天津理工大学概率论与数理统计第七章习题答案详解
概率论与数理统计习题7参考答案
概率论与数理统计习题7参考答案习题7参考答案7.1解:因为:是抽自二项分布B (m ,p )的样本,所以总体的期望为mp X E =)(,用样本均值X 代替总体均值()E X ,得p 的矩估计为m Xp=ˆ。
似然函数为1111()()(1)(1)()(1)mmii m mi i x m x x m x x m x p p p m mmmL p C p p C p p C pp ==---∑∑=--=-,对它们两边求对数可得11ln(())ln()ln ()ln(1),m mp miii i L p m C x p m x p ===++--∑∑对p 求导并令其为0得11ln(())/()/(1)0mmi i i i L p x p m x p p ==∂=---=∂∑∑,得p 的极大似然估计为1ˆnii xXm pm m ===∑7.2解:01()xE X xdx eλλλ+∞-=•=⎰,令()X E X =,则λ的矩估计为λˆ11()E x X== 由概率密度函数可知似然函数为:e e e x x x L n λλλλλλλ---••••=21)(eni i x n∑==-1λλ对它们两边求对数可得∑-=∑==-=ni inx en x L ni i 1ln )ln())(ln(1λλλλλ对λ求导并令其为0得0))(ln(1=∑-=∂∂=ni i x n L λλλ 即可得λ的似然估计值为x n n i i x 111ˆ1=∑==λ7.3解:记随机变量x 服从总体为[0,]上的均匀分布,则220)(θθ=+=X E , 令()X E X =,故的矩估计为X 2ˆ=θ。
X 的密度函数为θ1)(=x p 故它的似然函数为IIX X L n inni n}{1}0{)(11)(θθθθθ≤=≤<==∏要使)(θL 达到最大,首先一点是示性函数的取值应该为1,其次是θn1尽可能大。
由于θn1是的单调减函数,所以的取值应该尽可能小,但示性函数为1决定了不能小于,因此给出的最大似然估计=θˆ(示性函数I=,=min{} ,=max{})7.4解:记随机变量x 服从总体为[,]上的均匀分布,则2322)(θθθ=+=X E , 令()X E X =,所以的矩估计为X 32ˆ=θX 的密度函数为θ1)(=x p 故它的是似然函数为()(1)()(1){2}{2}{}21111()x xx x n in nnnni L X I I Iθθθθθθθθθ≤≤≤<≤≤≤====∏要使)(θL 达到最大,首先一点是示性函数的取值应该为1,其次是θn1尽可能大。
天津理工概率论与数理统计范围整理版(含详细答案)
7、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品”),,,(4321=i ,用1A ,2A ,3A ,4A 的运算关系表达下列事件.(1)没有一个产品是次品; (1) 43211A A A A B =(2)至少有一个产品是次品;(2) 432143212A A A A A A A A B =⋃⋃⋃= (3)只有一个产品是次品;(3) 43214321432143213A A A A A A A A A A A A A A A A B ⋃⋃⋃= (4)至少有三个产品不是次品4)432143214321432143214A A A A A A A A A A A A A A A A A A A A B ⋃⋃⋃⋃=12. (1)设事件 A , B 的概率分别为 51 与 41,且 A 与 B 互 斥,则 )(B A P =51. (2).一个盒中有8只红球,3只白球,9只蓝球 ,如果随机地无放回地摸3只球 ,则取到的3 只 都 是 红 球 的 事 件 的 概 率 等 于 ___14285____。
(3) 一 袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果 从每只袋中各摸一只球 ,则摸到的一只是白球,一只是黑球的事件的概 率等于 ___1324___。
(4) .设 A1 , A2 , A3 是随机试验E 的三个相互独立的事件,已知P(A1) = α , P(A2) = β,P(A3) = γ ,则A1 , A2 , A3 至少有一个 发生的概率是 1- (1- α)(1- β)(1- γ) .(5) .一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地摸3只球,则摸到的没有一只是白球的事件的概率等于 __3457____。
19、(1)已知504030.)(,.)(,.)(===B A P B P A P ,求)|(B A B P Y(2)已知213141===)|(,)|(,)(B A P A B P A P ,求)(B A P Y 解: (1)250.)|(=⋃B A B P(2)31=⋃)(B A P28、设每100个男人中有5个色盲者,而每10000个女人中有25个色盲者,今在3000 个男人和 2000个女人中任意抽查一人, 求 这 个 人 是 色 盲 者 的 概 率。
概率论与数理统计(经管类)第七章课后习题答案word-推荐下载
似然函数为������(������) =
������
������ = ∏1������������
������������������(������) = (∑������������)������������������ ‒ ������������ ‒ ������������(������1!������2!⋯������������!)
������������������
∑1
������ =
) = ������(������������),
������(������������)
������������ ������ ‒ ������������
=
������
1
(������������
������������������
∑1
������ =
������ = 1
令
������ ������������������(������) ������ ������
解得
=
∑ ������������
������ ������2 =‒ ������
∑ ������������
������ = 1
������
+
������
=
������������
1
3. 设总体������~������(������,1), ‒ ∞ < ������ < ∞,(������1,������2,������3)为其样品.试证下述三个估计量:
(1) ������1 = 15������1 + 130������2 + 12������3;
(2) ������2 = 13������1 + 14������2 + 152������3;
《概率论与数理统计》习题及答案 第七章
《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。
概率论与数理统计第七章练习题与答案详解
概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。
概率论与数理统计(天津理工大学)智慧树知到课后章节答案2023年下天津理工大学
概率论与数理统计(天津理工大学)智慧树知到课后章节答案2023年下天津理工大学绪论单元测试1.概率论与数理统计是研究随机现象统计规律的数学学科。
A:对 B:错答案:对第一章测试1.A: B: C: D:答案:2.A: B: C: D:答案:3.A: B: C: D:答案:4.A: B: C:D:答案:5.A: B: C: D:答案:6.A: B: C: D:答案:7.A:B: C:D:答案:8.A:B:C: D:答案:9.A: B: C: D:答案:10.A: B: C: D:答案:第二章测试1.A: B: C: D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A:B:C:D:答案:5.A: B: C: D:答案:6.A:B:C:D:答案:7.A:B:C:D:答案:8.A: B: C: D:答案:9.A:B:C:D:答案:10.A:B:C:D:答案:第三章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A: B: C:D:答案:4.A:B:C:D:答案:5.A:B:C:答案:6.A:B:C:D:答案:7.B:C:D:答案:8.A:B:C:D:答案:9.A:B:C:D:答案:10.A:1/64B:1/16C:3/32D:17/64答案:3/32 第四章测试1.A:1B:2C:D:4答案:2.A:B:2C:1D:答案:3.A:B:C:D:答案:4.A:B:C:D:答案:5.A:4B:3C:2D:答案:46.A:B:C:D:答案:7.A:0 B: C:4 D:2 答案:8.A:B:C:D:答案:9.A:6 B:0 C:1 D:5答案:610.A:-1 B:1 C:0 D:1/2 答案:-1第五章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A:0.5 B:0.6 C:0.8413 D:0.7 答案:0.5 5.A:0.6915 B:0.1587 C:0.9772 D:0.8413 答案:0.84136.A:0.8413B:0.0668C:0.9332D:0.1587答案:0.15877.A:B:0 C:D:答案:第六章测试1.A:B:C:D:答案:2.A: B: C: D:答案:3.A:B:C:D:答案:4.A:B:C:D:答案:5.A:B:C:D:答案:6.A:B:C:D:答案:7.A:B:C:D:答案:8.A:B:C:D:答案:9.A:B:C:D:答案:10.A:B:C:D:答案:第七章测试1.A: B:C: D:答案:2.A: B: C:D:答案:3.A: B: C: D:答案:4.A: B: C:D:答案:5.A: B: C:D:答案:6.A: B: C: D:答案:7.A:B: C:D:答案:8.A: B: C:D:答案:9.A:B:C:D:答案:10.A:B:C:D:答案:第八章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A: B:C:D:答案:5.A: B: C:D:答案:6.A: B:C: D:答案:7.A:B:C: D:答案:8.A:B:C:D:答案:9.A: B:C:D:答案:10.A: B: C: D:答案:。
概率论与数理统计习题7参考答案
S X X 2 1 15 15 i1
i
2 0.00029 3 即 S 0.0171
所以 的置信区间为
t t [X S ( ), X S ( )] [2.125 0.0171 2.1315 ,2.125 0.0171 2.1315 ] [2.116,2.1406 ]
n 15 2
2
3) 1 (Var(
) Var(
) Var(
2
)) 1 3 2
X X X 4
3
9
1
2
39
3
故有 Var(ˆ4) Var(ˆ2) Var(ˆ3) Var(ˆ1)
答案仅供参考
7.7 证明(1)因为 X 服从[
]上的均匀分布,故
E(X ) 1 1
2
2
E(X ) E( X ) 1 故样本均值不是 的无偏估计 2
概率论与数理统计习题 7 参考答 案
答案仅供参考
习题 7 参考答案
7.1 解:因为:
是抽自二项分布 B(m,p)的样本,所以总体的期望为
E(X ) mp ,用样本均值
X
代替总体均值 E( X ) ,得
p
的矩估计为
pˆ
X m
。
似然函数为 L( p) Cmp px1 (1 p)mx1
m
m
Cmp pxm (1
0.025
2
2 , X 2.125
2
Z
n2
0.012 1.96 0.0049 16
答案仅供参考
所以 的置信区间为
Z Z
[X
,X
] [2.125 0.0049 ,2.125 0.0049 ] [2.1201,2.1299 ]
概率论与数理统计第七章课后习题及参考答案
易得ˆ
max
1in
X
i
,ˆ
的密度函数为
p(x)
n(x
) n 1
1
,0
x
,
0, 其他.
