温度传感器主要形式和温度探头类型
温度探头的种类
温度探头的种类温度探头是一种用于测量温度的传感器,广泛应用于工业生产、科学实验和生活中的温度监测和控制。
根据不同的工作原理和应用场景,温度探头可以分为多种不同的类型。
本文将介绍几种常见的温度探头类型及其特点。
1. 热电偶温度探头热电偶温度探头是利用两种不同金属导线通过热电效应产生的电动势来测量温度的。
常见的热电偶温度探头有K型、J型、T型等。
热电偶温度探头具有响应速度快、测量范围广、稳定性好等特点,适用于高温、低温和精确度要求较高的场合。
2. 热敏电阻温度探头热敏电阻温度探头是利用电阻值随温度变化的特性来测量温度的。
常见的热敏电阻温度探头有铂电阻、铜电阻、镍电阻等。
热敏电阻温度探头具有精度高、响应速度快、稳定性好等特点,广泛应用于工业自动化控制和实验室温度测量。
3. 红外线温度探头红外线温度探头是利用物体辐射的红外线能量来测量其表面温度的。
红外线温度探头可以非接触式测量物体温度,具有测量范围广、快速、安全等特点,适用于高温、移动目标或难以接触的场合,如钢铁冶炼、玻璃制造、食品加工等。
4. 热电阻温度探头热电阻温度探头是利用电阻值随温度变化的特性来测量温度的。
常见的热电阻温度探头有PT100、PT1000等。
热电阻温度探头具有精度高、稳定性好、可靠性强等特点,广泛应用于实验室、医疗设备和工业生产等领域。
5. 纳米温度探头纳米温度探头是一种微型化的温度传感器,可以用于纳米尺度下的温度测量。
纳米温度探头通常由纳米材料制成,具有灵敏度高、响应速度快、体积小等特点,可应用于纳米材料研究、纳米电子器件和生物医学领域。
总结温度探头的种类繁多,每种类型的温度探头都有其适用的场景和特点。
选择合适的温度探头需要根据测量要求、工作环境和精度要求等因素综合考虑。
无论是热电偶温度探头、热敏电阻温度探头还是红外线温度探头,都在不同领域发挥着重要的作用,为温度测量和控制提供了可靠的技术支持。
各种温度传感器分类及其原理
各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。
根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。
1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。
根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。
PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。
2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。
当热电偶的两个接头处于不同温度下时,会产生温差电势。
该电势与两个接头之间的温差成正比。
通过测量温差电势,可以计算出温度值。
热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。
3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。
常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。
热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。
4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。
红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。
红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。
5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。
根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。
温度感测器种类
温度感测器种类
温度感测器种类有以下几种:
1. 热电偶(Thermocouple):基于热电效应的温度传感器,具有
广泛的测量范围和良好的抗干扰能力,但精度相对较低。
2. 热敏电阻(Thermistor):基于热电阻效应的温度传感器,分为
负温度系数热敏电阻(NTC)和正温度系数热敏电阻(PTC),
具有较高的精度和响应速度。
3. 红外温度传感器(Infrared temperature sensor):基于物体辐射
红外线的原理进行测量,可以实现非接触测温,广泛应用于工业、医疗等领域。
4. 硅基温度传感器(Silicon-based temperature sensor):采用硅材
料制成的传感器,主要有热敏电阻和压阻两种类型,具有较高的
精度和稳定性。
5. 纳米温度传感器(Nanotemperature sensor):基于纳米技术制备的温度传感器,具有极高的灵敏度和响应速度,可应用于微型设
备和生物医学领域。
6. 光纤温度传感器(Fiber optic temperature sensor):利用光纤中
的光学特性来测量温度变化,具有抗干扰能力强和远距离传输的
特点。
7. MEMS温度传感器(MEMS temperature sensor):基于微机电
系统技术制造的温度传感器,具有体积小、功耗低和响应速度快
等特点,广泛应用于消费电子产品。
什么是温度传感器,又如何选型?
什么是温度传感器,又如何选型?
