devices, ARRAY_SIZE(ek_spi_devices)); /* NAND */ek_add_device_nand(); /* Ethernet */ ek_add_device_dm9000(); /* Add dm9000 driver by guowenxue, 2012.04.11 */at91_add_device_eth(&ek_macb_data); /* MMC */at91_add_device_mmc(0, &ek_mmc_data); /* I2C */at91_add_device_i2c(ek_i2c_devices, ARRAY_SIZE(ek_i2c_devices)); /* SSC (to AT73C213) */#if defined(CONFIG_SND_AT73C213) || defined(CONFIG_SND_AT73C213_MODULE)at73c213_set_clk(&at73c213_data); /* Modify by guowenxue, 2012.04.11 */#endifat91_add_device_ssc(AT91SAM9260_ID_SSC, ATMEL_SSC_TX);#if 0 /* comment by guowenxue */ /* LEDs */at91_gpio_leds(ek_leds, ARRAY_SIZE(ek_leds)); /* Push Buttons */ek_add_device_buttons();#endif}MACHINE_START(AT91SAM9260EK, "Atmel AT91SAM9260-EK") /* Maintainer: Atmel */.timer = &at91sam926x_timer,.map_io = at91_map_io,.init_early = ek_init_early,.init_irq = at91_init_irq_default,.init_machine = ek_board_init,MACHINE_ENDMACHINE_START主要是定义了"struct machine_desc"的类型,放在 section(".init"),是初始化数据,Kernel 起来之后将被丢弃。
Linux ——Driver
第一章驱动程序基本框架星期二, 06/08/2010 - 00:21— william前言不管是Windows还是Linux,驱动程序都扮演着重要的角色。
应用程序只能通过驱动程序才能同硬件设备或系统内核通讯。
Linux内核对不同的系统定义了标准的接口(API),应用程序就是通过这些标准的接口来操作内核和硬件。
驱动可以被编译的内核中(build-in),也可以做为内核模块(Module)存在于内核的外面,需要的时候动态插入到内核中运行。
就像你学习操作系统概念时所了解的那样,Linux内核也分为几个大的部分:进程管理、内存管理、文件系统、设备控制、网络系统等,参考图1-1。
图1-1 Linux系统(来源:O‟Reilly Media, LDD3)这里就不对Linux系统内核的各个部分做过多的介绍了,在后面的学习中你就会逐渐地对这些概念有个更深入的了解。
其实Linux内核的精髓远不止这些,对于一个Linux内核的爱好者或开发者来说,最好详细的浏览内核源代码,订阅Linux内核相关的邮件列表,或是登陆Linux开发社区。
更多的信息,请登陆Linux内核官方网站:一个简单的驱动下面我们来编写第一个驱动程序,它很简单,在运行时会输出…Hello World‟消息。
// hello.c#include <linux/init.h>#include <linux/module.h>#include <linux/kernel.h>static int __init hello_init(void){printk(KERN_ALERT "Hello World!\n");return 0;}static void __exit hello_exit(void){printk(KERN_ALERT "Goodbye World!\n");}module_init(hello_init);module_exit(hello_exit);MODULE_LICENSE("GPL");这就是一个简单的驱动程序,它什么也没做,仅仅是输出一些信息,不过对于我们来说这已经足够了。
安装linux手动加载阵列卡驱动
安装linux系统手动加载服务器阵列卡驱动教程
本教程主要是对linux在安装的时候无法发现服务器的阵列卡驱动。
通过使用光盘安装的时候通过linuxdd手动加载驱动。
1.将u盘格式化分区格式为fat32 ,将3650m4 所支持的redhat的驱动复制到u盘中。