7
则 E(ˆ)
xp(x)d x
0
xn
x
n1 n1
1
dx
n n 1
,
可知 的最大似然估计量不是无偏的.
12.设从均值为 ,方差为 2 0 的总体中,分别抽取容量为 n1 ,n2 的两独立样
本.X1 和 X 2 分别是两样本的样本均值.试证对于任意常数 a ,b ( a b 1),
X
1
2
3
P
2
2 (1 )
(1 )2
其中, ( 0 1 )为未知数.已知取得了样本值 x1 1, x2 2 , x3 1 ,求 的矩估计值和最大似然估计值.
(2) 设 X1 , X 2 ,…, X n 是来自参数为 的泊松分布总体的一个样本,试求
的矩估计量和极大似然估计量.
解:(1) 因为 E( X ) 1 2 2 2 (1 ) 3(1 )2 3 2 ,
x c x( 1)d x c
c
c
x
d
x
c 1
,
令
E(X
)
X
,即
X
c 1
,得
的矩估计量为
1
ˆ X . X c
从而 的矩估计量值为 4.设总体 X 的概率密度为
ˆ x . x c
f
(x)
6x(
3
x)
,
x
c,
0, 其他.
X1 , X 2 ,…, X n 是来自总体 X 的一个样本. (1) 求 的矩估计量ˆ ;
概率论习题答案 第7章答案
θˆ = −1 −
n
n ln xi
i =1
从而θ 的极大似然估计量为
θˆ = −1 − n n
∑ ln X i
i =1
(2) 设 x1, x2 ,", xn 是相应于 X 1, X 2 ,", X n 的样本,则似然函数为
n
∏ L( p) =
n
p(1 −
p) xi −1
=
p n (1 −
∑ xi −n p) i=1
5. (1)
E(X ) = E(eZ ) =
∫ 1
+∞
− ( z−μ )2
e z e 2σ 2 dz
2π σ −∞
∫ =
1
∞
exp{−
1
(z 2 − (2μ + 2σ 2 )z + (μ + σ 2 )2 − 2μσ 2 − σ 4 )}dz
2π σ −∞
2σ 2
∫ = exp{μ + 1 σ 2} 2
=
1 mn
n i =1
xi
=
1 m
x
第 7 章习题答案 总 11 页第 4 页
∑ 所以 p 的极大似然估计量为
pˆ
=
1 mn
n i =1
Xi
=
1 m
X
4 (1)已知, λ 的极大似然估计值为 λˆ = x ,又 P{X = 0} = e−λ ,所以根据极大似然估计的性
质, P{X = 0}的极大似然估计值为 e−x
∏ L(σ ) =
n i =1
f
(xi ,σ )
=
1σ 2
e ∑ −n
−1 σ
n i =1
概率论与数理统计教程第七章答案
、 第七章 假设检验7、1 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些就是简单假设,哪些就是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=、解:(1)就是简单假设,其余位复合假设7、2 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 就是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显著性水平为0、05 解:因为(,9)N ξμ~,故9(,)25N ξμ~ 在0H 成立的条件下,00053(||)(||)53521()0.053cP c P c ξμξμ-≥=-≥⎡⎤=-Φ=⎢⎥⎣⎦55()0.975,1.9633c cΦ==,所以c =1、176。
7、3 设子样1225,,,ξξξL 取自正态总体2(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0、05,20σ=0、004,α=0、05,n=9,求μ=0、65时不犯第二类错误的概率。
解:(1)在0H 成立的条件下,200(,)nN σξμ~,此时00000()P c P ξαξ=≥=所以10αμ-=,由此式解出010c αμμ-=+在1H 成立的条件下,20(,)nN σξμ~,此时10100010()(P c P αξβξμ-=<==Φ=Φ=Φ-由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。
(2)不犯第二类错误的概率为100.9511(0.650.51(3)0.21(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ-=-Φ-=Φ= 7、6 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。
概率论与数理统计课后习题答案 第七章
4. 设总体
其中
是未知参数 又
(1) 证明
是参数 的无偏估计和相合估计
(2) 求 的极大似然估计 (1) 证:
为取自该总体的样品 为样品均值
是参数 的无偏估计 又
是参数 的相合估计
(2)
故其分布密度为
其他 似然函数
其他 因对所有 有
习题 7.3
1. 土木结构实验室对一批建筑材料进行抗断强度试验.已知这批材料的抗断强度
差分别为
.设 A,B 两位化验员测定值服从正态分布,其总体方差分别为
.求方差比
的置信度 0.9 的置信区间.
解:
查表知
故
的置信度 0.9 的置信区间为:
自测题 7 一、填空题
设总体 的无偏估计. 解:
则
是来自 的样本 则当常数
时
是未知参数 的无偏估计
是未知参数
二、一台自动车床加工零件长度 X(单位:厘米)服从正态分布
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
解:此处
的置信度 0.90 的置信区间为:
4. 某工厂生产滚珠,从某日生产的产品中随机抽取 9 个,测得直径(单位:毫米)如下:
14.6
14.7
15.1
14.9
14.81ຫໍສະໝຸດ .015.115.2
14.8
概率论与数理统计第七章
第七章 参数估计1. 样本均值74.002X =样本方差822611() 6.8571081i i S X X -==-=⨯-∑ 样本二阶中心矩 822611()6108ii S X X -==-=⨯∑ 均值与方差的矩估计值分别为: 2674.002610μσ-= =⨯ 2.(1)矩估计(1)()1cccE X x c xdx c x dx θθθθθθθθ+∞+∞-+-===-⎰⎰ 令1c X θθ=-,得θ的估计量为 X X c θ=-,θ的估计值为 1111ni i ni i x n x c n θ===-∑∑ (2)极大似然估计(1)(1)(1)11()()()n n n L c x c x c x x θθθθθθθθθθ-+-+-+==1ln ()ln()(1)ln ni i L n c x θθθθ==-+∑令1ln ln ln 0ni i L n n c x θθ=∂=+-=∂∑得θ的估计值为 1ln ln nii nx n cθ==-∑,θ的估计量为 1ln ln nii nXn cθ==-∑3.(1) 矩估计121433X ++== 22()122(1)3(1)32E X θθθθθ=⨯+⨯-+⨯-=-令()E X X = 得θ的估计值为 56θ= 极大似然估计2256112233()()()()2(1)22L P X x P X x P X x θθθθθθθ=====⨯-⨯=-令ln 5101L θθθ∂=-=∂-,得θ的估计值为 56θ=(2)矩估计量11ni i X X n λ===∑极大似然估计1111211()()()...()...!!!...!inx x x nn n n n e e L P X x P X x P X x ex x x x λλλλλλλ---∑======令ln ()0i x L n λθλ∂=-+=∂∑,得λ的似然估计值为 i x nλ=∑, 从而λ的似然估计量为11ni i X X n λ===∑。
天津理工大学概率论与数理统计练习题答案(详解版)
天津理⼯⼤学概率论与数理统计练习题答案(详解版)第1章概率论的基本概念随机事件与样本空间、概率、古典概型和⼏何概型系班姓名学号1、写出下列随机试验的样本空间(1)同时掷三颗骰⼦,记录三颗骰⼦点数之和Ω=(2)⽣产产品直到有10件正品为⽌,记录⽣产产品的总件数Ω=(3)对某⼯⼚出⼚的产品进⾏检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2 个次品就停⽌,或检查4个产品就停⽌检查,记录检查的结果。
⽤“0”表⽰次品,⽤“1”表⽰正品。
(4)在单位圆内任意取⼀点,记录它的坐标Ω=(5)将⼀尺长的⽊棍折成三段,观察各段的长度2、互不相容事件与对⽴事件的区别何在?说出下列各对事件的关系3、设A,B,C为三事件,⽤A,B,C的运算关系表⽰下列各事件4、盒内装有10个球,分别编有1- 10的号码,现从中任取⼀球,设事件A表⽰“取到的球的号码下列运算分别表⽰什么事件.5、指出下列命题中哪些成⽴,哪些不成⽴.(1)B B A B A =成⽴(2)AB AB =不成⽴(3)C B A C B A = 不成⽴ (4)φ=))((B A AB 成⽴(5)若B A ?,则AB A =成⽴ 6)若φ=AB ,且A C ?,则φ=BC 成⽴ (7)若B A ?,则A B ?成⽴ (8)若A B ?,则A B A = 成⽴6、设⼀个⼯⼈⽣产了四个零件,i A 表⽰事件“他⽣产的第i 个零件是正品” (1,2,3,4)i =,⽤1234,,,A A A A 的运算关系表达下列事件.7、设,,E F G 是三个随机事件,试利⽤事件的运算性质化简下列各式: (1) ()()EF E F (2) ()()()E F E F E F (3)()()E F F G注:⽤(AB )∪C=(A ∪C) (B ∪C) (A ∪B )C=(AC)∪ (BC)8、设事件,,A B C 分别表⽰开关,,a b c 闭合,D 表⽰灯亮,则可⽤事件,,A B C 表⽰:9、 (1)设事件,A B 的概率分别为51与41,且A 与B 互斥,则()P AB = 51.(2) ⼀个盒中有8只红球,3只⽩球,9只蓝球,如果随机地⽆放回地摸3只球,则取到的3 只都是红球的事件的概率等于.