温度传感器是什么呢?它是指能感受温度并转换成可用输出信号的传感器。
在工业、农业、商业、科研、国防、医学及环保等领域都会有温度检测的需求,那就会需要用到温度传感器或感温棒这样的可以实现温度检测、监测与控制的重要器件。
温度传感器通常是和显示仪表、记录仪表、电子计算机等配套使用,直接测量各种生产过程中的液体、蒸汽和气体介质以及固体表面的温度。
那如何选择合适的温度传感器或感温棒呢?其实选型的重点是需要先确定好温度信号种类、探头的长度和直径、安装固定的方式。
首先,温度传感器的温度种类分为:热电偶、热电阻、热敏电阻NTC和CMOS四种,比较常用的是热电偶和热电阻,热电偶温度范围最宽是0℃~1300℃。
热电阻中的铂电阻温度范围-200℃~500℃。
所以在选型的时候需要根据你所测温度范围和使用场合来选择合适的传感器类型,在选定好传感器的类型后,再来确定温度传感器的探头长度和直径以及安装方式,比如螺纹、法兰安装等。
温度传感器的种类与用途
01
温度传感器的基本概念与分类
温度传感器的定义与原理
温度传感器的原理多种多样,包括热敏电阻、热电偶、光纤传感等
• 不同原理的温度传感器适用于不同的测量场景和范围
温度传感器是一种测量和监控温度的装置
• 通过将温度转换为可测量的物理量(如电阻、电压、电流等) • 利用传感器的特性将温度信息转换为可读数据
03
温度传感器的应用领域与实例
工业领域的温度传感器应用
01
钢铁工业: 测量熔炉、
锅炉等设
备的温度
石油化工: 测量管道、
02
储罐等设
备的温度
电力工业:
03
测量发电
机、变压
器等设备
的温度
制造业:
测量各种
04
加工设备
的温度
家用电器中的温度传感器应用
空调:测量室 内温度,控制 空调的运行状
态
01
冰箱:测量冰 箱内部温度, 控制制冷系统
温度传感器的分类方法
根据测量原理分类
• 热敏电阻温度传感器:利用热敏电阻随 温度变化的特性测量温度 • 热电偶温度传感器:利用热电偶效应测 量温度 • 光纤温度传感器:利用光纤传输特性测 量温度
根据测量范围分类
• 低温温度传感器:测量范围在-200℃ 至0℃之间 • 中温温度传感器:测量范围在0℃至 1000℃之间 • 高温温度传感器:测量范围在1000℃ 以上
温度传感器的市场需求与预测
随着全球经济的不断发展,温度传感器 的市场需求将持续增长
预测未来几年,温度传感器市场将保持 稳定增长,各类温度传感器将有更大的 应用空间
谢谢观看
THANK YOU FOR WATCHING
温度传感器探头型号介绍 温度传感器原理分析
温度传感器探头型号介绍温度传感器原理分析温度传感器想必大家应该不陌生,如今它已渗入到我们生活的方方面面,那么关于它的探头你了解多少呢?关于它的工作原理你又了解多少呢?本文为你介绍的就是温度传感器探头以及温度传感器的原理分析。
温度传感器探头型号根据测量环境以及介质的不同,温度传感器的测温探头主要有以下几种类型:1.浸入式探头;主要用于测量液体及固体的温度,探头的前段设计为针状或杆状。
这种温度传感器探头的原理是能量守恒,当测量探头的温度比介质低时,热能从被测介质转移到探头;当探头温度高于介质时,热能从探头转移到介质。
在此测量情况,探头与介质的比值越好,越能更精准的测得物体获取的能量,由于能量转移的原因会导致测量时产生误差。
此测量误差可以通过以下方式减小:刺入或浸入的深度10或15倍于探头的直径;当测量液体时,尽量何持液体的流动可以有效减少误差。
2.空气温度探头,用来测量空气温度,例如冷库、冷柜、空调室(调温)、通风场所(通风/排风)等,空气探头的温度传感器裸露,因此示值很容易受气流所影响,最佳的解决方法是在气流为2-3m/s时,顺流轻移探头,使温度达成平衡稳定。
3.表面探头,用来测量物体的表面温度。
空气温度探头和表面探头使用进行表面温度测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触。
必须注意的是探头与被测物的接触面必须平坦,否则在温度传感器测量时则会影响测量结果。
温度传感器定义温度传感器是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等领域。
温度传感器工作原理基于温度传感器的不同种类,它们的原理也不尽相同,下面拣选几款常见的种类给大家介绍。
1、热电偶传感器哦工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端或冷端,。
温度传感器介绍
3.1 常用热电阻
