脉冲功率技术
脉冲功率技术
目录目录 0摘要 (1)一、脉冲功率技术的发展历史及现状 (2)二、脉冲功率技术的储能技术 (4)2.1惯性储能 (4)2.1.1直流发电机 (5)2.1.2单极脉冲发电机(HPG) (5)2.1.3同步发电机 (6)2.1.4主动补偿脉冲发电机 (7)2.2电容储能 (8)2.2.1电容器组放电 (8)2.2.2电容器组放电技术要点 (8)2.3电感储能 (9)2.3.1电感与电容器储能密度比较 (9)2.3.2电感储能的缺点 (10)三、串联谐振CCPS恒流充电 (11)3.1串联谐振CCPS概述 (11)3.2串联谐振CCPS工作原理 (11)3.3串联谐振CCPS恒流充电的MATLAB仿真 (14)总结 (16)参考文献 (17)脉冲功率技术摘要所谓脉冲功率技术是指将很大的能量(通常为几百千焦耳至几十兆焦耳)储存在储能元件中通常为电容器、电感器等, 然后通过快速开关(动作时间在毫微秒左右)将此能量在毫微秒至微秒时间内释放到负载上, 以得到极高的功率(兆瓦左右)。
脉冲功率技术研究的主要内容是如何经济地和可靠地储存能量, 并将大能量和大功率有效地传输到负载上。
不断提高的能量、功率、上升时间和平顶度、重复率、稳定性和寿命的要求, 给脉冲功率技术提出了一系列的科学技术问题。
本文介绍了,给储能元件电容充电的一种恒流充电电源,分析了CCPS充电的原理以及实现问题。
关键词:脉冲功率,CCPS,恒流充电,储能技术脉冲功率技术及其应用一、脉冲功率技术的发展历史及现状脉冲功率技术(PPT,Pulsed Power Technology)正式作为一个独立的部门发展,还是近几年的事。
事实上作为脉冲功率技术基础的脉冲放电, 早就存在于大自然中。
而对脉冲放电的研究则开始于研究天然雷电特性, 以及它对输电线路、建筑物危害及其防护措施。
当时这种放电仅限于毫秒级和微秒级。
四十年代末期, 就有人开始注意到亚微秒及毫微秒级的高压强流脉冲放电形式。
脉冲功率在快速加热方面的应用
脉冲热压机
• 脉冲热压机,脉冲热压机利用变压器产生一个低电压的大电流, 通过焊接头令其迅速发热。这里的脉冲电流,具体可以指电流 的ON及OFF频率比例,此脉冲比例越大,电流输出越大,焊 接头升温越快。脉冲热压机将工件置于夹具(如有需要,可启 动真空将其固定)。将夹具送至焊接头下,按双开始键,焊接 头下压着工件(开始加热),温度按输入参数迅速上升及准确 恒温,最多可达4个温区(此时焊锡回流),吹气冷却(焊锡 凝固),焊接头上升(完成)。 • 通过在热压头上加载一定的脉冲电压,热压头发热,将与此相 连接的物体升温,当温度升到焊锡熔点后(即升到事先设定的 温度后),将与此相连的物体间锡熔融并将其连接在一起。一 般的脉冲热压机使用温度闭环的控制。 • 脉冲热压机应用在以下产品生产工艺中:USB排线焊接、软排 线FFC与软性线路板FPC或硬性线路板PCB的焊接、TCP与线 路板PCB或软性线路板FPC之间的焊接、软性线路板FPC与线 路板PCB之间的焊接等。
脉冲功率技术在快速加热中的应用
武汉大学 电气工程学院 School of Electronic Engineering and Automation,WHU.