3650m4用的ibmlsi m5110e的阵列卡。
驱动名称如下:ibm_dd_sraidmr_00.00.06.15_rhel6_32-64.tgz
将这个文件解压缩将文件复制到u盘中。
将u 盘插入服务器的USB 口,开机启动,按F12 选择从CD/DVD ROM 启动
开机用光盘引导。
按ESC 键进入如下界面:
在boot: 后面输入linuxdd
正常启动引导
出现这个画面用TAB 键选择YES
用TAB 键选择sdb上下键选择OK
TAB键选择ok
选择你U盘里面的文件夹路径
选择redhat版本的驱动iso
我们安装的是redhat6.1 32位所以选择dud-2.6-32-131.0.15.RHEL61.ISO 选择完成之后系统自动安装
出现这个画面你选择no
出现这个界面你选择skip 不检查安装光盘
x
出现这个画面可以正常安装redhat一步一步安装。
Linux下编写和加载.ko文件(驱动模块文件)
Linux下编写和加载.ko⽂件(驱动模块⽂件)⼀、.ko ⽂件介绍.ko⽂件是kernel object⽂件(内核模块),该⽂件的意义就是把内核的⼀些功能移动到内核外边,需要的时候插⼊内核,不需要时卸载。
⼆、优点(1)这样可以缩⼩内核体积;(2)使⽤⽅便。
三、.ko⽂件⼀般的⽤处(1)作为⼀个功能模块,需要使⽤时,直接插⼊运⾏就⾏。
如在imx6上连接模拟摄像头,先运⾏模拟摄像头对应的驱动模块 camera.ko⽂件,然后对应的⼯程执⾏⽂件运⾏就⾏。
四、使⽤.ko ⽂件1、加载驱动模块test.ko(1)⽅法⼀进⼊test.ko驱动模块⽂件所在的⽬录,然后直接 insmod test.ko(2)⽅法⼆将test.ko⽂件拷贝到/lib/module/#uname-r#/⽬录下,这⾥,#uname -r#意思是,在终端中输⼊uname -r后显⽰的内核版本及名称,例如mini2440中#uname-r#就是2.6.32.2-FriendlyARM。
然后 depmod(会在/lib/modules/#uname -r#/⽬录下⽣成modules.dep和modules.dep.bb⽂件,表明模块的依赖关系)最后 modprobe test(注意这⾥⽆需输⼊.ko后缀)即可注:两种⽅法的区别modprobe和insmod类似,都是⽤来动态加载驱动模块的,区别在于modprobe可以解决load module时的依赖关系,它是通过/lib/modules/#uname -r/modules.dep(.bb)⽂件来查找依赖关系的;⽽insmod不能解决依赖问题。
也就是说,如果你确定你要加载的驱动模块不依赖其他驱动模块的话,既可以insmod也可以modprobe,当然insmod可以在任何⽬录下执⾏,更⽅便⼀些。
⽽如果你要加载的驱动模块还依赖其他ko驱动模块的话,就只能将模块拷贝到上述的特定⽬录,depmod后再modprobe。
linux驱动的入口函数module_init的加载和释放
我们看源码,init/main.c中start_kernel是进入kernel()的第一个c函数,在这个函数的最后一行是rest_init();
static void rest_init(void)
{
.....
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
void init_a(void)
{
}
__initlist(init_a, 1);
它是怎么样通过这个宏来实现初始化函数列表的呢?先来看__initlist的定义:
#define __init __attribute__((unused, __section__(".initlist")))
extern u32 __initlist_start;
extern u32 __initlist_end;
这两个变量起作用了,__initlist_start是.initlist区段的开始,__initlist_end是结束,通过这两个变量我们就可以访问到所有的初始化函数了。这两个变量在那定义的呢?在一个连接器脚本文件里
unlock_kernel();
cpu_idle();
.....
}
创建了一个内核线程,主函数kernel_init末尾有个函数:
/*
* Ok, we have completed the initial bootup, and
* we're essentially up and running. Get rid of the
if (!machine_is_integrator() && !machine_is_cintegrator()) {
linux系统框架介绍