取一只 100W/220V 灯泡,用万用表测量其电 阻值,可以发现其冷态阻值只有几十欧姆,而计算 得到的额定热态电阻值应为 484 。
1.铂热电阻的电阻—温度特性
铂电阻的特点是测温精度高,稳定性好,所以在 温度传感器中得到了广泛应用。铂电阻的应用范围为200~+850℃。 铂电阻的电阻—温度特性方程,在 -200~0℃的 温度范围内为: Rt=R0[1+At+Bt2+Ct3(t-100)]
2) 机械零位调整法
用螺丝刀调 节仪表面板 上的“机械 零点”,使 指针指到气 温t0(图中为 40 C)的刻 度上。
机械零点 指针被预调到室温(40 C ) 可补偿冷端损失
3)冰浴法
冰浴法接线图
1—被测流体管道 2—热电偶 3—接线盒 4—补偿导线 5—铜质导线 6—毫伏表 7—冰瓶 8—冰水混合物 9—试管 10—新的冷端
A
+
T
B
eAB( T )
自由 电子
热电偶的分度表 热电偶的线性较差,多数情况下采用查表法 我国从1991年开始采用国际计量委员会规 定的“1990年国际温标”(简称ITS-90)的新 标准。按此标准,制定了相应的分度表,并且 有相应的线性化集成电路与之对应。
直接从热电偶的分度表查温度与热电 势的关系时的约束条件是:自由端(冷端) 温度必须为0C。
温度传感器
1、温度测量概述
1. 温度测量
接触式温度传感器 非接触式温度传感器
接触式温度传感器的特点:传感器直接与被测物体接触进行温度 测量,由于被测物体的热量传递给传感器,降低了被测物体温度, 特别是被测物体热容量较小时,测量精度较低。因此采用这种方 式要测得物体的真实温度的前提条件是被测物体的热容量要足够 大。 非接触式温度传感器主要是利用被测物体热辐射而发出红外线, 从而测量物体的温度,可进行遥测。其制造成本较高,测量精度 却较低。优点是:不从被测物体上吸收热量;不会干扰被测对象 的温度场;连续测量不会产生消耗;反应快等。
温度传感器分类及特点
温度传感器分类及特点温度传感器是用于测量物体温度的设备,通常由敏感元件和转换元件组成。
根据工作原理的不同,温度传感器可以分为热电偶、热敏电阻、热电阻、热辐射传感器等。
下面将对这几种温度传感器进行详细介绍。
一、热电偶热电偶是一种常见的温度传感器,其工作原理是基于塞贝克效应(Seebeck effect)。
当两种不同材料的导体接触时,在温度差异的作用下,会在接触点产生电动势,这种现象称为塞贝克效应。
热电偶就是利用这种效应来测量温度的。
热电偶具有精度高、稳定性好、测量范围广等优点,因此在工业生产和科研领域得到广泛应用。
常用的热电偶材料有铜-镍、镍铬-镍铝等,可以根据不同的测量温度和环境选择合适的热电偶。
二、热敏电阻热敏电阻是一种半导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。
热敏电阻可以分为正温度系数(PTC)和负温度系数(NTC)两种类型。
PTC热敏电阻的阻值随着温度的升高而增大,而NTC热敏电阻的阻值随着温度的升高而减小。
热敏电阻具有体积小、响应速度快、灵敏度高等优点,因此在自动控制、测温仪表等领域得到广泛应用。
同时,热敏电阻的缺点是精度较低,稳定性较差,容易受到环境因素的影响。
三、热电阻热电阻是一种金属导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。
常用的热电阻材料有铜、镍、铂等。
在常温下,热电阻的阻值会随着温度的升高而增大,但在高温下,其阻值会受到金属的磁化效应影响而发生变化。
热电阻具有精度高、稳定性好、耐腐蚀等优点,因此在低温测量领域得到广泛应用。
同时,热电阻的缺点是响应速度较慢,容易受到金属导体材料本身特性的影响。
四、热辐射传感器热辐射传感器是一种利用物体辐射的热量来测量温度的传感器,其工作原理是基于普朗克辐射定律(Planck's law)。
当物体受到辐射时,其辐射的热量与物体的温度和波长有关。
热辐射传感器通过测量物体辐射的热量来推算物体的温度。
热辐射传感器具有非接触、无损、高精度等优点,因此在高温、高压、腐蚀等恶劣环境下得到广泛应用。
温度传感器的选择与使用方法
温度传感器的选择与使用方法温度传感器是一种常见的用于测量和监控温度的设备,广泛应用于各个领域,如工业自动化、家电控制、环境监测等。
在选择和使用温度传感器时,我们需要考虑多个因素,包括测量范围、精确度、响应时间以及环境适应能力等。
本文将介绍一些温度传感器的常见类型,并提供一些使用方法和注意事项。
一、热电偶热电偶是一种使用热电效应来测量温度的传感器。
它由两种不同金属的导线组成,当两个接点处于不同温度时,就会产生电压差。