摘要
• 脉冲功率技术又称高功率脉冲技术,它是一个研究在相对较长的 时间里把能量储存起来,然后经过快速压缩、转换,最后有效释 放给负载的新兴科技领域。 • 它的技术特点是高脉冲功率、短脉冲持续时间,高电压和大电流。 脉冲功率技术的应用非常广泛,其中快速加热就是一种。一般所 说的脉冲加热特别指工业上的脉冲热加工。 本文基于脉冲功率技术在快速加热中的应用为线索 首先,是讲诉了脉冲功率系统的基本组成和经典的Marx发生器; 其次,给大家讲解了什么是脉冲电流,它的特点和作用是什么; 随后,重点讲了脉冲功率技术热加工的原理及其应用,介绍了脉 冲热压机; 最后,是阐述了一下脉冲热加工的研究现状,展望了它的未来。
实用脉冲功率技术引论
实用脉冲功率技术引论引言:脉冲功率技术是一种应用广泛的电子技术,它在各个领域都有着重要的应用。
本文将以实用脉冲功率技术为主题,探讨其原理、应用和未来发展趋势。
通过对脉冲功率技术的深入研究,我们可以更好地理解其重要性和潜力,为未来的科技发展做出贡献。
一、脉冲功率技术的原理脉冲功率技术是通过瞬间高能量的电磁脉冲信号传输来实现的。
其原理是利用电子元件的开关特性,通过电路的设计和控制,使电流在非常短的时间内达到高峰值,从而产生高功率的脉冲信号。
这种技术在能量传输、电磁干扰抑制等方面有着独特的应用优势。
二、脉冲功率技术的应用1. 能源领域:脉冲功率技术可以提高电能传输的效率,减少能量损耗。
在电力系统的输电线路和变压器中应用脉冲功率技术,可以提高能源利用率,降低能源成本。
2. 通信领域:脉冲功率技术可以扩大通信信号的传输距离和传输速度。
在无线通信和光纤通信中,脉冲功率技术可以提高信号的传输质量和稳定性,提高通信系统的性能。
3. 医疗领域:脉冲功率技术在医疗设备中有着广泛的应用。
例如,超声医学中的脉冲声波技术可以实现对人体内部的高分辨率成像,帮助医生准确诊断疾病。
4. 军事领域:脉冲功率技术在军事装备中具有重要的作用。
例如,雷达技术中的脉冲信号可以实现目标的探测和跟踪,提高军事作战的效果。
三、脉冲功率技术的未来发展趋势1. 高效能量传输:随着能源需求的增加,脉冲功率技术将在能源传输领域发挥更大的作用。
通过进一步提高能量传输效率和减少能量损耗,可以实现更可持续的能源开发和利用。
2. 高速通信:随着通信技术的发展,人们对通信速度的需求也越来越高。
脉冲功率技术将在高速通信领域发挥重要作用,实现更快速、稳定的数据传输。
3. 医疗影像技术:随着医疗技术的不断进步,脉冲功率技术在医疗影像领域的应用也将得到进一步发展。
通过脉冲功率技术实现更高分辨率、更精确的医疗影像,将有助于提高疾病的早期诊断和治疗效果。
结语:实用脉冲功率技术在各个领域都有着广泛的应用,其原理和应用价值已经得到了广泛认可。
脉冲功率开关技术
没有外界作用,晶闸管不会从导电状态恢复到阻止状态。
如果要重新恢复晶闸管的阻止能力,必须降低电荷密度, 使其低于临界值。
第43页/共63页
第44页/共63页
图1.6 晶闸管的导通扩展过程
第45页/共63页
第46页/共63页
第47页/共63页
第48页/共63页
重复频率气体火花开关的绝缘恢复特性
开关的 工作特 性描述
第6页/共63页
A:间隙触发极上加上外触发脉冲 B:间隙直流充电后的维持电压 C:间隙击穿开始后,电压发生下降,从90%到10%之 间的时间间隔为开关导通时间,相当于开关电阻项过程 D:开关持续时间,电压降加在开关电阻上,决定于开 关电路 E:反转时间,由电路引起的电压反极性 F:延时时间,由触发脉冲开始(峰值)到开关开始导 通 G:开关电流上升时间,定义为10%-90%峰值相应的 时间间隔 H:间隙再充电时间,反转结束到充电至维持电压 I :电流脉冲宽度(定义为半高宽度值),指开关导通持 续时间
脉冲功率开关技术
第1页/共63页
脉冲功率系统开关的工作特点: 高电压; 大电流; 快速(开通时间微秒至纳秒)
脉冲功率开关的技术难点: 工作的可靠性(该动作时必须动作,不该动作
时绝不动作) 精确的可控性(分散性小)
第2页/共63页
脉冲功率开关的种类
脉冲大电流开关的种类很多,没有统一的分类标 准,一般以开关的某一主要特征来进行分类。
态下,诸如空气、N2、SF6、Ar等大多数气体的绝 缘恢复时间大约为几十毫秒(如图2.10所示),而 H2凭借较快的分子速度和较好的热扩散性,使开关 绝缘恢复时间快了一个数量级(几毫秒);
改善开关的工作方式,如开关工作电压小于等 于其直流静态击穿电压的一半,使介质气体在温度 较高、密度较低的情况下仍能承受工作电压而不击 穿;
脉冲功率技术的研究现状和发展趋势综述
脉冲功率技术的研究现状和发展趋势综述下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!摘要:脉冲功率技术是一种重要的电力电子技术,在多个领域具有广泛的应用。
脉冲功率技术综述