linux系统框架介绍Linux系统框架介绍Linux是一种开源的操作系统,其设计基于Unix操作系统,并且具有高度的可定制性和灵活性。
Linux系统的框架是其架构的基础,它定义了系统的组织结构和各个组件之间的关系。
在本文中,我们将对Linux系统的框架进行详细介绍。
Linux系统的框架可以分为五个主要部分:内核空间、系统调用接口、标准C库、Shell和应用程序。
1. 内核空间:Linux内核是操作系统的核心部分,它提供了各种基本功能,如进程管理、内存管理、文件系统、设备驱动程序等。
内核空间是内核代码运行的环境,只能被特权进程访问。
内核空间包含了多个子系统,每个子系统负责特定的功能,通过模块化的方式组织起来,使得内核具有高度的可扩展性和可定制性。
2. 系统调用接口:系统调用是用户程序与内核之间的接口,它允许用户程序访问内核提供的功能。
Linux系统提供了大量的系统调用,包括文件操作、进程管理、网络通信等。
用户程序通过调用系统调用接口来请求内核执行特定的操作,内核在接收到请求后执行相应的功能并返回结果。
3. 标准C库:标准C库是一组函数库,提供了一些常用的函数和工具,以帮助程序员开发应用程序。
标准C库提供了对C语言标准函数的封装和扩展,使得开发者可以更方便地编写应用程序。
在Linux系统中,常用的标准C库是GNU C库(glibc),它是一个功能强大的库,包含了大量的函数和工具。
4. Shell:Shell是Linux系统的命令行解释器,它允许用户通过输入命令来与系统交互。
Shell解释器接收用户输入的命令,并将其解释为相应的系统调用或应用程序。
Linux系统中常用的Shell解释器有Bash、Csh、Ksh等。
Shell提供了丰富的命令和功能,使得用户可以通过命令行方式完成各种任务。
5. 应用程序:应用程序是用户直接使用的软件,可以是系统自带的工具,也可以是用户自己开发的程序。
Linux系统提供了大量的应用程序,包括文本编辑器、图形界面工具、网络应用等。
linux驱动面试题
linux驱动面试题1. 概述在Linux系统中,驱动程序的作用是使硬件设备与操作系统能够有效地通信和合作。
在Linux驱动面试中,考察的内容主要包括对Linux驱动的基本原理和相关技术的理解、驱动开发经验以及解决实际问题的能力等方面。
2. 驱动开发基础2.1 驱动与内核Linux驱动是在内核中运行的模块,通过向内核注册相应的设备驱动接口,实现设备与操作系统的交互。
驱动开发需要对内核的基本原理和架构有一定的了解。
2.2 设备模型Linux采用了设备树(Device Tree)来描述硬件设备,驱动开发者需要理解设备树的基本概念和使用方法。
此外,掌握相关的API接口,如设备注册和资源管理等也是重要的。
2.3 驱动开发工具驱动开发通常需要使用一些工具来辅助开发和调试,如GCC编译器、Makefile、Kconfig等。
熟悉这些工具的使用可以提高开发效率。
3. 驱动开发技巧3.1 驱动加载与卸载了解驱动的加载和卸载过程是驱动开发的基础,掌握相关的函数和接口,如module_init()、module_exit()等。
3.2 设备操作对于设备操作,驱动开发者需要实现相应的接口函数,如open()、read()、write()和release()等。
同时,需要注意多个进程对设备的并发访问问题。
3.3 中断处理了解中断的基本原理,驱动开发者需要实现中断处理函数,通过适当地使能和屏蔽中断,确保设备的稳定工作。
3.4 内存管理驱动开发过程中需要对内存进行分配和释放,应注意内存的合理管理,避免内存泄漏和越界访问问题。
4. 驱动性能与调试4.1 性能优化优化驱动程序可以提高系统的效率和响应速度。
常见的性能优化方法包括减少不必要的资源竞争、提高中断处理效率等。
4.2 调试技巧在驱动开发过程中,面对各种问题,掌握一些调试技巧可以快速定位和解决问题。
例如,使用printk()打印调试信息、使用GDB调试等。
5. 驱动安全与稳定性5.1 安全性考虑驱动程序需要处理来自用户空间的输入,必须保证输入的合法性,防止恶意代码等对系统造成危害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲主要概述Linux设备驱动框架、驱动程序的配置文件及常用的加载驱动程序的方法;并且介绍Red Hat Linux安装程序是如何加载驱动的,通过了解这个过程,我们可以自己将驱动程序放到引导盘中;安装完系统后,使用kudzu自动配置硬件程序。
Linux设备驱动概述1. 内核和驱动模块操作系统是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备,驱动硬件是操作系统最基本的功能,并且提供统一的操作方式。
