各种温度传感器分类及其原理.
各种温度传感器分类及其原理

各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。
根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。
1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。
根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。
PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。
2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。
当热电偶的两个接头处于不同温度下时,会产生温差电势。
该电势与两个接头之间的温差成正比。
通过测量温差电势,可以计算出温度值。
热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。
3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。
常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。
热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。
4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。
红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。
红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。
5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。
根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。
温度传感器概述、应用及原理(热敏电阻器、电阻温度探测器、热电偶、固态热传感器)

温度传感器概述、应用及原理(热敏电阻器、电阻温度探测器、热电偶、固态热传感器)热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。
许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。
在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。
表1是一个典型的NTC热敏电阻器性能参数。
这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。
其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。
以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。
图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。
虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。
如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下:这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。
热敏电阻一般有一个误差范围,用来规定样品之间的一致性。
根据使用的材料不同,误差值通常在1%至10%之间。
有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合。
例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。
图2是利用热敏电阻测量温度的典型电路。
电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref也将是5V。
热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。
常用式传感器的原理和应用

常用式传感器的原理和应用1.温度传感器:原理:温度传感器是通过测量物体的热量来确定其温度的。
常见的温度传感器有热敏电阻、热电偶和红外传感器等。
应用:温度传感器广泛应用于气候控制、温度监控、医疗设备、食品加工和汽车等领域。
2.湿度传感器:原理:湿度传感器是通过测量空气中水分含量来确定湿度的。
常见的湿度传感器有电容式湿度传感器和电阻式湿度传感器等。
应用:湿度传感器广泛应用于气象、农业、环境监测、工业生产和电子设备等领域。
3.压力传感器:原理:压力传感器是通过测量物体受力大小来确定压力的。
常见的压力传感器有压阻式传感器、压电传感器和电容式传感器等。
应用:压力传感器广泛应用于工业自动化控制、汽车工业、航空航天、医疗设备和气候监测等领域。
4.光电传感器:原理:光电传感器是通过光电效应将光信号转化为电信号的传感器。
常见的光电传感器有光敏电阻、光电二极管和光电三极管等。
应用:光电传感器广泛应用于自动门、光电开关、光电编码器和光电计数器等领域。
5.位移传感器:原理:位移传感器是通过测量物体位置的变化来确定位移的。
常见的位移传感器有光电编码器、电感式传感器和激光测距传感器等。
应用:位移传感器广泛应用于机械工业、机器人、航空航天、自动化生产和测量仪器等领域。
6.加速度传感器:原理:加速度传感器是通过测量物体所受加速度的依据,从而确定物体的运动状态。
常见的加速度传感器有微机电系统(MEMS)加速度传感器和压电传感器等。
应用:加速度传感器广泛应用于汽车工业、智能手机、电子游戏、航空航天和体育健身等领域。
7.气体传感器:原理:气体传感器是通过测量空气中特定气体浓度来确定气体的种类和浓度。
常见的气体传感器有电化学传感器、红外传感器和半导体传感器等。
应用:气体传感器广泛应用于环境监测、工业生产、气体检测和安全防护等领域。
8.声音传感器:原理:声音传感器是通过测量声压水平来确定声音的强度和频率。
常见的声音传感器有电容式麦克风传感器和压电传感器等。
温度传感器的应用和原理