型(笔者的发明专利),它们均利用爆炸 线、径向传输线和螺旋传输线。
激波加热惰性气体成等离子体作磁流
(2)Blumlein线
体,因此具有异常高的磁雷诺数和窄脉
它是一种双层传输线,匹配负载能
宽输出;而 MFCG-MHD 型是利用爆炸磁 获得线的充电电压值,通常分为平板型
通压缩为 M H D 机的磁体励磁,从而得到 和同轴型,图 12(a)表示 Blumlein 线工
脉冲功率技术综述
■ 武汉大学电气工程学院电磁发射研究所 王 莹
概 念
1. 脉冲功率定义 尽管脉冲功率学科已诞生 40 余年, 并被《中国电气工程大典》收录,被国 务院定为二级学科;但世人至今知之甚 少或了解不全面。就其字面而言,“脉 冲”表示在时间间隔宽度内输出的量数 值,“功率”是单位时间内的能量(J/s), 合义便是以脉冲形式出现的功率(单位 时间能量),即“脉冲功率”(p u l s e d power)。 但涵义并非如此简单。由于历史上 最初提出该术语人的疏忽和翻译的不甚 考究,对“脉冲功率”的字面涵意并不 能完全顾名思义地理解。现代人常对 pulsed power这样解释:将电能慢慢地高 密度储存起来,然后脉冲地短时间快速 释放出来,从而获得巨大脉冲功率。 显然这里有两处词不达意:第一,自 然界有多种脉冲功率型式,诸如水库水 闸放水、地震、海啸、火山喷发、星球碰 撞、核爆炸、雷电等都有脉冲功率出现; 而电脉冲功率仅是其中的一种。40 年前 提出“脉冲功率”术语的人认为其他型式 的脉冲功率不可控、不便应用,他们就省 去了“电”字,仅用 pulsed power 直接代 表“电脉冲功率”到现在。第二,从字面
图 4 全电感隔离型 Marx 发生器
功率;三是空间和时间压缩并举。因为 提高功率的办法只有增多能量或缩短释 放时间;因此,脉冲功率系统应当包括 三大部分:①储能或脉冲发生系统;② 脉冲压缩或成形系统;③负载及其应用 系统。如图 2 所示。
pin 管 脉冲功率
pin 管脉冲功率在我们现代科技社会中,高功率脉冲技术在许多领域中都有着广泛的应用,如激光、雷达、通信等。
在这一领域中,PIN管作为一种关键元件,发挥着至关重要的作用。
本文将介绍PIN管的原理、优势以及在脉冲功率应用中的具体案例,同时探讨我国在PIN管技术研发的发展状况和未来发展趋势。
首先,我们来了解一下脉冲功率的定义和重要性。
脉冲功率是指在非常短的时间内,设备能够输出很高的功率。
这种功率输出方式具有很高的峰值和效率,能够在短时间内完成大量能量的转换和传递。
在许多高技术领域,脉冲功率技术起着核心作用,是实现高性能设备的关键。
接下来,我们来探讨PIN管的原理和结构。
PIN管,全称为Positive Ion Negative Ion管,是一种半导体器件。
它主要由阳极、阴极和栅极组成。
在工作过程中,PIN管通过栅极控制阳极与阴极之间的电流,实现高功率脉冲的输出。
与传统半导体器件相比,PIN管具有更高的脉冲承受能力、更低的寄生电容和更快的响应速度,因此在脉冲功率应用中具有显著优势。
那么,PIN管在脉冲功率应用中的优势具体表现在哪些方面呢?首先,PIN管具有很高的脉冲承受能力,可以承受高电压、高电流的脉冲冲击。
其次,其寄生电容较低,有利于提高系统的稳定性。
此外,PIN管的响应速度快,能够实现高速脉冲输出。
这些优势使得PIN管在脉冲功率领域具有广泛的应用前景。
实际上,PIN管在我国已成功应用于多个领域。
例如,在激光领域,PIN 管作为激光器的关键元件,为高功率激光器提供了稳定的脉冲输出。
在雷达领域,PIN管的高功率脉冲技术为雷达系统的远程探测提供了有力支持。
此外,在通信、医疗、航空航天等领域,PIN管技术也发挥着重要作用。
然而,尽管我国在PIN管技术研发方面取得了一定的成绩,但与发达国家相比,仍存在一定差距。
为了缩小这一差距,我国还需加大对PIN管技术研发的投入,提高创新能力。
展望未来,随着科技的不断发展,PIN管技术将面临更多挑战。
脉冲功率技术基础-6-2(传输线)
脉冲成形网络(PFN)
1、波传输过程分析
Blumlein line 等效电路
Blumlein Line
1. 同轴型Blumlein
2Z0
“强光一号”装置照片
图2-5 “闪光二号”加速器照片
(0.9~1.47MV、720~1000kA、
70~80ns)
传输线发生器
感应电压加法器组成的高功率脉冲装置
测验题
Zl=Z0, 传输线外皮充电,当开关合闸后,分析并 画出负载上电压波形。
Stacked Transmission Line-1
2、多线段倍压变换器
3、Spiral line:阿基米德螺旋倍压器
4、传输线变压器
传输线变压器等效电路
传输线变压器优点
泄漏电感小; 无铁心,重量轻; 响应ห้องสมุดไป่ตู้率高; 制作简单。
(3)理想开关接通两段充电传输线
课后作业!
(4)入射波先进入电阻,再进入传输线 和入射波先进入传输线,再进入电阻的区别?