正如我们查看屏幕上的文档时,不用去管到底使用nVIDIA芯片,还是ATI芯片的显示卡,只需知道输入命令后,需要的文字就显示在屏幕上。
硬件驱动程序是操作系统最基本的组成部分,在Linux内核源程序中也占有较高的比例。
Linux内核中采用可加载的模块化设计(LKMs ,Loadable Kernel Modules),一般情况下编译的Linux内核是支持可插入式模块的,也就是将最基本的核心代码编译在内核中,其它的代码可以选择是在内核中,或者编译为内核的模块文件。
如果需要某种功能,比如需要访问一个NTFS分区,就加载相应的NTFS模块。
这种设计可以使内核文件不至于太大,但是又可以支持很多的功能,必要时动态地加载。
这是一种跟微内核设计不太一样,但却是切实可行的内核设计方案。
我们常见的驱动程序就是作为内核模块动态加载的,比如声卡驱动和网卡驱动等,而Linux最基础的驱动,如CPU、PCI总线、TCP/IP协议、APM(高级电源管理)、VFS等驱动程序则编译在内核文件中。
有时也把内核模块就叫做驱动程序,只不过驱动的内容不一定是硬件罢了,比如ext3文件系统的驱动。
理解这一点很重要。
因此,加载驱动时就是加载内核模块。
下面来看一下有关模块的命令,在加载驱动程序要用到它们:lsmod、modprob、insmod、rmmod、modinfo。
lsmod上面显示了当前系统中加载的模块,左边数第一列是模块名,第二列是该模块大小,第三列则是该模块使用的数量。
如果后面为unused,则表示该模块当前没在使用。
如果后面有autoclean,则该模块可以被rmmod -a命令自动清洗。
rmmod -a命令会将目前有autoclean的模块卸载,如果这时候某个模块未被使用,则将该模块标记为autoclean。
如果在行尾的[ ]括号内有模块名称,则括号内的模其中系统的模块文件保存在/lib/modules/2.4.XXX/kerne目录中,根据分类分别在fs、net等子目录中,他们的互相依存关系则保存在/lib/modules/2.4.XXX/modules.dep 文件中。
需要注意,该文件不仅写入了模块的依存关系,同时内核查找模块也是在这个文件中,使用modprobe命令,可以智能插入模块,它可以根据模块间依存关系,以及/etc/modules.conf文件中的内容智能插入模块。
insmod也是插入模块的命令,但是它不会自动解决依存关系,所以一般加载内核模块时使用的命令为modprobe。
rmmod可以删除模块,但是它只可以删除没有使用的模块。
Modinfo用来查看模块信息,如modinfo -d cdrom,在Red Hat Linux 系统中,模块的相关命令在modutils的RPM包中。
2.设备文件当我们加载了设备驱动模块后,应该怎样访问这些设备呢?Linux是一种类Unix系统,Unix的一个基本特点是“一切皆为文件”,它抽象了设备的处理,将所有的硬件设备都像普通文件一样看待,也就是说硬件可以跟普通文件一样来打开、关闭和读写。
系统中的设备都用一个设备特殊文件代表,叫做设备文件,设备文件又分为Block(块)型设备文件、Character(字符)型设备文件和Socket(网络插件)型设备文件。
Block设备文件常常指定哪些需要以块(如512字节)的方式写入的设备,比如IDE硬盘、SCSI硬盘、光驱等。
而Character型设备文件常指定直接读写,没有缓冲区的设备,比如并口、虚拟控制台等。
Socket(网络插件)型设备文件指定的是网络设备访问的型设备为b,Character型设备为c,Socket设备为s。
由此可以看出,设备文件都放在/dev目录下,比如硬盘就是用/dev/hd*来表示,/dev/hda表示第一个IDE接口的主设备,/dev/hda1表示第一个硬盘上的第一个分区;而/dev/hdc 表示第二个IDE接口的主设对于Block和Character型设备,使用主(Major)和辅(minor)设备编号来描述设备。
主设备编号来表示某种驱动程序,同一个设备驱动程序模块所控制的所有设备都有一个共同的主设备编号,而辅设备编号用于区分该控制器下不同的设备,比如,/dev/hda1(block3/1)、/dev/hda2(block 3/2 )和/dev/hda3( block3/3 )都代表着同一块硬盘的三个分区,他们的主设备号都是3,辅设备号分别为1、2、3。
这些IDE设备主硬盘的文件,文件名叫做harddisk。
其中设备编号为使用ls 接口的从设备(Slave)也是Block设备,编号为(3/64),还有另外一种设备文件是/dev/tty*时按“Alt + F1”可以看到该字符出现在屏幕上,这个特殊的文件就代表备号为4,辅设备号为1。