温度传感器的应用和原理一、温度传感器的基本原理温度传感器是一种用于测量环境温度的设备。
它通过感知物体的温度变化并将其转换为电信号,从而实现对温度的测量。
常见的温度传感器有热电偶、热电阻、半导体温度传感器等。
1. 热电偶传感器热电偶传感器是利用两种不同金属导体的热电效应产生的电动势来测量温度的传感器。
当两个接触的金属导体温度不同时,会产生一个温差电动势。
通过测量这个电动势,我们可以计算出温度的变化。
2. 热电阻传感器热电阻传感器是利用电阻材料的温度系数来测量温度变化的传感器。
常见的热电阻材料有铂金、镍铜等。
随着温度的变化,热电阻材料的电阻值也会发生变化。
通过测量电阻的变化,我们可以得知温度的变化。
3. 半导体温度传感器半导体温度传感器是利用半导体材料的电阻与温度之间的关系来测量温度的传感器。
半导体材料的电阻与温度呈非线性关系,因此需要使用转换电路进行校准。
半导体温度传感器具有体积小、响应快、价格低廉等优点,广泛应用于家电、汽车电子等领域。
二、温度传感器的应用1. 工业自动化领域在工业自动化领域,温度传感器被广泛应用于温度监控和控制系统中。
通过实时监测温度变化,可以保证工业生产过程的稳定性和安全性。
温度传感器可以用于监测机器设备的温度,控制冷却设备的运行,避免过热造成的故障。
2. 医疗行业温度传感器在医疗行业中扮演着重要角色。
例如,在体温计中使用的传感器可以精确测量人体的体温,并帮助医生判断病情,进行正确的治疗。
此外,温度传感器还被用于监测医疗设备的工作温度,确保设备安全运行。
3. 环境监测温度传感器广泛应用于环境监测领域。
例如,气象站使用温度传感器测量气温,帮助预测天气变化。
温度传感器还可以用于建筑物的温度监测,帮助调节室内温度,提高能源利用效率。
4. 汽车电子在汽车电子领域,温度传感器被广泛应用于引擎、变速器和制动系统等关键部位。
通过实时监测温度变化,可以避免因温度过高而引起的故障。
温度传感器还可以用于驾驶员座椅的温度调节,提供舒适的驾驶环境。
温度传感器工作原理

温度传感器工作原理温度传感器是一种用于测量环境温度的设备,它可以将温度转化为电信号,以便于数字化处理和显示。
温度传感器的工作原理是基于物质的热学性质,通过测量物质在不同温度下的特定物理性质的变化来实现温度的测量。
常见的温度传感器有热敏电阻、热电偶、红外线传感器等。
下面将分别介绍这些温度传感器的工作原理。
1. 热敏电阻。
热敏电阻是一种电阻值随温度变化而变化的电阻元件。
它的工作原理是基于热敏材料的电阻随温度的变化而变化。
当温度升高时,热敏电阻的电阻值会减小;当温度降低时,电阻值会增加。
这种特性使得热敏电阻可以用来测量温度。
通常情况下,热敏电阻会被安装在一个稳定的电路中,通过测量电阻值的变化来确定环境温度。
2. 热电偶。
热电偶是由两种不同金属或合金材料组成的导线,它的工作原理是基于两种不同材料在温度变化下产生的电动势。
当两种不同材料的接触点处于不同温度时,会产生一个电动势,这个电动势的大小与两种材料的温度差有关。
通过测量这个电动势的大小,可以确定两种材料接触点的温度差,从而得到环境的温度。
3. 红外线传感器。
红外线传感器是一种利用红外线辐射来测量物体表面温度的传感器。
它的工作原理是基于物体表面温度与其红外辐射的关系。
物体的表面温度越高,其红外辐射的能量越大。
红外线传感器通过测量物体表面的红外辐射能量来确定物体的温度。
这种传感器通常被应用于需要远距离、非接触式测温的场合。
综上所述,温度传感器的工作原理是基于物质的热学性质来实现温度的测量。
不同类型的温度传感器通过不同的原理来实现温度的测量,但它们的共同目标是将温度转化为电信号,以便于数字化处理和显示。
温度传感器在工业控制、医疗设备、家用电器等领域都有着广泛的应用,它们的工作原理的深入理解对于提高温度测量的准确性和稳定性具有重要意义。
温度传感器原理及其应用