单传输线型脉冲形成线电路图
波的多次折射与反射
Vi=vs=VsZ0/(Rs +Z0)
等值集中参数定理
结论:电感、电容影响折射波陡度,不影响最大幅值
Blumlein Line
传输线
传输线
传输线分布参数
传输线方程推导
(
)
波的折射和反射
波的折射和反射
波的折射和反射
阶跃电压入射波作用:末端开路
直流阶跃电压入射:末端短路
课后思考题
几种传输线连接的特殊情况
(1)电磁波在两段传输线连接点的折、反射
(2)充电传输线通过理想开关向另一传输线放电
脉冲功率技术基础6脉冲压缩与成形技术脉冲压缩与成形技术磁开关传输线传输线传输线分布参数传输线方程推导波的折射和反射波的折射和反射波的折射和反射阶跃电压入射波作用
脉冲功率技术的进展和应用
2 发展里程碑
➢ 1962年,英国J.C. Martin,发展了Marx+Blumlein, ns量级 ➢ 1967年,USA, Sandia,高功率粒子束,10MV,100KA,80ns ➢ 1972年,USA, Hary Diamond实验室,AURORA,14MV,
1.6MA,120ns ➢ 1978 年,USA, Sandia,PBFA-I , Fusion, 30TV, 1MJ ➢ 1986年, USA, PBFA-II, 12MV, 8.4MA, 40ns, 1014 W ➢ 1985年,俄罗斯,Kalchatov,Fusion,2MV,40MA,90ns
➢ 整体结构主要包含水、电、真空、机械、通讯、控制等组 成部分。产生的束流能量为10~12MeV,峰值功率为2.5~ 3MW,平均功率为20~25KW,能散度为±5%,重复频率为 10~500pps。
部分加速器图示 图示1 图示2 图示 3 图示4 图示5
➢ 工作原理:利用脉冲功率技术,将很大的能量储存在储能 元件--电容器中,然后通过快速开关将此能量在微秒时间 内释放到负载上, 以得到极高的峰值功率(兆瓦以上)。
自然界中的脉冲功率:简要介绍
2 常见脉冲波形
上升时间:电压峰值从 10%上升到90%所需要的 时间。
下降时间:同理。 上升时间和下降时间
主要依赖于负载阻抗。
脉冲宽度: 一般定义为底宽-在幅
值的90%处的时间宽度。
3 脉冲功率技术
脉冲功率技术是研究将很大的能量(通常为几百 千焦耳至几十兆焦耳)储存在储能元件中(通常为 电容器、电感器等), 然后通过快速开关(动作时间 在毫微秒左右),将此能量在纳秒至微秒时间内释 放到负载上, 以得到极高的脉冲输出功率的发生器系 统及其相关技术。
脉冲功率技术基础传输线PPT资料(正式版)
Q = IT = CE
电压、电流关系 ET = LI
(1)*(3)
传输时间 T:波阻抗 (特征阻抗Z)
传输线基本特性参数
充电电荷: Q = IT = CE (1)
特性阻抗 Z ET = LI (3)
脉冲功率技术基础传输线 直流电压下传输线充电过程
0
波在传输线中的传播速度 v 脉冲功率技术基础传输线
脉冲功率技术基础传 输线
两传输线之间存在泄漏电流引起泄漏电阻 交流电压下充电过程 ET = LI (3) 水波传播示意图 脉冲功率技术基础传输线 直流电压下传输线充电过程 分布参数示意图 水波传播示意图 脉冲功率技术基础传输线 充电电荷: Q = IT = CE (1) 交流电压下充电过程 沿传播方向分布电阻 ET = LI (3) ET = LI (3) ET = LI (3) ET = LI (3)
Load 通过传输线向负载传输能量
电磁波按一定速度传播(最大光速 c)
水波传播示意图
传输线具有分布参数
传输线分布电感 传输线分布电容
沿传播方向分布电阻 两传输线之间存在泄漏电流引起泄漏电阻
传输线分布参数示意图
分布参数示意图
直流电压下传输线充电过程
传播过程
交流电压下充电过程
充电电荷: 充电电压:
两传输线之间存在泄漏电流引起泄漏电阻
传输线电容C 两传输线之间存在泄漏电流引起泄漏电阻
分布参数示意图 直流电压下传输线充电过程
b
传输线中电场强度 传输线分布电容
沿传播方向分布电阻
E
设计
传输线分布电感
传输线具有分布参数
水波传播示意图
充电电压:
(2)
直流电压下传输线充电过程
脉冲功率储能技术-电容器
Marx
C
负载
电容陡化波形
在一般的Marx发生器中, 即使开关间隙充以高压气 体, 但由于回路本身存在固有电感和 电容, 不能使 输出的脉冲前沿变得很短。
如果Cr的充电时间足够长, 在G放电前发生器内 容的过渡过程已经结束, 则在间隙G放电过程中, 负 载上的电压波形最初主要由第二回路的参数决定。然 后再由第一回路参数决定。