(3) ⼀袋中有4只⽩球,2只⿊球,另⼀只袋中有3只⽩球和5只⿊球,如果从每只袋中各摸⼀只球,则摸到的⼀只是⽩球,⼀只是⿊球的事件的概率等于 .(3) 设123,,A A A 是随机试验E 的三个相互独⽴的事件,已知12(),(),P A P A αβ==3()P A γ=,则123,,A A A ⾄少有⼀个发⽣的概率是(5) ⼀个盒中有8只红球,3只⽩球,9只蓝球,如果随机地⽆放回地摸3 只球,则摸到的没有⼀只是⽩球的事件的概率等于 .(6)设,,A B C 是随机事件,,A C 互不相容,11(),(),23P AB P C ==则()P AB C = .(7)袋中有50个乒乓球,其中20个是黄球,30个是⽩球,今有两⼈依次随机地从袋中各取⼀球, 取后不放回,则第⼆个⼈取得黄球的概率是 .(8) 在区间中随机地取两个数,则这两个数之差的绝对值⼩于的概率为10、若,A B 为任意两个随机事件,则: ( C )(A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C) ()()()2+≤P A P B P AB(D) ()()()2+≥P A P B P AB12、设,,A B C 是三事件,且11()()(),()()0,()48P A P B P C P AB P BC P AC ======,求,,A B C ⾄少有⼀个发⽣的概率.13、在1500个产品中有400个次品,1100个正品,任取200个,求(1)恰有90个次品的概率;(2)⾄少有2个次品的概率.(0,1)12关注微信公众号 “DATA HOUSE ”,在对话框⾥回复“概率论习题答案”,即可获取。
概率论与数理统计练习册(理工类) - 第7章答案
−θ (
e
∑ xi )
i =1
n
1
, 1 ), xi
2n ln θ − 3(ln( x1 xn )) − θ (∑ 取对数 ln L =
i =1
n
n 1 d ln L 2n n 1 ˆ= 0, 则θ 2n / ∑ . = −∑ = 两边求导得 dθ xi θ i 1= i 1 xi =
*4. 设 x1 , x2 , , xn 为来自正态总体 N ( µ0 , σ 2 ) 的简单随机样本,其中 µ0 已知,σ >0 未知, X 和
32
概率论与数理统计练习题
系 专业 班 姓名 第七章 参数估计 §7.3 区间估计
2从正态分布 X ~ N ( µ , σ ) ,其中 µ 未知,σ 已知, X 1 , X 2 , , X n 为样本,则 µ 的置信水平为 0.95 的置信区间是 (A) ( X − Z 0.95 [ D (B) ( X − Z 0.05 ]
σ
n
, X + Z 0.95
σ
n
)
σ
n
, X + Z 0.05
σ
n
)
(C) ( X − Z 0.975
σ
n
, X + Z 0.975
σ
n
)
2
(D) ( X − Z 0.025
2
σ
n
, X + Z 0.025
σ
n
)
2.设总体 X 服从正态分布 X ~ N ( µ , σ ) ,其中 µ 和 σ 都未知, X 1 , X 2 , , X n 为样本,则 µ 的 置信水平为 0.95 的置信区间是 (A) ( X − t0.95 (n − 1) [ (B) ( X − t0.05 (n − 1) D ]
统计学相关-概率论与数理统计第七章参考答案
2 00.05 , n Nhomakorabea9
,
2
(n
1)
2 0.95
(8)
2.733
拒绝域为: 2 2.733
又由题知: s2 0.00862
2 0
0.012
2
(n 1)s 2
2 0
8 0.0086 2 0.012
5.9186
2.733
2 未落入拒绝域,故接受 H 0 ,认为 0.01
10、(1)检验假设: H 0 : 3315 , H1 : 3315 这是 2 未知关于 的左边检验
拒绝 H 0 ,即认为 3315 (2) 检验假设: H 0 : 525 , H1 : 525 这是 未知,关于 2 的右边检验,则
检验统计量为: 2 (n 1)s 2
2 0
0.05 , n
30
,
2
(n
1)
2 0.05
(29)
42.557
拒绝域为: 2 42.557
又由题知: s2 4882
0.05 , n1 9 , n2 4 , t0.05 (n1 n2 2) t0.05 (11) 1.7959
拒绝域为: t
xy
sw
11 94
t 0.05
(11)
1.7959
由题,A 班、B 班考试成绩的样本均值和样本方差分别为:
x 80 , s12 110.25
y 65 , s22 174
s 27.28
0 200
t X 0 210.2 200 1.1217 1.8331
s / n 27.28 / 9
接受 H 0 ,即认为 200 。
6、检验假设: H 0 : 2 5000 , H1 : 2 5000 解:这是 未知,关于 2 的双边检验
概率论与数理统计第七章参数估计习题答案
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
D( X1)
+
æ çè
1 ö2 3 ÷ø
D( X 2 )
=
4 9
Xs
2
=
5s 2 9
,
D(mˆ2
)
=
æ çè
1 4
ö2 ÷ø
D(
X1)
+
æ çè
3 4
ö2 ÷ø
D(
X
2
)
=
5s 8
2
,
D(mˆ3 )
=
æ çè
1 2
ö2 ÷ø
(
D(
X1)
+
D(
X
2
))
=
s2 2
大学数学云课堂
028708.某车间生产的螺钉,其直径X ~ N(m,s 2),由过去的经验知道s 2 = 0.0
3028701.设总体X 服从二项分布B(n,p),n已知,X1,X 2,L,X n为来自X的样本 求参数p的矩法估计. 解:E( X ) = np, E( X ) = A1 = X ,\ np = X . \ p的矩估计量 pˆ = X n
大学数学云课堂
3028702.设总体X的密度函数(f x,q)= ìïíq22 (q - x), 0 < x < q ,
ïî 0,
其他.
X1,X 2,L,X n为其样本,试求参数q的矩法估计.
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章
写在前面:由于答案是一个个复制到word中,比较耗时耗力,故下载收取5分,希望需要的朋友给予理解和支持!PS:网上有一些没经我同意就将我的答案整合、转换成pdf,放在文库里的,虽然是免费的,但是窃取了我的劳动成果,希望有心的朋友支持我一下,下载我的原版答案。
第七章假设检验7.1 假设检验的基本概念习题1样本容量n确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有(). (A)α+β=1;(B)α+β>1;(C)α+β<1;(D)α+β<2.解答:应选(D).当样本容量n确定后,α,β不能同时都很小,即α变小时,β变大;而β变小时,α变大.理论上,自然希望犯这两类错误的概率都很小,但α,β的大小关系不能确定,并且这两类错误不能同时发生,即α=1且β=1不会发生,故选(D).习题2设总体X∼N(μ,σ2),其中σ2已知,若要检验μ,需用统计量U=X¯-μ0σ/n.(1)若对单边检验,统计假设为H0:μ=μ0(μ0已知),H1:μ>μ0,则拒绝区间为;(2)若单边假设为H0:μ=μ0,H1:μ<μ0,则拒绝区间为(给定显著性水平为α,样本均值为X¯,样本容量为n,且可记u1-α为标准正态分布的(1-α)分位数).解答:应填(1)U>u1-α;(2)U<uα.由单侧检验及拒绝的概念即可得到.习题3如何理解假设检验所作出的“拒绝原假设H0”和“接受原假设H0”的判断?解答:拒绝H0是有说服力的,接受H0是没有充分说服力的. 因为假设检验的方法是概率性质的反证法,作为反证法就是必然要“推出矛盾”,才能得出“拒绝H0”的结论,这是有说服力的,如果“推不出矛盾”,这时只能说“目前还找不到拒绝H0的充分理由”,因此“不拒绝H0”或“接受H0”,这并没有肯定H0一定成立. 由于样本观察值是随机的,因此拒绝H0,不意味着H0是假的,接受H0也不意味着H0是真的,都存在着错误决策的可能.当原假设H0为真,而作出了拒绝H0的判断,这类决策错误称为第一类错误,又叫弃真错误,显然犯这类错误的概率为前述的小概率α:α=P(拒绝H0|H0为真);而原假设H0不真,却作出接受H0的判断,称这类错误为第二类错误,又称取伪错误,它发生的概率β为β=P(接受H0|H0不真).习题4犯第一类错误的概率α与犯第二类错误的概率β之间有何关系?解答:一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往会增大.要它们同时减少,只有增加样本容量n.在实际问题中,总是控制犯第一类错误的概率α而使犯第二类错误的概率尽可能小.α的大小视具体实际问题而定,通常取α=0.05,0.005等值.习题5在假设检验中,如何理解指定的显著水平α?解答:我们希望所作的检验犯两类错误的概率尽可能都小,但实际上这是不可能的. 当样本容量n固定时,一般地,减少犯其中一个错误的概率就会增加犯另一个错误的概率. 因此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平α,因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,其原因是不知道犯第二类错误的概率β究竟有多少,且α小,β就大,所以通常用“H0相容”,“不拒绝H0”等词语来代替“接受H0”,而“不拒绝H0”还包含有再进一步作抽样检验的意思.习题6在假设检验中,如何确定原假设H0和备择假设H1?解答:在实际中,通常把那些需要着重考虑的假设视为原假设H0,而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设,而将新方案取为备择假设;(2)若提出一个假设,检验的目的仅仅是为了判断这个假设是否成立,这时直接取此假设为原假设H0即可.习题7假设检验的基本步骤有哪些?解答:根据反证法的思想和小概率原理,可将假设检验的步骤归纳如下:(1)根据问题的要求,提出原理假设H0和备择假设H1.(2)根据检验对象,构造检验统计量T(X1,X2,⋯,Xn),使当H0为真时,T有确定的分布.