热电偶具有广泛的测量范围和较高的精确度,适用于高温环境。
然而,在低温和微小温度变化的情况下,热电偶的测量精度可能较低。
此外,在选用和安装热电偶时,需要考虑导线的材质和长度等因素,以确保测量结果的准确性。
二、热敏电阻热敏电阻是一种电阻值随温度变化的传感器。
常见的热敏电阻有正、负温度系数两种。
正温度系数的热敏电阻,例如铂电阻,其电阻值随温度的上升而增大。
负温度系数的热敏电阻,例如石墨烯电阻,其电阻值随温度的上升而减小。
热敏电阻具有较高的测量精确度和响应速度,适用于室温及常规温度范围。
在选用热敏电阻时,需要考虑其温度系数、灵敏度和稳定性等因素,以确保测量结果的可靠性。
三、红外线温度传感器红外线温度传感器是一种无接触式的测温设备,通过接收被测物体散射的红外线辐射来计算其表面温度。
与其他传感器相比,红外线温度传感器具有快速响应、广泛测量范围以及适用于复杂环境的优势。
然而,红外线温度传感器的测量结果可能受到环境因素(如污染、反射等)的影响,因此在使用时需要注意校准和避免干扰。
四、选择与使用方法在选择温度传感器时,我们首先需要明确测量的温度范围和要求的精度。
不同的传感器适用于不同的温度范围和精确度要求。
同时,我们还需要考虑传感器的响应时间、环境适应能力以及成本等因素。
在使用温度传感器时,我们需要注意以下几点。
首先,正确安装和连接传感器,以避免测量误差。
其次,定期校准传感器,以确保其测量结果的准确性。
温度传感器
热电式温度传感器的优点是:实现了非接触式测值,不为红外线的 波长所左右,可获得稳定的检测灵敏度。可以实现对高、低温物体以及移 动中的气体、液体、固体状态的检测对象的远程温度测量。另外,这种温 度传感器使用简单、价格便宜。
机电一体化
图3-19 热敏电阻器的各种形状 表3-3示出了常用热敏电阻器的种类和特性,可以看出,随着温 度的升高,有在特定温度下阻抗急剧增加的PTC型,有在特定温度下阻 抗急剧减小的CTR型,以及阻抗随温度按指数规律减的NTC型等。PTC 型不能在宽广的温度范围内作为温度传感器使用,但是与NTC型相比 较,其温度系数高出接近一个数量级,因此常作为定温温度传感器使用。 作为定温温度传感器使用的还有CTR型,只是其阻抗在特定温度下不是 急剧增加,而是急剧减小。由于PTC型热敏电阻器具有特异的阻抗一温 度特性,因此广泛应用于电饭锅、干燥机、干燥器等很多种工业制品中, 作为温度传感器使用。
作为定温温度传感器使用的还有CTR型,只是其阻抗在特定温度下 不是急剧增加,而是急剧减小。由于PTC型热敏电阻器具有特异的阻抗 一温度特性,因此广泛应用于电饭锅、干燥机、干燥器等很多种工业制 品中,作为温度传感器使用。
表3-3 热敏阻器的种类与特性
种类 特性
NT 随着温度升高阻抗值 C 减小的负温度系数
热电偶具有以下优点:比较便宜、容易买到,测量方法简单、测 温精度高,测量时间上的滞后小,可以实现很宽范围内的温度测量( 与热敏电阻等相比)。可以选用与灵敏度和寿命等状况相适应的热电 偶类型。利用热电偶可以进行小型被测物和狭窄场所的测温,可以进 行较长距离(即被测物体与测温仪表之间的距离较远)的温度测量,对 于测量电路到测温仪表中间的电路,即使局部的温度发生变化,也基 本上不会对测定值造成影响。图3-22示出了典型热电偶的热电动势温度特性。
温度传感器分类与特点
温度传感器分类与特点1.热电阻温度传感器(RTD):热电阻温度传感器是一种基于电阻值随温度变化的原理工作的传感器。
常见的热电阻材料有铂(Pt100、Pt1000)、镍(Ni100、Ni1000)等。
热电阻温度传感器具有较高的精度、较宽的测量范围和较好的线性特性。
但是,它们的响应时间较慢,对环境干扰较为敏感。
2.热敏电阻温度传感器(NTC):热敏电阻温度传感器是一种采用热敏电阻材料工作的传感器,其电阻值随温度变化。
常见的热敏电阻材料有氧化锡(SnO2)、氧化镁(MgO)等。
热敏电阻温度传感器具有较高的灵敏度和较低的成本,适用于大量应用场合。
但是,由于其非线性特性,需要进行校准和补偿,测量精度相对较低。
3.热电偶温度传感器:热电偶温度传感器是基于两种不同金属的电动势随温度变化的原理工作的传感器。
常见的热电偶有铜-铜镍(Type T)、铁-铜镍(Type J)等。
热电偶温度传感器具有较大的测量范围、良好的线性特性和较快的响应速度。
但是,由于热电偶两端的接触材料不同,容易受到外界电磁干扰的影响。
4.热电堆温度传感器:热电堆温度传感器是一种由多个热电偶组成的传感器,用于测量较高温度下的温度变化。