可以看出, 输出功率的大小主要受到电路电感, 包括 负载电感的影响。在s1合上之后, 电容C1上的电压将加 S2上, 使的s2两侧的电压接近相等, 这样, 开关s2将 被击穿(导通), 要尽量避免这种情况。
当电容器并联运行时, 抖动时间应尽可能地小, 以保 证多个开关能接近同步导通。
由于开关的击穿时抖动现象难以避免, 在电容器储能 的脉冲发生器中, 开关的数目尽可能地少。通常将多个电 容器并联接成一个电容器组, 由一个开关控制。
恒功率充电
转换技术: 对一般容量电容器组放电,通常采用三电极球 隙开关。为了减小触发的分散性和开关电感,提高击穿场强, 一般将球隙形状置于充气的压力容器内,电极材料采用石墨或 铜钨合金。
对于MJ的电容器组,采用多个开关并联,减小烧蚀和增加 开关寿命,减小放电回路电感和电阻,有利于实施电容器保护 。但大量的开关给严格同步带来很多困难。
, 但他决定输出电
流的最大值,
IP=U(C/L)1/2
电容量和漏电阻与温度、电压、湿度以及存储 时间有关。环氧树脂和聚酯薄膜的介电常数随温度 变化更大。
电容器的耐压强度不仅与绝缘介质的击穿电压决定, 还受 形状、面积、连接部位的材料以及他们与绝缘材料的吻合性等 因素有关。耐压强度还受使用条件的限制, 如温度、压力、湿 度和电压极性反转等的影响。
平时作业脉冲功率
平时作业学号:2009301390078学院:电气工程学院班级:0904姓名:刘鹏1: 脉冲功率技术的认识和理解尽管脉冲功率学科已诞生40余年,并被《中国电气工程大典》收录,被国务院定为二级学科;但世人至今知之甚少或了解不全面。
就其字面而言,冲”表示在时间间隔宽度内输出的量数值,“功率”是单位时间内的能量(合义便是以脉冲形式出现的功率(单位时间能量),即“脉冲功率”但涵义并非如此简单。
由于历史上最初提出该术语人的疏忽和翻译的不甚考究,对“脉冲功率”的字面涵意并不能完全顾名思义地理解。
现代人常对pulsedpower这样解释将电能慢慢地高密度储存起来,然后脉冲地短时间快速释放出来,从而获得巨大脉冲功率。
2超级电容器超级电容器从储能机理上面分的话,超级电容器分为双层电容器和赝电容器。
是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。
超级电容器用途广泛。
3直流断路器直流断路器和有载调压都是指的变压器分接开关调压方式,区别在于无励磁调压开关不具备带负载转换档位的能力,因为这种分接开关在转换档位过程中,有短时断开过程,断开负荷电流会造成触头间拉弧烧坏分接开关或短路,故调档时必须使变压器停电。
因此一般用于对电压要求不是很严格而不需要经常调档的变压器。
而有载分接开关则可带负荷切换档位,因为有载分接开关在调档过程中,不存在短时断开过程,经过一个过渡电阻过渡,从一个档转换至另一个档位,从而也就不存在负荷电流断开的拉弧过程。
一般用于对电压要求严格需经常调档的变压器4本课程的建议希望能参观到一些器材实物5气体、液体、固体开关的特性及应用比较开关的气压,欠压比,间隙距离。
高效脉冲功率激光器技术的发展
高效脉冲功率激光器技术的发展激光技术是一种高精密度的技术,经常应用于医疗、航天、制造业等领域。
激光器可根据不同类型的材料和所需要的深度、易损性等要求来进行切割、雕刻、钻孔等工艺过程。
如今,高效脉冲功率激光器技术因其高能量密度、高增益和高单偏折率等优势而受到关注,这些优势主要由其激光发射特性所决定。
高效脉冲功率激光器技术的发展在许多方面都有所提升。
随着科学技术的不断发展,新型激光器技术在减小尺寸、提高功率和增加效率方面取得了重大进展。
这是因为目前激光对于现代工业和科学的应用越来越广泛,在很多应用场景中必须满足高功率、高效率的需求。
从激光器的结构来看,脉冲功率激光器由多个部分组成,其中包括泵浦源部分、放大器部分、切换部分、输出窗口等。
在泵浦源部分,由于激光需要大量的能量来激发激光材料,并将它们转化为激光光子,所以当前最常用的方式是使用纤维激光或二极管激光器。
这些泵浦器具有高效、低成本、体积小等特点,对于高功率、大能量的脉冲激光器而言,应用将会更加广泛。
在放大器部分,由于行波管技术和双聚焦技术的推出,使得脉冲功率激光器的输出功率达到了几千瓦和上百千瓦量级。
同时,新材料的问世也大大促进了脉冲功率激光器的发展,如掺钛宝石激光器、掺铥玻璃激光器和掺铒光纤激光器等。