(3)由给定的显著水平α,查统计量T所服从的分布表,定出临界值λ,使P(∣T∣>λ)=α,或P(T>λ1)=P(T<λ2)=α/2,从而求出H0的拒绝域:∣T∣>λ或T>λ1,T<λ2.(4)由样本观察值计算统计量T的观察值t.(5)作出判断,将t的值与临界值比较大小作出结论:当t∈拒绝域量时,则拒绝H0,否则,不拒绝H0,即认为在显著水平α下,H0与实际情况差异不显著.习题8假设检验与区间估计有何异同?解答:假设检验与区间估计的提法虽不同,但解决问题的途径是相通的. 参数θ的置信水平为1-α的置信区间对应于双边假设检验在显著性水平α下的接受域;参数θ的置信水平为1-α的单侧置信区对应于单边假设检验在显著性水平α下的接受域.在总体的分布已知的条件下,假设检验与区间估计是从不同的角度回答同一个问题. 假设检验是判别原假设H0是否成立,而区间估计解决的是“多少”(或范围),前者是定性的,后者是定量的.习题9某天开工时,需检验自动包装工作是否正常. 根据以往的经验,其装包的质量在正常情况下服从正态分布N(100,1.52)(单位:kg).现抽测了9包,其质量为:99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5.问这天包装机工作是否正常?将这一问题化为假设检验问题. 写出假设检验的步骤(α=0.05).解答:(1)提出假设检验问题H0:μ=100,H1:μ≠100;(2)选取检验统计量U:U=X¯-1001.59,H0成立时, U∼N(0,1);(3)α=0.05,uα/2=1.96,拒绝域W={∣u∣>1.96};(4)x¯≈99.97,∣u∣=0.06.因∣u∣<uα/2=1.96,故接受H0,认为包装机工作正常.习题10设总体X∼N(μ,1),X1,X2,⋯,Xn是取自X的样本. 对于假设检验H0:μ=0,H1:μ≠0,取显著水平α,拒绝域为W={∣u∣>uα/2},其中u=nX¯,求:(1)当H0成立时, 犯第一类错误的概率α0;(2)当H0不成立时(若μ≠0),犯第二类错误的概率β.解答:(1)X∼N(μ,1),X¯∼N(μ,1/n),故nX¯=u∼N(0,1).α0=P{∣u∣>uα/2∣μ=0}=1-P{-uα/2≤u≤uα/2}=1-[Φ(uα/2)-Φ(-uα/2)]=1-[(1-α2)-α2]=α,即犯第一类错误的概率是显著水平α.(2)当H0不成立,即μ≠0时,犯第二类错误的概率为β=P{∣u∣≤uα/2∣E(X)=μ}=P{-uα/2≤u≤uα/2∣E(X)=μ}=P{-uα/2≤nX¯≤uα/2∣E(X)=μ}=P{-uα/2-nμ≤n(X¯-μ)≤uα/2-nμ∣E(X)=μ}=Φ(uα/2-nμ)-Φ(-uα/2-nμ).注1当μ→+∞或μ→-∞时,β→0.由此可见,当实际均值μ偏离原假设较大时,犯第二类错误的概率很小,检验效果较好.注2当μ≠0但接近于0时,β≈1-α.因α很小,故犯第二类错误的概率很大,检验效果较差.7.2 单正态总体的假设检验习题1已知某炼铁厂铁水含碳量服从正态分布N(4.55,0.1082).现在测定了9炉铁水,其平均含碳量为4.484.如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=4.55,H1:μ≠4.55.由于σ2=0.1082已知,所以可选取统计量U=X¯-4.550.108/9,在H0成立的条件下,U∼N(0,1),且此检验问题的拒绝域为∣U∣=∣X¯-4.550.108/9∣>uα/2,这里u=4.484-4.550.108/9≈-1.833,uα/2=1.96.显然∣u∣=1.833<1.96=uα/2.说明U没有落在拒绝域中,从而接受H0,即认为现在生产之铁水平均含碳量仍为4.55.习题2要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时. 已知该种元件寿命服从标准差为σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合格?设总体均值为μ,μ未知,即需检验假设H0:μ≥1000,H1:μ<1000.解答:检验假设H0:μ≥1000,H1:μ<1000.这是单边假设检验问题. 由于方差σ2=0.05,故用u检验法. 对于显著性水平α=0.05,拒绝域为W={X¯-1000σ/n<-uα.查标准正态分布表,得u0.05=1.645.又知n=25,x¯=950,故可计算出x¯-1000σ/n=950-1000100/25=-2.5.因为-2.5<-1.645,故在α=0.05下拒绝H0,认为这批元件不合格.习题3打包机装糖入包,每包标准重为100kg.每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg).某日开工后,测得9包糖重如下(单位:kg):99.398.7100.5101.298.399.799.5102.1100.5打包机装糖的包得服从正态分布,问该天打包机工作是否正常(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=100,H1:μ≠100.由于σ2未知,所以可选取统计量T=X¯-100S/n,在H0成立的条件下,T∼t(n-1),且此检验问题的拒绝域为∣T∣=∣X¯-100S/n∣>tα/2(n-1),这里t=x¯-100s/n≈99.978-1001.2122/9≈-0.0544,t0.025(8)=2.306.显然∣t∣=0.0544<2.306=t0.025(8),即t未落在拒绝域中,从而接受H0,即可以认为该天打包工作正常.习题4机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准含量为500g,标准差不得超过10g.某天开工后,随机抽取9袋,测得净重如下(单位:g):497,507,510,475,515,484,488,524,491,试在显著性水平α=0.05下检验假设:H0:μ=500,H1:μ≠500.解答:x¯=499,s≈16.031,n=9,t=(x¯-μ0)sn=499-50016.0319=-0.1871,α=0.05,t0.025(8)=2.306.因∣t∣<t0.025(8),故接受H0,认为该天每袋平均质量可视为500g.习题5从清凉饮料自动售货机,随机抽样36杯,其平均含量为219(mL),标准差为14.2mL,在α=0.05的显著性水平下,试检验假设:H0:μ=μ0=222,H1:μ<μ0=222.解答:设总体X∼N(μ,σ2),X代表自动售货机售出的清凉饮料含量,检验假设H0:μ=μ0=222(mL),H1:μ<222(mL).由α=0.05,n=36,查表得t0.05(36-1)=1.6896,拒绝域为W={t=x¯-μ0s/n<-tα(n-1).计算t值并判断:t=219-22214.2/36≈-1.27>-1.6896,习题6某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008Ω,对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?解答:本问题是在α=0.05下检验假设H0:σ2=0.0052,H1:σ2≠0.0052.选取统计量χ2=n-1σ2S2,在H0成立的条件下,χ2∼χ2(n-1),且此检验问题的拒绝域为χ2>χα/22(n-1)或χ2<χ1-α/22(n-1).这里χ2=9-10.0052s2=80.0052×0.0082=20.48,χ0.9752(8)=2.18,χ0.0252(8)=17.5.显然χ2落在拒绝域中,从而拒绝H0,即不能认为这批导线电阻的标准差仍为0.005.习题7某厂生产的铜丝,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容量为9的样本,测得其折断力如下(单位:N):289,286,285,286,285,284,285,286,298,292设总体服从正态分布,问该日生产的铜线的折断力的方差是否符合标准(α=0.05)?解答:检验问题为H0:σ2≤16,H1:σ2>16,n=9,s2≈20.3611,χ2=8×s216≈10.181,α=0.05,χ0.052(8)=15.507.因χ2<χ0.052(8)=15.507,故接受H0,可认为铜丝的折断力的方差不超过16N2.习题8过去经验显示,高三学生完成标准考试的时间为一正态变量,其标准差为6min.若随机样本为20位学生,其标准差为s=4.51,试在显著性水平α=0.05下,检验假设:H0:σ≥6,H1:σ<6.解答:H0:σ≥6,H1:σ<6.α=0.05,n-1=19,s=4.51,χ0.952(19)=10.117.拒绝域为W={χ2<10.117}.计算χ2值χ2=(20-1)×4.51262≈10.74.因为10.74>10.117,故接受H0,认为σ≥6.习题9测定某种溶液中的水分,它的10个测定值给出s=0.037%,设测定值总体服从正态分布,σ2为总体方差,σ2未知,试在α=0.05水平下检验假设:H0:σ≥0.04%,H1:σ<0.04%.解答:在α=0.05下,拒绝域为W={(n-1)S2σ02<χ1-α2(9).查χ2分布表得χ0.952(9)=3.325.计算得(n-1)s2σ02=(10-1)×(0.037\per)2(0.04\per)2≈7.7006>3.325,未落入拒绝域,故接受H0.sw=(5-1)×(1.971)2+(4-1)×(1.167)25+4-2≈1.674.查表得t0.005(7)=1.895.算得t=2.86-2.075-01.67415+14≈0.699<1.895.因为0.699<1.895,故不拒绝H0,认为此药无效.习题3据现在的推测,矮个子的人比高个子的人寿命要长一些.下面给出美国31个自然死亡的总统的寿命,将他们分为矮个子与高个子2类,列表如下:矮个子总统8579679080高个子总统6853637088746466606078716790737177725778675663648365假设2个寿命总体均服从正态分布且方差相等,试问这些数据是否符合上述推陈出推测(α=0.05)?