热电堆温度传感器具有较高的测量精度和较大的温度范围,适用于高温环境。
但是,由于需要多个热电偶的组合,造成了较高的成本。
5.红外温度传感器:红外温度传感器是一种基于物体放射出的红外线辐射功率与其温度成正比的原理工作的传感器。
红外温度传感器具有非接触式测量、快速响应和长测量距离等特点。
但是,其测量精度受到环境因素的影响较大,同时需要针对不同物体进行校准。
总的来说,不同类型的温度传感器各具特点,适用于不同的应用场合。
选择合适的温度传感器需要根据测量范围、精度要求、响应速度以及环境干扰等因素综合考虑。
温度传感器简介
NTC温度传感器
规格型号表示方法: ××× - CWF ××× × ×××× × × ×××× × × ① ② ③ ④ ⑤ ⑥⑦ ⑧ ⑨ ⑩ ①公司标示记号; ②NTC热敏电阻负温度传感器标示符号; ③标称电阻值为25度时的数值,单位为欧姆,前两位数字表示电阻值的有效数字,第三位数字 表示其后零的个数; ④电阻值公差符号(%); 记号 电阻值公差 E ±0.5 F ±1.0 G ±2.0 H ±3.0 J ±5.0 K ±10 X 特殊公差
热电阻传感器:金属随着温度变化,其电阻 值也发生变化。对于不同金属来说,温度每变化 一度,电阻值变化是不同的,电阻值可以直接作 为输出信号,从而测量出温度值。 优点:具有准确度高、输出信号大、灵敏度 高、测温范围广、稳定性好、无需参考点。 应用:在流程工业中有大量应用。
热电偶传感器:热电偶由两个不同材料的金属线组 成,两种导体接触在一块,结点处会有一个稳定的电动 势;同一导体,两端温度不同,两端间有一定大小的电 动势,就可以准确知道加热点的温度。其温度测量回路 由热电偶、补偿导线及测量仪表构成。 优点:具有工作可靠、响应较快、易于使用、成本 低、测温范围广、适于远距离测控 。 应用:在电力、化工、石油等工业场合应用较普遍, 广泛用来测量-200℃~1300℃范围内的温度。
常用热电阻 : 使用范围:-260~+850℃;精度:0.001℃。改进后可连续工作 2000h,失效率小于1%,使用期为10年。 精度:A 级 0℃ < ±0.15℃: -100~ 100℃< ±0.35℃(理论电阻值) B 级 0℃ < ±0.3℃: -100~ 100℃< ±0.8℃ (理论电阻值) 电阻随温度变化率:0.003851Ω/℃ 绝缘电阻:>200MΩ 供电电流:<2mA 外壳材料:不锈钢 测量介质:与不锈钢兼容的气体和液体 温度极限:120% 额定温度范围 (持续30秒不损坏)
常用温度传感器比较
常用温度传感器比较一.接触式温度传感器1. 热电偶:(1)测温原理:两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。
(2)测温范围:常用的热电偶从-50~+1600C均可连续测量,某些特殊热电偶最低可测到-269 C(如金铁镍铬),最高可达+2800 C(如钨-铼)。
(3)常用热电偶型号:(4)实例:T型热电偶,测温范围-40~350C,详细信息见T型热电偶实例。
2. 热电阻:(1)测温原理:热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。
因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。
目前主要有金属热电阻和半导体热敏电阻两类。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即:R=R o[1+ a (t-t 0)]式中,R为温度t时的阻值;R o为温度t0 (通常t o=0C )时对应电阻值;a为温度系数。
半导体热敏电阻的阻值和温度关系为:R =Ae B/t式中R为温度为t时的阻值;A B取决于半导体材料的结构的常数。
(2)测温范围:金属热电阻一般适用于-200~500C范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。
半导体热敏电阻测温范围只有-50~300C左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。
(3)常用热电阻:目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150C 易被氧化。
温度传感器选型
温度传感器选型介绍本文档旨在为项目中需要选购温度传感器的人员提供一些指导和建议。
通过对不同类型的温度传感器进行比较和分析,帮助您做出明智的选择。