这些新型材料在激光器的输出功率、重复频率、波长等方面较之前的材料都有了很大的提升。
在切换器和输出窗口方面,最新的研究对于线性光学调制器的使用也有了大的提升。
这种切换器的使用可以调制光强,提高了脉冲的稳定性和保真度,在检测、测量、检验和摄影等领域有着重要的应用。
同时,输出窗口也需要取得更高的抗反射和良好的耐磨性,以保证长寿命和高稳定性。
像掺铥玻璃激光器和掺钛宝石激光器这两种激光器在输出窗口上都采用了自适应光学的技术,调节输出光的焦距和形状,使得输出光线性更好,信号噪声比更高。
总之,高效脉冲功率激光器技术的发展方向主要是提高功率、增加效率和降低成本。
除此之外,新型材料、新型结构和新型技术的应用也将会进一步推动脉冲功率激光器技术的发展。
脉冲功率技术的新发现和应用
脉冲功率技术的新发现和应用脉冲功率技术是一种比较先进的电源技术,在军事和工业领域得到广泛应用。
最早的脉冲功率技术是由美国军方在20世纪50年代研发出来的,主要用于雷达等军事电子设备的供电。
近年来,随着科技的不断进步和应用的不断拓展,脉冲功率技术已经开始向更广泛的领域渗透。
脉冲功率技术的基本原理是将高压脉冲电流存储在电容器中,然后通过高速开关器件将这些电流释放,以达到给负载供电的目的。
由于脉冲功率技术具有高效、可控和可靠等优势,因此在各种要求高性能电源的场合得到了广泛应用。
下面将着重介绍脉冲功率技术在汽车电子、机器人、医疗器械和航天航空等领域的应用。
汽车电子随着汽车电子设备的应用越来越广泛,对车载电源系统的要求也在不断提高。
脉冲功率技术因为具有高效、可靠和可控等优点而成为汽车电子领域的一个热门技术。
在汽车电子中,脉冲功率技术主要用于提供启动电流和大功率输出的控制,如电动汽车的DC/DC变换器,以及充电器等。
机器人机器人作为未来智能制造的重要组成部分,其的动力系统也需要即高效又可靠的电源。
脉冲功率技术在机器人领域的应用主要集中在电机驱动控制方面。
脉冲功率技术不仅可以有效地提高电机的启动转矩,还可以根据机器人的不同控制需求,灵活地调节电机的输出功率。
医疗器械医疗器械是一个对电源系统要求很高的行业,尤其是在手术室等高风险环境,电源稳定性和供电可靠性是必不可少的。
脉冲功率技术主要在医疗设备的超声诊断和治疗方面得到应用。
在超声技术中,脉冲功率技术可以提供高功率的超声波能量,以便更加深入地探测人体组织。
在治疗方面,脉冲功率技术可以提供相应的能量,对人体组织产生刺激作用,有助于加速组织的修复和恢复过程。
航天航空航空和航天电子设备的要求与汽车电子类似,需要高效、可靠和可控的电源系统。
脉冲功率技术在航天航空领域的应用主要用于卫星通讯和导航系统的供电。
由于这些系统是很长时间不需要维护的,在极端环境下工作,因此对电源的可靠性和持久性要求非常高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中科技大学研究生课程考试答题本考生姓名李猛虎考生学号 M201371361 系、年级高电压与绝缘技术2013级类别硕士考试科目脉冲功率技术考试日期 2013年12月15日脉冲功率技术是指把较小功率的能量以较长时间慢慢输入到能储存能量的设备中,然后通过动作时间在毫微秒左右的快速开关将此能量在毫微秒至微秒时间内释放到负载上,以得到极高的功率,实质上是输出功率对输入功率的放大。
脉冲功率系统中能量的储存方式有许多种,如电容储能,电感储能,脉冲电机储能以及电池储能等。
脉冲功率技术研究的技术指标为:电压1kV~10MV,电子能量0.3~15MeV(电子伏),述流大小1kA~10MA,脉冲宽度0.1~100ns,束流功率0.1~100TW,总能量:1kJ~15MJ。
脉冲功率技术的特征是:高脉冲功率,短脉冲持续时间,高电压,大电流。
脉冲功率技术,是以电气科学技术为基础,把电工新技术和高电压-大电流技术融为一体的新型学科。
脉冲功率技术在国防科研和高新技术领域有着极为重要的应用,而且现在已经越来越多地应用于工业和民用部门,它是高新技术研究的重要技术基础之一,有着极其广泛的发展和应用前景。
脉冲功率的发展历程脉冲放电现象存在于大自然。
人们最早是在20世纪30年代开始研究脉冲功率现象。
1938年,美国人Kingdon和Tanis第一次提出用高压脉冲电源放电产生微秒级脉宽的闪光X 射线;1939年,苏联人制成真空脉冲X射线管,并把闪光X 射线照相技术用于弹道学和爆轰物理学实验。
采用高压脉冲电容器并联充电、串联放电方式来获得较高电压脉冲。