解答:设μ1,μ2分别为矮个子与高个子总统的平均寿命,则检验问题为H0:μ1≤μ2,H1:μ1>μ2,n1=5,x¯=80.2,s1≈8.585,n2=26,y¯≈69.15,s2≈9.315,sw=4×8.5852+9.315229≈9.218,n1n2n1+n2≈2.048,t=(80.2-69.15)9.218×2.048≈2.455,α=0.05,t0.05(29)=1.6991,因t>t0.05(29)=1.6991,故拒绝H0,认为矮个子总统的寿命比高个子总统寿命长.习题4在20世纪70年代后期人们发现,酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA).到了20世纪80年代初期,人们开发了一种新的麦芽干燥过程,下面给出了分别在新、老两种过程中形成的NDMA含量(以10亿份中的份数计):故拒绝H0,认为新、老过程中形成的NDMA平均含量差大于2.习题5有两台车床生产同一种型号的滚珠. 根据过去的经验,可以认为这两台车床生产的滚珠的直径都服从正态分布. 现要比较两台车床所生产滚珠的直径的方差,分别抽出8个和9个样品,测得滚珠的直径如下(单位:mm).甲车床xi:15.014.515.215.514.815.115.214.8乙车床yi:15.215.014.815.215.015.014.815.114.8问乙车床产品的方差是否比甲车床的小(α=0.05)?解答:以X,Y分别表示甲,乙二车床产品直径.X∼N(μ1,σ12),Y∼N(μ2,σ22),X,Y独立. 检验假设H0:σ12=σ22,H1:σ22<σ22.用F检验法, 在H0成立时F=S12S22∼F(n1-1,n2-1).由已知数据算得x¯≈15.01,y¯≈14.99,s12≈0.0955,s22≈0.0261,n1=8,n2=9,α=0.05.拒绝域为Rα={F>Fα(n1-1,n2-1)}.查F分布表得F0.05(8-1,9-1)=3.50.计算F值F=s12/s22=0.0955/0.0261≈3.66.因为3.66>3.50,故应否定H0,即认为乙车床产品的直径的方差比甲车床的小.习题6某灯泡厂采用一项新工艺的前后,分别抽取10个灯泡进行寿命试验. 计算得到:采用新工艺前灯泡寿命的样本均值为2460小时. 样本标准差为56小时;采用新工艺后灯泡寿命的样本均值为2550小时,样本标准差为48小时. 设灯泡的寿命服从正态分布,是否可以认为采用新工艺后灯泡的平均寿命有显著提高(α=0.01)?解答:(1)检验假设H0:σ12=σ22,H1:σ12≠σ22.应选取检验统计量F=S12/S22,若H0真, 则F∼F(m-1,n-1);对于给定的检验水平α=0.01,查自由度为(9,9)的F分布表得F0.005(9,9)=6.54;已知m=n=10,s1=56,s2=48,由此得统计量F的观察值为F=562/482≈1.36;因为F<F0.005(9,9),所以接受原假设H0,即可认为这两个总体的方差无显著差异.(2)检验假设H0′:μ1=μ2,H1′:μ1<μ2.按上述关于双总体方差的假设检验的结论知这两个总体的方差未知但相等,σ12=σ22,所以应选取检验统计量:T=X¯-Y¯(m-1)S12+(n-1)S22m+n-2(1m+1n),若H0′真,则T∼t(m+n-2);对给定的检验水平α=0.01,查自由度为m+n-2=18的t分布表得临界值计算t值t=z¯-0sz/n=-0.1-00.141/5≈-1.59>-2.776,故接受H0:μz=0,即在α=0.05下,认为两种分析方法所得的均值结果相同.7.4 关于一般总体数学期望的假设检验习题1设两总体X,Y分别服从泊松分布P(λ1),P(λ2),给定显著性水平α,试设计一个检验统计量,使之能确定检验H0:λ1=λ2,H1:λ1≠λ2的拒绝域,并说明设计的理论依据.解答:因非正态总体,故宜用大样统计,设X¯=1n1∑i=1n1Xi,S12=1n1-1∑i=1n1(Xi-X¯)2;Y¯=1n2∑i=1n2Yi,S22=1n2-1∑i=1n2(Yi-Y¯)2.\because(X¯-Y¯)-(λ1-λ2)S12n1+S22n2→N(0,1)∴可选用样本函数u=(X¯-Y¯)-(λ1-λ2)S12n1+S22n2作为拒绝域的检验统计量.习题2设某段高速公路上汽车限制速度为104.6km/h,现检验n=85辆汽车的样本,测出平均车速为x¯=106.7km/h,已知总体标准差为σ=13.4km/h,但不知总体是否服从正态分布. 在显著性水平α=0.05下,试检验高速公路上的汽车是否比限制速度104.6km/h显著地快?解答:设高速公路上的车速为随机变量X,近似有X∼N(μ,σ2),σ=13.4km/h,要检验假设H0:μ=μ0=104.6,H1:μ>104.6.α=0.05,n=85,uα=u0.05=1.645.拒绝域W={u=x¯-μ0σ/n>uα.由x¯=106.7,σ=13.4,μ0=104.6,n=85得u=106.7-104.613.4/85≈1.44<1.645.因为1.44<1.645,所以接受H0,即要α=0.05显著性水平下,没有明显的证据说明汽车行驶快于限制速度.习题3某药品广告上声称该药品对某种疾病和治愈率为90%,一家医院对该种药品临床使用120例,治愈85人,问该药品广告是否真实(α=0.02)?解答:设该药品对某种疾病的治愈率为p,随机变量X为X={1,临床者使用该药品治愈0,反之则X∼b(1,p),问题该归结为检验假设:H0:p=0.9,H1:p≠0.9.由于n=120足够大,可以用u检验法,所给样值(x1,x2,⋯,x120)中有85个1,35个0,所以x¯=1120∑i=1120xi=1120∑i=1851=85120≈0.71,又p0=0.9,以之代入统计量U得U的观察值为∣u∣=∣0.71-0.9∣0.9×0.1120=6.94>u0.01=2.33,故拒绝H0,即认为该药品不真实.习题4一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8小时电视.”她认为她所领导的学校,学生看电视时间明显小于该数字. 为此,她向她的学校的100名初中学生作了调查,得知平均每周看电视的时间x¯=6.5小时,样本标准差为s=2小时,问是否可以认为这位校长的看法是对的(α=0.05)?解答:检验假设H0:μ=8,H1:μ<8.由于n=100,所以T=X¯-μS/n近似服从N(0,1)分布,α=0.05,u0.05=1.645.又知x¯=6.5,s=2,故计算得t=6.5-82/100=-7.5,否定域W={X¯-8S/n<-u0.05.因为-7.5<-1.645,故否定H0,认为这位校长的看法是对的.习题5已知某种电子元件的使用寿命X(h)服从指数分布e(λ),抽查100个元件,得样本均值x¯=950(h),能否认为参数λ=0.001(α=0.05)?解答:由题意知X∼e(λ),E(X)=1/λ,D(X)=1/λ2,故当n充分大时u=x¯-1/λ1nλ=(x¯-1λ)λn=(λx¯-1)n(0,1).现在检验问题为H0:λ=0.001,H1:λ≠0.001,样本值u=(0.001×950-1)×100=0.5,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即可认为参数λ=0.001(即元件平均合适用寿命为1000h).习题6某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400检查,发现次品56件,能否认为这项新工艺显著地影响产品质量(α=0.05)?解答:检验问题为H0:p=0.17,H1:p≠0.17,由题意知⌢p=mn=56400=0.14,u=(⌢p-p0)p0q0n=0.14-0.170.17×0.83×400≈-1.597,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即认为新工艺没有显著地影响产品质量.习题7某厂生产了一大批产品,按规定次品率p≤0.05才能出厂,否则不能出厂,现从产品中随机抽查50件,发现有4件次品,问该批产品能否出厂(α=0.05)?解答:问题归结为在α=0.05下,检验假设H0:p≤0.05,H1:p>0.05.这是一个单侧检验问题,用u检验法,H0的拒绝域为U=X¯-p0p0(1-p0)n>uα.已知n=50,p0=0.05,x¯=450=0.08,代入U的表达式得u=0.08-0.050.05×0.9550≈0.97<uα=u0.05=1.645,故接受H0,即认为这批产品可以出厂.习题8从选区A中抽取300名选民的选票,从选区B中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所提候选人,试在显著水平α=0.05下,检验两个选区之间对候选人的支持是否存在差异. 解答:这是两个比率的比较问题,待检假设为H0:p1=p2,H1:p1≠p2.由题设知n=300,μn=168,m=200,μm=96,p1=168320=0.56,p2=96200=0.48,p=μn+μmm+n=264500=0.528.U0∼=p1-p2p(1-p)(1n+1m)=0.56-0.480.528×0.472×1120≈1.755,由P{∣U∼∣>1.96}=α=0.05,得拒绝域∣U∼∣>1.96,因为U0∼=1.755<1.96,故接受H0,即两个选区之间无显著差异.7.5 分布拟合检验Ai k概率pi npi频数fi(fi-npi)2(fi-npi)2npiA001/108085250.3125A111/108093169 2.1125A221/108084160.2A331/10807910.0125A441/10807840.05A551/108069121 1.5125A661/108074360.45A771/10807181 1.0125A881/108091121 1.5125A991/108076160.2∑18007.375由于当H0为真时,χ2=∑i=0k(fi-npi)2npi∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r).