温度传感器的分类温度传感器通常根据测量原理和工作原理进行分类。
以下是常见的几种温度传感器类型:1. 热敏传感器:基于材料的电阻、电容、电压或电流与温度关系的变化来测量温度。
2. 热电偶(Thermocouple):利用热电效应将两种不同材料的热电动势转化为温度。
3. 红外线温度传感器:通过检测物体发出的热辐射来测量温度。
4. 温度传感器芯片:集成度高,体积小,精度高,适用于需要高精度测量的场合。
选型指南在选型过程中,需考虑以下几个关键因素:1. 测量范围和精度首先,确定所需的温度测量范围和精度。
不同的项目对温度的要求不同,因此需要找到适合项目需求的传感器。
2. 工作环境和材料考虑传感器是否适应项目的工作环境,例如温度、湿度、腐蚀性等因素。
同时,还需评估材料的可靠性和耐用性,确保传感器在长期使用中能够正常工作。
3. 接口和通讯协议根据项目的需求,选择合适的接口和通讯协议。
常见的接口类型包括模拟输出、数字接口(如I2C、SPI)等。
确保传感器可以与项目中的其他设备进行良好的连接和通讯。
4. 供电需求了解传感器的供电需求,包括电压、电流和功耗等。
确保项目中的供电系统能够提供足够的电力支持传感器的正常工作。
5. 价格和供应链最后,考虑传感器的价格和供应链情况。
寻找可靠的供应商和厂家,确保传感器的价格合理且能长期供应。
常见温度传感器推荐根据以上选型指南,以下是几种常见的温度传感器推荐:1. DS18B20:数字温度传感器,适用于数字化系统,精度高,价格较为合理。
2. LM35:模拟温度传感器,简单易用,精度较高。
3. AM2320:数字温湿度传感器,可同时测量温度和湿度,适用于对环境要求较高的项目。
以上推荐仅供参考,具体选型还需根据项目要求进行评估和比较。
总结通过认真考虑温度范围、精度、工作环境、接口、供电需求、价格和供应链等因素,我们可以选择到适合项目需求的温度传感器。
常用温度传感器解析,温度传感器的原理、分类及应用
常用温度传感器解析,温度传感器的原理、分类及应用温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
温度传感器的分类接触式接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。
温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。
一般测量精度较高。
在一定的测温范围内,温度计也可测量物体内部的温度分布。
但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。
它们广泛应用于工业、农业、商业等部门。
在日常生活中人们也常常使用这些温度计。
随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。
低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。
利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。
非接触式它的敏感元件与被测对象互不接触,又称非接触式测温仪表。
这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。
最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。
辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。
各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。
只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。
如欲测定物体的真实温度,则必须进行材料表面发射率的修正。
温度传感器的原理和应用领域
温度传感器的原理和应用领域温度传感器是一种用于测量周围环境温度的设备,广泛应用于各个行业和领域,包括工业制造、医疗保健、气象观测、航空航天等。
本文将介绍温度传感器的原理、分类以及应用领域。
一、温度传感器的原理温度传感器基于物质的温度特性进行测量。
通过感知温度变化对应的物理量变化,将其转换为电信号输出,实现温度测量。
常见的温度传感器原理包括电阻、热电、热电阻、热敏电阻等。
1. 电阻式温度传感器电阻式温度传感器根据材料的电阻随温度变化的特性进行测量。
常见的电阻式温度传感器有铂电阻温度计(PT100、PT1000)、铜电阻温度计等。