第二次世界大战期间,企图将脉冲功率技术应用于军事的电磁炮和其他研究再度兴起,也促进了脉冲功率科学技术的形成和发展。
1947年,英国人A.D.Blumlien以专利的形式,把传输线波的折反射原理用于脉冲形成线,在纳秒脉冲放电方面取得了突破。
1962年,英国原子能研究中心的J.C.Martin领导的研究小组,将Marx发生器与Blumlien的专利结合起来,建造了世界上第一台强流相对论电子束加速器SOMG(3MV,50kA,30ns),脉冲功率达TW(1012W)量级,开创了高功率脉冲技术的新纪元。
1986年建成PBFA-II 装置,其峰值电压为12MV、电流8.4MA、脉宽40ns,其二极管束能为4.3MJ,脉冲功率1014W,是世界上第一台功率闯过100TW 大关的脉冲功率装置。
美国和俄罗斯目前在脉冲功率技术上处于领先地位。
美国从事脉冲功率技术研究的机构有Sandia国家实验室、Lawrence Livermore国家实验室、Maxwell实验室、Los Alamos科学实验室、海军武器研究中心、Texas技术大学等。
1967年在Sandia 实验室建成的Hermes2I 为当时最大的脉冲功率装置;1972年美国陆军的Hary Diamond实验室建成了Aurora装置,这个设备由4台Marx发生器组成,是脉冲功率史上的一个里程碑;1986年Sandia实验室又建成了FBFA2II,是世界上第1个闯过100TW 大关的装置。
俄罗斯从事脉冲功率技术研究的机构有库尔恰托夫研究所、新西伯利亚核物理所、托姆斯科大电流电子学研究所、电物理装备所、列别捷夫所等, 建造了许多大型的Marx成形线型联合装置,1985 年建成的AHrapa25就是其中之一。
日本的脉冲功率技术主要应用于强流粒子束加速器,特别重视轻离子的惯性约束聚变。
从事脉冲功率技术研究的机构有东京大学、熊本大学、大阪大学、长岗技术大学等, 较著名的装置有大阪大学的Raiden2IV和1986年长岗技术大学建成ETIGO 2II。
我国脉冲功率技术及其应用的研究是从20世纪70年代末开始的。
中科院等离子体物理研究所、中科院高能物理研究所、中科院电工技术研究所、华中科技大学、清华大学等单位的研究水平居于国内领先地位。
国内已有 20 多台的Marx 装置在运行,居首者是 1979 年西南工程物理研究院建成的“闪光 I 号”装置 ; 20世纪 90 年代以后,国内相继又建成的装置有西北核技术研究所的 “ 闪光 II 号 ” ,中国工程物理研究院和上海光机所“神光II 号 ”,华中科技大学等联合研制的“神光III ”。
脉冲功率的主要技术高脉冲功率装置一般由初级能源、中间储能和脉冲形成系统、开关转换系统、测量系统和负载组成。
简单说脉冲功率产生的过程,首先,初始能源产生宽度在ms 级,能量在0.1MW 级的脉冲,然后经过中间储能装置产生脉冲宽度在宽度在us 级,能量在10MW 级的脉冲,再次通过脉冲压缩和变换装置产生宽度在ns 级,能量在1TW 级的脉冲,施加到负载上。
1. 储能技术脉冲功率技术中储能装置的储能方式一般由电能、磁能、机械能、化学能、核能等。
其中电能、磁能以及机械能应用最为广泛。
以电能形式储能的电容器多采用陶瓷介质电容。
电容储能技术发展最为成熟,但其储能密度低、体积和重量大,价格高,实现高重复脉冲难,对开关要求也很高的特点使其在新领域的应用中遇到瓶颈。
电容储能密度为:2/2EE ε=,电容器采用高能量密度的塑料薄膜,以典型的参数10,/400r ==εm V E op 计算,则可得电容储能密度为8MJ/m 3。
显然这种储能方式受介质的电场强度所限制,而且介质承受电压的时间越长越容易击穿。
以磁能形式储能的电感产生高压脉冲的方法有四种。
单级电感储能转换放电;多级电感储能脉冲发生器;用电流过零方法产生连续脉冲;用铁磁元件变换脉冲。
电感储能形式在与电容储能同样电流下,其储能密度为电容储能密度的25倍。
但目前该技术不够成熟,核心是开断开关的研究不成熟,一般应用于毫秒级强流脉冲放电装置中。
电感储能密度为:)2/(02μμr B E =,电感器采用高能空芯电感,以典型的参数T B r 40,1==μ计算,则可得电感储能密度为640MJ/m 3。
显然这种储能方式仅与磁感应强度有关,且最高电场仅出现在负载转换的最后一段时间,比电容储能情况短的多,因此电场强度对储能的限制不大,其储能密度几乎只受磁压力限制。
以机械能形式储能的惯性储能是依靠物体运动来储存能量的方法。
常用惯性储能有换向直流脉冲发电机、单极脉冲发电机,同步发电机和补偿脉冲发电机。