这里χ2=7.375,查表知χ0.052(10-1-0)=χ0.052(9)=16.9,显然χ2=7.375<16.9=χ0.052(9),即χ2未落在拒绝域中,所以接受H0,即认为这个正20面体是由均匀材料制面的.习题2根据观察到的数据疵点数0 1 2 3 4 5 6频数fi 14 27 26 20 7 3 3检验整批零件上的疵点数是否服从泊松分布(α=0.05).解答:设X表示整批零件上的疵点数,则本问题是在α=0.05下检验假设H0:P{X=i}=λie-λi!,i=0,1,2,⋯.由于在H0中参数λ未具体给出,所以先估计λ的值. 由极大似然估计法得λ=x¯=1100(0×14+1×27+2×26+3×20+4×7+5×3+6×3)=2.将试验的所有可能结果分为7个互不相容的事件A0,A1,⋯,A7, 当H0成立时,P{X=i}有估计值p0=P{X=0}=e-2≈0.135335,p1=P{X=1}=2e-2≈0.27067,p2=P{X=2}=2e2≈0.270671,p3=P{X=3}≈0.180447,p4=P{X=4}=2/3e-2≈0.090224,p5=P{X=5}=4/15e-2≈0.036089, p6=P{X=6}=4/45e-2≈0.0120298. 列表如下:Ai k 概率pi npi 频数fi (fi-npi)2 (fi-npi)2npiA0 A1 A2 A3 A4 A5 A6 0 1 2 3 4 5 6 0.1353350.270671 0.270671 0.180447 0.090224 0.036089 0.0120298 13.5335 27.0671 27.0672 18.0447 9.02243.60891.2029813.83428 14 27 26 2073313 0.2176 0.0045 1.1387 3.8232 0.6960 0.01608 0.000166 0.04207 0.2118740.050310∑1000.3205当H0为真时,χ2=∑i=0k(fi-npi)2npi ∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r), 这里χ2=0.3205, 查表知χ0.052(5-1-1)=χ0.052(3)=7.815. 显然 χ2=0.3205<7.815=χ0.052(3).即χ2未落在拒绝域中,接受H0, 故可认为整批零件上的疵点数服从泊松分布.习题3检查了一本书的100页,记录各页中印刷错误的个数,其结果为错误个数fi0 1 2 3 4 5 6 ≥7含fi 个错误的页数 36 40 19 2 0 2 1 0问能否认为一页的印刷错误个数服从泊松分布(取α=0.05)? 解答:检验假设H0: 一页的印刷错误个数X 服从泊松分布, P{X=i}=λie -λi!,i=0,1,2,⋯.H0 不成立. 先估计未知参数λλ=x¯=1/100(0×36+1×40+2×19+3×2+4×0+5×2+6×1)=1. 在H0成立下pi =P {X=i}=(λ)ie-λi!=e-1i!,i=0,1,2,⋯. 用χ2检验法χ2=∑i =1k(fi-npi )2npi ∼χ2(k -r-1). 本题中r=1, 其中fi 为频数. H0的拒绝域为 Rα={χ2>χα2(k -r-1)}. 列表计算如下:n=100, 对每个{X=i}计算pi ,npi ,fi-npi ,(fi-npi )2/(npi )(i=1,2,⋯,7). 要求每一个npi ≥5.计算χ2值χ2=0.0170+0.2801+0.0202+1.1423=1.4596.习题6下表记录了2880个婴儿的出生时刻:试问婴儿的出生时刻是否服从均匀分布U[0,24](显著性水平α=0.05)?解答:原假设H0:F0(x), 由F0(x)算得pi=F0(i)-F0(i-1)=124,npi=2880×124=120 (i=1,2,⋯,24),于是χ2=∑i=124(fi-npi)2npi≈40.47,对α=0.05, 自由度n-1=23, 查χ2-分布表,得χα2(n-1)=35.17,因为χ2=40.47>35.17, 所以拒绝H0, 即可以认为婴儿出生时刻不服从均匀分布U[0,24].总习题解答习题1下面列出的是某工厂随机选取的20只部件的装配时间(min):9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7.设装配时间的总体服从正态分布N(μ,σ2),μ,σ2均未知,是否可以认为装配时间的均值显著地大于10(取α=0.05)?解答:检验假设H0:μ≤μ0=10,H1:μ>10.已知n=20,α=0.05,由数据算得x¯=10.2,s≈0.5099.因σ2未知,故用t检验法,拒绝域为W={X¯-μ0S/n>tα(n-1).计算得x¯-μ0s/n=10.2-100.5099/20≈1.7541.查t分布表得t0.05(19)=1.7291.因为1.7541>1.7291,故拒绝H0,可以认为装配时间的均值显著地大于10.习题2某地早稻收割根据长势估计平均亩产为310kg,收割时,随机抽取了10块,测出每块的实际亩产量为x1,x2,⋯,x10,计算得x¯=110∑i=110xi=320.如果已知早稻亩产量X服从正态分布N(μ,144),显著性水平α=0.05,试问所估产量是否正确?解答:这是一个正态分布总体,方差已知,对期望的假设检验问题,如果估计正确,则应有μ=310,因此我们先将问题表示成两个假设:①H0:μ=310,H1:μ≠310.接下来就要分析样本值来确定是接受H0,还是接受H1.当H0为真时,统计量②U=X¯-31012/10∼N(0,1),从而有③P{∣U∣>1.96}=0.05,拒绝域为(-∞,-1.96)∪(1.96,+∞).④计算U0=∣320-310∣12/n≈2.64>1.96,即拒绝H0,也就是有理由不相信H0是真的,故认为估产310kg不正确.习题3设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著水平0.05下,是否可认为这次考试全体考生的平均成绩为70分?并给出检验过程.(1)设这次考试全体考生的平均成绩X∼N(μ,σ2),则待检验假设H0:μ=70,备择假设H1:μ≠70;(2)在H0成立条件下选择统计量T=X¯-μ0S/n∼t(n-1);(3)在显著性水平0.05下,查t分布表,找出临界值tα/2(n-1)=t0.025(35)=2.0301,则拒绝域为(-∞,-2.0301)∪(2.0301,+∞);(4)计算t=∣66.5-70∣15/36=1.4∈(-2.0301,2.0301),故接受H0,因此可认为这次考试全体考生的平均成绩为70分.习题4设有来自正态总体的容量为100的样本,样本均值x¯=2.7,μ,σ2均未知,而∑i=1n(xi-x¯)2=225,在α=0.05水平下,检验下列假设(1)H0:μ=3,H1:μ≠3;(2)H0:σ2=2.5,H1:σ2≠2.5.解答:(1)由题意知n=100,x¯=2.7,s=199×225≈1.508,t=(2.7-3)1.508×100≈-1.9894,α=0.05,t0.025(99)≈t0.025(100)=1.984.因∣t∣=1.9894>t0.025(99)=1.984,故拒绝H0,即认为μ≠3.(2)由题意知χ2=∑i=1n(x1-x¯)22.5=2252.5=90,α=0.05,χ0.0252(99)≈χ0.0252(100)=129.56,χ0.9752(99)≈χ0.9752(100)=74.22,因χ0.9752(99)<χ2=90<χ0.0252(99),故接受H0,即可以认为σ2=2.5.习题5设某大学的男生体重X为正态总体,X∼N(μ,σ2),欲检验假设:H0:μ=68kg,H1:μ>68kg.已知σ=5,取显著性水平α=0.05,若当真正均值为69kg时,犯第二类错误的概率不超过β=0.05,求所需样本大小.解答:由第一类、第二类错误及分位数的定义,易于证明:对于某个给定的δ>0(∣μ-μ0∣≥δ),样本容量n应满足:n≥(uα+uβ)2σ2δ2.因为α=β=0.05,故uα=uβ=1.645,对其对立假设μ=69而言,取δ=1,则n=(uα+uβ)2σ2δ2=(1.645+1.645)2×251≈270.6,故取n=271.某装置的平均工作温度据制造厂家称不高于190∘C.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195∘C和8∘C,根据这些数据能否说明平均工作温度比制造厂所说的要高?(设α=0.05,并假设工作温度近似服从正态分布.)解答:设X为工作温度,则X∼N(μ,σ2).①待检假设H0:μ≤190,备择假设H1:μ>190;②在H0成立条件下,选择统计量T=X¯-μ0S/n≈t(n-1);③在显著性水平0.05下,查t分布表,找出临界值tα(n-1)=t0.05(15)=1.75,拒绝域为(1.75,+∞);④计算t=X¯-μ0S/n=195-1908/16=2.5>1.75,所以否定原假设H0,说明平均工作温度比制造厂所说的要高.习题7电工器材厂生产一批保险丝,抽取10根试验其熔断时间,结果为42657578715957685455假设熔断时间服从正态分布,能否认为整批保险丝的熔断时间的方差不大于80(α=0.05)?解答:①待检假设H0:σ2≤80,备择假设H1:σ2>80;②在H0成立时,选取统计量χ2=(n-1)S2σ02∼χ2(n-1);③由α=0.05,n-1=9,查χ2分布表,χα2(n-1)=χ0.052(9)=16.919;④计算样本值:x¯=110(42+65+75+78+71+59+57+68+54+55)=62.4,s2=19∑i=110(xi-x¯)2≈121.8,χ2=9×121.880≈13.7∈(0,16.919).故接受原假设H0即在α=0.05下,可认为整批保险丝的熔断时间的方差不大于80.习题8某系学生可以被允许选修3学分有实验物理课和4学分无实验物理课,11名学生选3学分的课,考试平均分数为85分,标准差为4.7分;17名学生选4学分的课,考试平均分数为79分,标准差为6.1分. 假定两总体近似服从方差相同的正态分布,试在显著性水平α=0.05下检验实验课程是否能使平均分数增加8分?