这些传感器的特点是精度高、稳定性好。
2. 热电式温度传感器热电式温度传感器利用不同金属间的热电势差随温差变化的原理进行测量。
常见的热电式温度传感器有热电偶和热电阻温度计。
热电偶由两种不同材料的金属导线焊接而成,测量范围广,响应速度快。
3. 热敏电阻式温度传感器热敏电阻式温度传感器利用材料的电阻随温度变化特性进行测量。
常见的热敏电阻材料有热敏电阻粉末、硅基热敏电阻等。
这些传感器的特点是响应速度快、价格低廉。
二、温度传感器的分类根据温度传感器的工作原理和应用需求,可以将温度传感器分为接触式和非接触式两大类。
1. 接触式温度传感器接触式温度传感器是通过物理接触来测量温度的传感器,常见的有接触式电阻式温度传感器和接触式热敏电阻式温度传感器。
这类传感器通常需要与被测物理接触才能获得准确的温度测量。
2. 非接触式温度传感器非接触式温度传感器是通过感知物体辐射出的红外辐射,间接测量物体表面温度的传感器。
常见的非接触式温度传感器有红外线温度传感器和红外热像仪。
这类传感器可以在不与被测物体直接接触的情况下进行温度测量,应用范围广泛。
三、温度传感器的应用领域温度传感器在各个行业和领域都有重要的应用。
以下是几个常见的应用领域:1. 工业制造温度传感器在工业制造中的应用非常广泛。
例如,使用电阻式温度传感器监测机械设备的温度,及时发现可能的故障或过热情况,保障设备的正常运行。
温度传感器的分类
温度传感器的分类
温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。
热电偶传感器
热电偶是一种感温元件,是一种仪表bai,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度,热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势,这就是所谓的塞贝克效应。
热敏电阻传感器
热敏电阻传感器主要元件是热敏电阻,当热敏材料周围有热辐射时,它就会吸收辐射热,产生温度升高,引起材料的阻值发生变化。
电阻温度检测器
RTD通常用铂金、铜或镍,这几种金属的电阻-温度关系如图所示,它们的温度系数较大,随温度变化响应快,能够抵抗热疲劳,而且易于加工制造成为精密的线圈。
IC温度传感器
集成传感器是采用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成温度传感器,模拟集成温度传感器是在20世纪80年代问世的,它是将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出功能的专用IC,模拟集成温度传感器的主要特点是功
能单一、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控测,不需要进行非线性校准,外围电路简单。
温度探头的种类
温度探头的种类
温度探头根据不同的应用和功能主要有以下分类:
1.空气温度探头:主要用于测量空气温度,如冷库、冷柜、空调室、通风场所等。
空气探头的传感器裸露,因此示值很容易受气流所影响。
2.表面探头:用于测量物体的表面温度。
测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触,且接触面必须平坦。
3.刺入/浸入式探头:用于测量液体及固体的温度,探头的前端设计为针状刺入式。
此外,温度探头根据测量原理还可以分为热电偶和热电阻两种。
热电偶的测量原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
热电阻是基于导体电阻随温度变化的特性,测量探头的电阻可以推算出其温度。
温度传感器的相关选择介绍
温度传感器的相关选择介绍温度传感器是一种用于测量温度的设备,它能将温度转化为电信号输出,广泛应用于工业控制、环境监测、医疗设备等领域。
随着科技的不断发展,温度传感器的种类也越来越多,如何选择适合自己的温度传感器?本文将介绍温度传感器的种类和各自的优缺点,帮助选手选择合适的温度传感器。
接触式温度传感器接触式温度传感器是将传感部件与被测物体接触直接测量其表面温度的传感器。
常见的接触式温度传感器有热电偶和铂电阻温度传感器。
热电偶热电偶是利用两种不同金属的电势差与温差的关系,实现温度测量的一种传感器。
其优点是响应速度快、输出稳定、抗干扰能力强,可直接测量高温物体,广泛应用于炉温控制、高温热处理等场合。
缺点是精度较低,易受外界环境和工艺影响,需要定期校准。