储存在旋转机械和飞轮中的动能是旋转机械能,不仅储能密度噶,而且提取方便。
一般使用较小功率的拖动机构,以相对长的时间把一定质量的转子或飞轮慢慢地加速使其转动起来,储存足够的动能,然后利用转动惯性脉冲地驱动合适的发电设备,把机械能转变成电磁能。
这种储能方式的优点在于储能密度高,结构紧凑,体积小,成本低,可移动。
惯性储能密度为:2/2ωM I E =,以典型的参数s m v m kg /600,/15003==ρ计算,则可得电感储能密度为135MJ/m 3。
惯性储能的应用极为广泛,比如托卡马克聚变装置,大型风洞装置,脉冲金属成型等。
2.开关技术在高功率脉冲发生器中,开关是最重要的器件之一,它起着连接储能器件与负载的作用。
关元件的参数和特性对脉冲的上升时间、幅值等产生最直接、最敏感的影响,因此开关元件在脉冲功率系统中占有非常重要的地位。
脉冲功率系统中开关的主要作用有能量的转换,通过开关的动作(断开或闭合)来实现能量的转移。
开关具有主要特性有电导率的变化范围应尽可能大,即要在完全绝缘体至导体之间变化;电导率的变化速度尽可能快。
脉冲功率系统开关的工作主要特点有高电压,大电流,快速(开通时间微妙至纳米级)。
脉冲功率开关技术所面对的难点为工作的可靠性,即该动作时必须动作,不该动作是绝不动作;精确的可控性,要求分散性要很小。
脉冲功率开关的的种类有很多,但是没有统一的分类标准,一般以开关的某一主要特征来进行分类。
其中,以开关的触发机理特征,可分为引燃管、三电极开关、激光触发开关等;以开关主电极的特征来分,可分为场畸变开关、空心阴极开关、热阴极开关、表面放电开关等。
以开关的动作意图来分,可分为闭合开关盒断路开关。
这些开关的分类方式不是绝对的,其实所有的开关都有一些共性。
综上所述,开关主要分为以下几种:闸流管、火花气体开关、激光触发开关、真空开关、爆炸断路开关、等离子体压缩断路开关、熔丝、金属箔熔片、低压反射开关、利用栅极控制等离子体的大功率断路开关、等离子体融蚀开关、反箍缩等离子体开关、磁开关、光导半导体开关、表面放电开关等。
下面简单介绍一些常见开关。
气体火花开关,这是一种间隙气压在100kPa或以上的开关,即在常压下或超过常压工作的开关。
气体火花开关有两电极开关盒三电极开关。
气体火花开关的导通过程实际上就是气体基础的发展过程,即有非自持放电转入自持放电的过程。
其导通需要一定的时间,它是放电间隙上作用一个迅速上升的电压脉冲后,使之形成自持电流所需要的时间。
气体火花开关由于结构简洁,易于加工,适用范围广,在国内外脉冲功率技术领域应用最广。
火花开关具有工作电压高、通流能力强、传递电荷量大的优点,但是工作重复频率较低。
伪火花隙开关具有氢气闸流管和高气压充气间隙的双重优点,其最大导通电流可达数百千安以上电流上升陡度达1012A/s,寿命达数百库仑是高气压充气间隙的5~10倍,特别是在峰值电流达几十千安时仍能以几千赫兹的频率重复工作且可以通过100%的反向电流同时将阳极放电电流时延抖动限制在几个纳秒范围在许多领域它正在代替现有的氢气闸流管汞蒸气引燃管和高气压火花间隙。
就工作特性而言,伪火花放电工作范围界于真空放电与低气压辉光放电之间。
由于伪火花放电的超大电流密度和快速的电流上升陡度,使其在脉冲功率技术中得到广泛应用,成为继氢激光触发多通道开关气闸流管和高气压放电间隙之后又一重要的脉冲功率闭合开关。
在作为开关使用时,其阴极通常接地,开关的工作电压为5~ 35 kV。
半导体开关它通过在发射结平面形成的均匀电子-空穴等离子体层代替门极来解决晶闸管的触发问题。
半导体器件的开关特性,主要受以正常温度下电荷载流子的迁移率和密度的限制。
传导较强的电流需要较大的导电区域,由于受载流子漂移距离的限制,不能像气体开关那样调整电极间距,所以提高开关功率只能增加载流通道的面积。
脉冲功率技术应用及发展前景脉冲功率技术在科学研究、国防工业以及工业、民用等众多领域有着极为重要的应用。
在工业生产领域内可应用于核聚变电站、强流脉冲离子束辐照——涡轮叶片表面的清洗加工、钛合金表面改性的机理研究、高温金属材料表面再制造技术原理与应用。
脉冲电晕放电减排硫化物和氮化物、脉冲或者静电除尘、有机物处理、金属加工成型、水中放电排肾结石、食品消毒灭菌、材料加工处理等;在军事、国防中可应用于产生高功率激光、高功率微波、高功率激光武器、高功率光束、轨道枪、线圈枪、电热化学枪等;在科学研究中主要应用于强磁场、惯性束聚变、同步加速器辐射、高速度发射和碰撞等。