解答:设有实验的课程考分X1∼N(μ1,σ12),无实验的课程考分X2∼N(μ2-σ22).假定σ12=σ22=σ2未知,检验假设H0:μ1-μ2=8,H1:μ1-μ2≠8.由题意知,选用t检验统计量,则拒绝域为W={∣x1¯-x2¯-(μ1-μ2)sw1n1+1n2∣>tα/2(n1+n2-2),其中sw2=(n1-1)s12+(n2-1)s22n1+n2-2.由x1¯=85,x2¯=79,n1=11,n2=17,s1=4.7,s2=6.1,算出sw=(11-1)×4.72+(17-1)×6.1211+17-2≈5.603.从而算出t值为t=85-79-85.603111+117≈-0.92,由α=0.05,查表得t0.025(11+17-2)=t0.025(25)=2.056,因为∣t∣=0.92<2.056,故接受H0,认为μ1-μ2=8.习题9某校从经常参加体育锻炼的男生中随机地选出50名,测得平均身高174.34厘米;从不经常参加体育锻炼的男生中随机地选50名,测得平均身高172.42厘米. 统计资料表明两种男生的身高都服从正态分布,其标准差分别为5.35厘米和6.11厘米,问该校经常参加锻炼的男生是否比不常参加锻炼的男生平均身高要高些(α=0.05)?解答:设X,Y分别表示常锻炼和不常锻炼男生的身高,由题设X∼N(μ1,5.352),Y∼N(μ2,6.112).①待检假设H0:μ1≤μ2,备择假设H1:μ1>μ2;②选取统计量U=X¯-Y¯σ12n+σ22m∼(H0成立)N(0,1);③对于α=0.05,查标准正态分布表,uα=u0.05=1.64;则拒绝域为(1.64,+∞);④计算u=174.34-172.425.35250+6.11250≈1.67>1.64,故否定原假设H0,即表明经常体育锻炼的男生平均身高比不经常体育锻炼的男生平均身高高些.习题10在漂白工艺中要改变温度对针织品断裂强力的影响,在两种不同温度下分别作了8次试验,测得断裂强力的数据如下(单位:kg):70∘C:20.818.819.820.921.519.521.021.280∘C:17.720.320.018.819.020.120.219.1判断两种温度下的强力有无差别(断裂强力可认为服从正态分布α=0.05)?解答:(1)本问题是在α=0.05下检验假设μ1=μ2,为此需要先检验σ12=σ22是否成立.H01:σ12=σ22,H11:σ12≠σ22.选取统计量F=S12S22,在H01成立的条件下,F∼F(n1-1,n2-1),且此检验问题的拒绝域为F>Fα/2(n1-1,n2-1)或F<F1-α/2(n1-1,n2-1).这里F=s12s22≈0.90550.8286≈1.0928,F0.025(7,7)=4.99,F0.975(7,7)=1F0.025(7,7)=14.99≈0.2004.显然F0.975(7,7)=0.2004<1.0928<4.99=F0.025(7,7).说明F未落在拒绝域中,从而接受H01,即认为两温度下的强力的方差没有显著变化,亦即σ12=σ22. (2)再检验假设H0ʹ:μ1=μ2,H0ʹ:μ1≠μ2,在H0ʹ成立的条件下,T=X1¯-X2¯(n1-1)S12+(n2-1)S22n1+n2-21n1+1n2∼t(n1+n2-2),且此检验问题的拒绝域为∣T∣>tα/2(n1+n2-2),这里T≈20.4-19.47×0.9055+7×0.82868+8-218+18≈2.148,显然∣T∣=2.148>2.145=t0.025(14).说明T落在拒绝域中,从而拒绝H0,即认为两种温度下的断裂强力有显著差别.习题11一出租车公司欲检验装配哪一种轮胎省油,以12部装有Ⅰ型轮胎的车辆进行预定的测试. 在不变换驾驶员的情况下,将这12部车辆换装Ⅱ型轮并重复测试,其汽油耗量如下表所示(单位:km/L).汽车编号i123456789101112Ⅰ型胎(xi)4.24.76.67.06.74.55.76.07.44.96.15.2Ⅱ型胎(yi)4.14.96.26.96.84.45.75.86.94.76.04.9假定两总体均服从正态分布,试在α=0.025的显著性水平下,检验安装Ⅰ型轮胎是否要双安装Ⅱ型轮胎省油?解答:设两种轮胎汽油消耗量之差为随机变量D,则取值为zi=xi-yi=0.1,-0.2,0.4,0.1,-0.1,0.1,0,0.2,0.5,0.2,0.1,0.3.设Z∼N(μz,σz2),σz2未知. 若消耗油相同,则μz=0;若Ⅰ型比Ⅱ型轮胎省油,则μz>0,于是检验假设H0:μz=0,H1:μz>0.由题意知z¯≈0.142,s≈0.198,n-1=12-1=11.α=0.025,查t分布表得t0.025(11)=2.201.所以,拒绝域为W={t>2.201}.由于样本值t=z¯-0s/n=0.142-00.198/12≈2.48>2.201,故拒绝H0:μz=0,即说明Ⅰ型轮胎省油.习题12有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量n1=60,n2=40的样本,测得部件重量(以kg计)的样本方差分别为s12=15.46,s22=9.66. 设两样本相互独立,两总体分别服从分布N(μ1,σ12),N(μ2,σ22).μi,σi2(i=1,2)均未知,试在α=0.05水平下检验假设H0:σ12≤σ22,H1:σ12>σ22.解答:在α=0.05下,检验假设H0:σ12≤σ22,H1:σ12>σ22,经计算p=1100×10(45+2×17+3×4+4×1+5×1)=1/10,故检验假设为H0:X∼B(10,1/10),即pi=P{X=i}=C10i(1/10)i(9/10)10-i,i=0,1,2,⋯,10.为了使npi≥5,将xi≥3合并,于是k=4,r=1.计算χ2的观察值,计算结果如下表:[200,300) [300,+∞)435843.466.9-0.4-8.90.0041.184∑300300 1.8631其中理论概率pi=p{ti≤T≤ti+1}=∫titi+1f(t)dt(i=1,2,3),p4=1-∑i=13pi,例如p1=P{T<100}=∫01000.005e-0.005tdt=1-e-0.5≈0.393.由k=4,未知参数个数r=0,查表知χα2(k-r-1)=χ0.052(3)=7.815.因χ2=1.8631<χ0.052(3)=7.815.故接受H0,即可认为灯泡的寿命服从该指数分布.习题16关于正态总体X∼N(μ,1)的数学期望有如下二者必居其一的假设,H0:μ=0,H1:μ=1.考虑检验规则:当X¯≥0.98时否定假设H0接受H1,其中X¯=(X1+⋯+X4)/4,而X1,⋯,X4是来自总体X的简单随机样本,试求检验的两类错误概率α和β.解答:易见,在假设“H0:μ=0”成立的条件下,X¯∼N(0,1/4),2X¯∼N(0,1);在假设“H1:μ=1”成立的条件下,X¯∼N(1,1/4),2(X¯-1)∼N(0,1).因此,由定义得α=P{X¯≥0.98∣μ=0}=P{2X¯≥1.96∣μ=0}=0.025,β=P{X¯<0.98∣μ=1}=P{2(X¯-1)<-0.04∣μ=1}=0.4840.习题17考察某城市购买A公司牛奶的比例,作假设H0:p=0.6,H1:p<0.6,随机抽取50个家属,设x为其中购买A公司牛奶的家庭数,拒绝域W={x≤24}.(1)H0成立时,求第一类错误的α;(2)H1成立且p=0.4时,求第二类错误的β(0.4);又当p=0.5时,求第二类错误的β(0.5).解答:由定义知(1)α=P{x≤24∣p=0.6}=Φ(24-50×0.650×0.6×0.4)≈Φ(-1.73)=1-Φ(1.73)=1-0.9528=0.0418.(2)β(0.4)=P{x>24∣p=0.4}=1-Φ(24-50×0.450×0.4×0.6)≈1-Φ(1.15)=1-0.8749=0.1251;。
概率论第七章习题解答(全)
概率论第七章习题解答1、随机地取8只活塞,测得它们的直径为(以mm 计)74.00174.00574.00374.00174.00073.99874.00674.002试求总体均值μ及方差2σ的矩估计值,并求样本方差2s 。
解1()E X μμ==22222()()[()]E X D X E X μσμ==+=+解得1μμ=,2221σμμ=-又81118ii A X X ===∑令1A Xμ==(一阶矩估计量)2222A X σμ==-(二阶矩估计量)代入样本值,1(74.00174.00574.00374.0018x =+++74.00073.99874.00674.002)++++74.002=ˆ74.002μ=,(一阶矩估计值)82211ˆ()8i i x x σ==-∑22222221[(0.001)0.0030.001(0.001)0.002(0.004)(0.004)0]8=-+++-++-++即26648ˆ106108σ--=⨯=⨯(二阶矩估计值)因为样本方差22211()1n ii S X X n ==--∑当8n =时,822211()7i i S X X ==-∑所以22661148ˆ()10 6.861077n i i sx x --==-=⨯=⨯∑2、设12,,,n X X X 为总体的样本,12,,,n x x x 为一相应的样本值,求下列总体的概率密度或分布律中的未知参数的矩估计量和矩估计值。
(1)(1),()0,c x x cf x θθθ-+⎧>=⎨⎩其它,其中0c >为已知,θ为未知参数。
(2)1,01()0,xx f x θθ-⎧≤≤⎪=⎨⎪⎩其它,其中0θ>,θ为未知参数。
(3){}(1)x xm xm P X x C p p -==-,0,1,2,,x m = ,其中01p <<,p 为未知参数。