同样,/dev/tty2代表着第二个虚拟控制台,是Character设备,编号为 (4/2)。
当将/dev/cdrom加载到/mnt/cdrom中时,只要访问/mnt/cdrom系统就会自动引入到/dev/cdrom对应的驱动程序中,访问实际的数据。
有关设备文件的编号可以看内核文档/usr/src/linux-2.*/Documentation/devices.txt 文件(在Kernel的源文件解包后的Documentation目录中),其中详细叙述了各种设备文件编号的意义。
3.使用/proc目录中的文件监视驱动程序的状态通过设备文件怎样访问到相应的驱动程序呢?它们中间有一个桥梁,那就是proc文件系统,它一般会被加载到/proc目录。
访问设备文件时,操作系统通常会通过查找/proc目录下的值,确定由哪些驱动模块来完成任务。
如果proc文件系统没有加载,访问设备文件时就会出现错误。
Linux系统中proc文件系统是内核虚拟的文件系统,其中所有的文件都是内核中虚拟出来的,各种文件实际上是当前内核在内存中的参数。
它就像是专门为访问内核而打开的一扇门,比如访问/proc/cpuinfo文件,实际上就是访问目前的CPU的参数,每一次系统启动时系统都会通过/etc/fstab通过/proc目访问内存中真实的数据。
这些数据是实时变化产生的,可以通过以下命/proc/sys目录下的文件一般可以直接更改,相当于直接更改内核的另外,Linux系统中提供一些命令来查询系统的状态,如free可以查看目前的内存使用情况,ide_info可以查看ide设备的信息,例如:#ide_info /dev/had。
类似的命令还有scsi_info,可以查看SCSI设备的信息。
这些命令一般也是查询/proc目录下的文件,并返回结果。
系统初始化过程驱动程序的安装在Linux安装过程中,系统上的硬件会被检测,基于检测到的结果安装程序会决定哪些模块需要在引导时被载入。
Red Hat的安装程序为anaconda,它提供了自动检测硬件,并且安装的机制。
但是,如果计算机内的某些硬件没有默认的驱动程序,比如一块SCSI卡,我们可以在启动后的boot提示符下,输入“linux dd”,在加载完内核后,系统会自动提示插入驱动盘,这时就有机会把该硬件的Linux 驱动程序装入。
如果在安装系统时,某种硬件总是因为中断冲突(ISA总线的设备较常见,比如一块ISA网卡)没法正常驱动,或者是缺少驱动程序,那么可以在boot提示符下输入“linux noprobe”。
在这种模式下,安装程序不会自动配置找到的硬件,可以自己来选择现有驱动,配置驱动程序的参数,或者选择用光盘或软盘加载驱动程序。
定制引导盘系统启动时是如何加载驱动的?下面让我们来看一下Red Hat的安装光盘是怎样引导的。
当Linux安装光盘启动时,加载位于光盘上isolinux 中的内核文件vmlinuz,内核运行完毕后,又将initrd.img的虚拟文件系统加载到内存中。
这个文件为ext2文件系统的镜像,经过gzip压缩,可modules.cgz为cpio的打包文件,实际的各种驱动模块就在该文件中。
我i386比如在modules.dep中加入该模块的名字和依存关系,将编译好的驱动模块文件加入modules.cgz中,这样就可以制定自己的安装光盘。
硬盘上的系统启动过程与上面类似,但是initrd的镜像文件要更简单些,一般在initrd-2.4.XXX.img的虚拟文件系统中,只会在/lib目录下包含ext3.o jbd.o lvm-mod.o等少数文件,用来驱动硬盘上的ext3的文件系统。
加载文件系统后,就可以使用/lib/modules/2.4.XXX/下的modules.dep文件及Kernel目录中的各种驱动文件。
自动配置安装如果安装完Linux系统后,又添加了新的硬件,那么系统必须载入正确的驱动程序才可以使用它。
在Red Hat Linux中,可以使用kudzu来配置硬件。
这是PnP设备的检测程序,当系统使用新硬件引导后,运行kudzu(默认会自动运行),如果新硬件被支持,那么它就会被自动检测到。
该程序还会为它配置驱动模块,把结果写入到文件/etc/sysconfig/hwconf中,kudzu可以通过对比这个文件发现新安装的硬件,并进行配置;也可以通过编辑模块配置文件/etc/modules.conf来手工指定加载模块。
Kudzu服务默认每次启动时都要运行,如果需要缩短启动时间,使那么目录下的文件,根据这些文件中的PnP信息,kudzu可以识别各种硬件设备。
以上介绍了Linux下驱动程序的大体结构、主要的加载方式和相关配置文件,在安装Linux时加载驱动程序,并且根据需要定制自己的引导盘,在安装完成后安装新的、即插即用硬件。
下一讲开始,我们将学习具体硬件驱动的安装方法。