铂电阻温度传感器铂电阻温度传感器是利用铂电阻在温度变化时的电阻变化对温度进行测量的传感器。
其优点是精度高、稳定性好、线性度好,可测量极低温度物体,广泛应用于医疗、航空、航天等领域。
缺点是价格较高,需要专业仪器进行校准。
非接触式温度传感器非接触式温度传感器是通过测量被测物体辐射出来的红外辐射来实现温度测量的传感器。
常见的非接触式温度传感器有红外温度计和热成像仪。
红外温度计红外温度计是通过测量被测物体发射出来的红外辐射,来判断其表面温度的传感器。
其优点是响应速度快、非接触测量、适用于测量表面不可接触的物体,如高温、低温、潮湿、腐蚀等环境下的物体。
缺点是受表面材料、环境气体等因素影响较大,有一定的测量误差。
热成像仪热成像仪能够将被测物体表面的红外辐射实时转换为图像,形成温度分布图。
其优点是可以同时测量多个点的温度,直观显示温度分布图,广泛应用于安防、医疗、环保等领域。
缺点是价格较高,相比其他传感器较为复杂。
结论以上介绍了常见的温度传感器种类和优缺点,要选择合适的温度传感器,需要根据实际应用的需求和工作环境来决定。
如果需要精度高的测量,可以选择铂电阻温度传感器;如果需要非接触测量,可以选择红外温度计或热成像仪;如果需要直接测量高温物体,可以选择热电偶。
13温度传感器
⑷ 能量灵敏度G (W)
使热敏电阻的阻值变化1%所需耗散的功率。
⑸ 时间常数τ 温度为T 的
介温质度中为,T热0的敏热电敏阻电的阻温突度然增置量于
ΔT= 0.63 (T-T0) 时所需的时间。
⑹ 额定功率PE 在标准压力(750mmHg)和 规定的最高环境温度下,热敏电阻长期连 续使用所允许的耗散功率,单位为W。在实
uBE
UG0
kTlnTr
q IF
uo1 uBE
A1的输出电压随环境温度的变化而变化。
Rp1:调节温度传感器的电流(要求十分稳定);
A2对A1的输出再次放大,Rp2调节A2增益;
Rp3对电路进行校正,使环境温度为0oC时,输出电压为0V。
RC防止电路振荡。
五 集成(IC)
集成温度传感器是利用晶体管PN结的电流、电压特性与 温度的关系,把感温PN结及有关电子线路集成在一个小硅 片上, 构成一个小型化、一体化的专用集成电路片。集成温 度传感器具有体积小、反应快、线性好、价格低等优点。由 于PN结受耐热性能和特性范围的限制,它只能用来测150℃ 以下的温度。
2 三极管温度传感器
晶体管的基极-发射极电压 u BE 与集电极电流IC随温度
的关系满足下面公式:
uBEUG0
k TlnTr
q iC
UG0——三极管在绝对温度为 273K时的硅禁带宽度电压 ,约为 1.2V;α、r——由三极管结构决定,与温度无关。保持 Ic为定值
u 时, BE 与温度T呈近似线性关系,利用这一特性可制成晶体管
1K
R2
10K
vC
C
0.1uF
4
8
7
TH 6
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度传感器主要形式和温度探头类型
温度传感器三种主要形式为热电偶、铂电阻和热电阻
热电偶由两种不同的金属丝焊接而成,例如:NiCr-Ni(K型),利用热电效应来工作的,两种不同的金属丝,构成一个闭合回路,不同的两种导体存在着温差,两者产生电动热。
因而在回路中形成一个大小的电流,此现象称之为热电现象。
铂电阻测量原理不同于热电偶测量方法。
铂电阻传感器本质上来讲属于PTC热敏电阻的一种。
金属的电阻率会随着温度的升高而增大,因此这种特性被用来测量温度。
薄膜式铂电阻,由于结构超薄,因此在电阻不被影响的前提下,配置了一个玻璃套管,用以保护。
目前通用的铂电阻的电阻值为100Ohm(0℃时),这是目前国际通用的铂电阻。
另外一种PT100传感器采用绕线陶瓷式,此种方法将铂丝攻成螺旋状,再装入陶瓷基体内,此传感器结构十分紧密,在所有铂电阻传感器中,这种结构精度最高,使用时间持久并且无老化现象,但是相较于热电偶的测量原理,反应时间较缓,因此在应用时经常运用于食品科技,特别是实验室研发环节。
NTC热敏电阻使用较为广泛且较经济的一款温度传感器。
由于混合的氧化物陶瓷材料构成,具有负的温度系数,这是称之为NTC的原因(negaTIve temperature coefficient缩写)。
随着温度的升高,阻值降低,这与PT100传感器的测量特性完全相反。
通过温度传感器制成的温度探头类型主要也有三种:
1、刺入/浸入式探头:用于测量液体及固体的温度,探头的前端设计为针状刺入式。
使用时如果测量探头的温度比被测物体低,根据能量守恒原理,热能会从被测物体热导至探头上;如果测量探头的温度比被测物体较高,同。