解(1)()()()cE X xf x dx xf x dx∞∞-∞==⎰⎰(1)ccx c x dx c x dxθθθθθθ∞∞-+-==⎰⎰11|111c c c c x c θθθθθθθμθθθ-+∞-+====---,而ˆX μ=故1cX θθ=-,解出θ,得(1)c X θθ=-,()X c X θ-=,ˆ()XX c θ=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 参数估计 ----点估计一、填空题1、设总体X 服从二项分布),(p N B ,10<<P ,n X X X 21,是其一个样本,那么矩估计量=pˆ XN. 2、 设 总 体)p ,1(B ~X, 其 中 未 知 参 数 01<<p , X X X n 12,, 是 X 的样本,则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 样本 的 似 然 函 数 为_ii X 1n1i X )p 1(p -=-∏__。
3、 设 12,,,n X X X 是 来 自 总 体 ),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2的 似 然 函 数212(,,;,)n L X X X μσ=_2i 2)X (21n1i e21μ-σ-=∏σπ__。
二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:因⎰⎰++=+=1011α1α1αdx x dx x x X E a )()()(2α1α2α1α102++=++=+|a x 令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计 因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=∂∂ni i X nL 101ααln ln 得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-⎧>=⎨⎩其他 ,n X X X ,,21是来自X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)由于1()E X λ=,令11X Xλλ=⇒=,故λ的矩估计为1ˆX λ= (2)似然函数112(,,,)nii x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=⇒=∑∑∑故λ的极大似然估计仍为1X。
3、设总体()2~0,X N σ,12,,,n X X X 为取自X 的一组简单随机样本,求2σ的极大似然估计;[解] (1)似然函数2221i x ni L σ-==()2212222ni i x n eσπσ=--∑=⋅于是2221ln ln 2ln 222ni i x n n L πσσ==---∑ 22241ln 122n i i d L n x d σσσ==-+∑, 令2ln 0d L d σ=,得2σ的极大似然估计:2211n i i X n σ∧==∑. 4、设总体X 服从泊松分布()P λ, 12,,,n X X X 为取自X 的一组简单随机样本, (1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)令ˆ()E X X X λλ==⇒=,此为λ的矩估计。
(2)似然函数1121(,,,)!nii x n n nii e L x x x x λλ=-=∑=∏1111ln ln ln !ln 0n ni i i i n ni i i i L x n x x x d L n xd nλλλλλ=====--=-=⇒==∑∑∑∑故λ的极大似然估计仍为X 。
第七章 参数估计 ----点估计的评价标准一、填空题1、 设321,,X X X 是取自总体X 的一个样本,则下面三个均值估计量3213321232111214331ˆ,1254131ˆ,2110351ˆX X X uX X X u X X X -+=++=++=μ都是总体均值的无偏估计,则 2ˆμ最有效. 2、 设n X X X ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 111二、计算题1、设n X X X ,,21为从一总体中抽出的一组样本,总体均值μ已知,用∑=--ni i X n 12)(11μ去估计总体方差2σ,它是否是2σ的无偏估计,应如何修改,才能成为无偏估计.解:因∑∑==--=--n i n i i i X E n X n E 1122)(11])(11[μμ221σσ≠-=n n ∑=--∴ni i X n 12)(11μ不是2σ的无偏估计 但∑=-n i i X n 12)(1μ是2σ的无偏估计 2、设n X X X ,,21是来自总体),(2σμN 的一个样本,若使∑-=+-⋅1121)(n i i i X XC 为2σ的无偏估计,求常数C 的值。
解:11221111122111122222122[()][()][2][2]12(1)2(1)n n i i i i i i n i i i i i n i E C X X C E X X C EX EX EX EX C n C C n μσμσμσσ--++==-++=-=⋅-=-=+-=+++-=-=⇒=-∑∑∑∑第七章 参数估计 ----区间估计一、选择题1、设总体),(~2σμN X ,2σ未知,设总体均值μ的置信度α-1的置信区间长度l ,那么l 与a 的关系为( A ).A 、a 增大,l 减小B 、a 增大,l 增大C 、a 增大,l 不变D 、a 与l 关系不确定2、设总体),(~2σμN X ,且2σ已知,现在以置信度α~1估计总体均值μ,下列做法中一定能使估计更精确的是( C ).A 、提高置信度α-1,增加样本容量B 、提高置信度α-1,减少样本容量C 、降低置信度α-1,增加样本容量D 、降低置信度α-1,减少样本容量二、计算题1、设总体)9.0,(~2μN X ,当样本容量9=n 时,测得5=X ,求未知参数μ的置信度为0.95的置信区间.解:μ的置信区间为22(X Z X Z αα-+05.0=α 9=n 9.0=σ 5X =0.0521.96Z =μ的置信区间为)588.5,412.4(。
2、设总体2~(,),X N μσ已知0,σσ=要使总体均值μ的置信水平为1α-的置信区间的长度不大于L ,问需要抽取多大容量的样本。
解:μ的置信区间为22(X Z X Z αα-+,22022242Z Z L n Lαασ≤⇒≥3、某车间生产自行车中所用小钢球,从长期生产实践中得知钢球直径),(~2σμN X ,现从某批产品里随机抽取6件,测得它们的直径(单位:mm)为:14.6,15.1,14.9,14.8,15.2,15.1,置信度95.01=-α(即05.0=α) (1)若06.02=σ,求μ的置信区间 (2)若2σ未知,求μ的置信区间(3)求方差2σ,均方差σ的置信区间.解:(1)2σ已知,则μ的置信区间为22(X Z X Z αα-+,25,0.05, 1.96n Z αα===代入则得μ的置信区间)15.15,75.14((2)2σ未知,则μ的置信区间为22(,X t X t αα-+,05.0,5==αn 查表得0.0522.5706t =,代入得μ的置信区间为)19.15,71.14((3)222(1)~(1)n S n χσ--2σ的置信区间2222122(1)(1)(,)(1)(1)n S n S n n ααχχ-----5,05.0==n α 代入得2σ的置信区间为:)3069.0,0199.0(。
均方差σ的置信区间为(0.1411,0.2627)=4、 设从正态总体X 中采用了n = 31个相互独立的观察值 , 算得样本均值 61.58=X 及样本方差 22)8.5(=S, 求总体X 的均值和方差的90%的置信区间解:,8.5s ,31n ,95.021,05.02,9.01===α-=α=α- 0.05(30) 1.6973t = ∴μ的 90%的置信区间为 :2(((56.84,60.38)X t n α±-=220.050.95(30)43.77(30)18.49χχ== ,S 2 = 33.642σ的 (1-a )%的置信区间为 :2222221(1)(1),(1)(1)n s n s n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭即6.541.2349.188.333077.4364.333022<<⨯<<⨯σσ∴σ2的 90%的 置 信 区 间 为 : (23.1 , 54.6)5、 设 某 种 灯 泡 的 寿 命 X 服 从 正 态 分 布 N(μ , σ2 ) , μ , σ2未 知 , 现 从中 任 取 5个灯 泡 进 行 寿 命 测 试 (单 位 : 1000小 时 ), 得 :10.5 , 11.0 , 11.2 , 12.5 , 12.8 ,求 方 差 及 均 方 差 的 90%的 置 信 区 间 .解:995.0)(41,6.1151512251=-===∑∑==i i i i x x S x x41,95.021,05.02,9.01=-=-==-n ααα220.050.95(4)9.488,(4)0.711x x ==598.5711.0995.04,419.0488.9995.04=⨯=⨯∴ σ2及 σ 的 90%的 置 信 区 间 为 (0.419 , 5.598)及 )366.2,647.0()598.5,419.0(=6、 二正态总体N(μ1 , σ12) , N(μ2 , σ22)的参数均未知 ,依次取容量为 n 1=10 , n 2=11的二独立样本 ,测得样本均值分别为121.2, 2.8x x ==,样本方差分别为 29.0,34.02221==S S ,(1) 求二总体均值差12μμ-的90%的置信区间。
(2)求二总体方差比90%的置信区间。
解:1210.9,0.05,19,1102n n αα-==-=-=(1)290.34100.290.313719w s ⋅+⋅==,0.05(19) 1.729t =,12μμ-的90%的置信区间为(1.2 2.8 1.729 2.8 1.729( 2.0231, 1.1769)---+=--(2)0.05(9,10) 3.02F =0.950.0511(9,10)(10,9) 3.14F F ==17.129.034.02221==S S 2221/σσ∴的 90%的 置 信 区 间 为 : )67.3,39.0()14.317.1,02.3117.1(=⨯⨯。