温度传感器原理及其应用1.热敏电阻原理(RTD):热敏电阻是一种电阻,其电阻值随温度变化而变化。
常见的热敏电阻有铂电阻和镍电阻。
根据电阻值的变化,可以计算出物体的温度。
2. 热电偶原理(Thermocouple):热电偶是由不同金属材料组成的两根导线,当两根导线的连接处存在温差时,会产生一个电动势。
通过测量电动势的大小,可以计算出温度。
3. 热电阻原理(Thermistor):热电阻是一种温度敏感材料,由于材料的特性,电阻值会随温度的变化而变化。
通过测量电阻值的变化,可以计算出温度。
4.红外线传感器原理:红外线传感器利用物体发射的红外辐射来测量温度。
物体温度越高,发射的红外线辐射越强。
红外线传感器通过测量红外线的强度来计算出温度。
1.工业领域:温度传感器在工业过程中起着重要的作用,可以监测机器设备的温度变化,以及生产线上的温度控制。
例如,在石化工业中,温度传感器可以用于监测反应器的温度,确保反应过程的安全和有效进行。
2.环境监测:温度传感器也被广泛应用于环境监测中,例如天气预报、气象学研究等。
通过测量室内外的温度,可以提供准确的气候信息,对农业、气象预测等方面具有重要意义。
3.家电领域:温度传感器也应用于各种家电设备中,例如空调、冰箱、洗衣机等。
通过监测室内温度和物品的温度,可以自动调节设备的工作模式,提高能耗效率。
4.医疗行业:温度传感器在医疗设备中也有广泛应用,例如体温计、病房温度监测等。
通过监测人体温度,可以及时发现疾病或感染,并进行相应的治疗。
总之,温度传感器是一种能够测量物体温度的设备,其原理多样化,应用场景广泛。
通过准确测量温度,可以实现温度控制、环境监测、能耗优化等目的,为人们的生活和生产提供了实质性的帮助。
温度传感器测温原理

温度传感器测温原理
温度传感器测温原理是基于物理特性的变化来测量环境温度的方法。
常见的温度传感器有热敏电阻、热电偶、热电阻和表面振动温度传感器等。
热敏电阻是一种电阻值随温度变化而变化的电阻器件。
它是利用材料的温度系数来实现温度测量的。
温度升高时,热敏电阻的电阻值会增大,温度降低时则会减小。
通过测量热敏电阻的电阻值变化,我们可以推算出环境的温度。
热电偶是由两种不同金属材料组成的线,当两处温度不同时,就会产生一个电动势。
这种电动势与温差呈线性关系,因此可以通过测量热电偶两端的电压来确定环境的温度。
热电阻是另一种能够根据温度改变电阻值的传感器。
它和热敏电阻类似,但是其温度系数更加稳定,可以提供更精确的测温结果。
表面振动温度传感器通过测量物体表面振动的频率变化来测量温度。
当温度升高时,物体的分子振动增强,频率也会相应增加。
利用这种关系,我们可以通过测量物体表面振动的频率来推算出环境的温度。
总而言之,温度传感器测温原理是利用温度对某种物理特性的影响来实现温度测量的方法,通过测量物理特性的变化,可以精确地获取环境的温度信息。
温度传感器工作原理及应用

温度传感器工作原理及应用一、引言温度传感器是一种广泛应用于各种领域的传感器,它可以测量物体的温度并将其转换为电信号输出。
本文将介绍温度传感器的工作原理及其应用。
二、温度传感器分类根据不同的工作原理和测量范围,温度传感器可以分为多种类型,例如热电偶、热敏电阻、红外线温度计等。
1. 热电偶热电偶是利用两种不同金属之间产生的热电势差来测量温度的传感器。
当两个接触金属处于不同温度时,它们之间会产生一个微小的电势差。
通过将两端连接到一个电路中,可以测量出这个微小的电势差,并据此计算出物体的温度。
2. 热敏电阻热敏电阻是一种利用材料在不同温度下具有不同电阻值来测量温度的传感器。
常见的热敏电阻材料有铂、镍、铜等。
当这些材料受到加热时,它们会导致其内部自由载流子数量变化,从而导致电阻值的变化。
通过测量电阻值的变化,可以推算出物体的温度。
3. 红外线温度计红外线温度计是一种可以通过红外线测量物体表面温度的传感器。
它们通常使用红外线探头来检测物体表面放射出的红外线,并据此计算出物体的温度。
三、温度传感器工作原理不同类型的温度传感器有不同的工作原理,但它们都需要将物体的温度转换为电信号输出。
以热敏电阻为例,当热敏电阻受到加热时,其内部自由载流子数量变化会导致电阻值发生变化。
这个变化可以通过一个简单的电路来测量。
例如,在一个简单的电路中,将一个已知电压施加在热敏电阻上,然后测量通过热敏电阻流过的电流大小。
根据欧姆定律和基尔霍夫定律,可以得到以下公式:R = V / I其中,R是热敏电阻的电阻值,V是施加在热敏电阻上的已知电压大小,I是通过热敏电阻流过的电流大小。
由于热敏电阻的电阻值与温度有关,因此可以通过测量电阻值的变化来推算出物体的温度。
四、温度传感器应用由于温度传感器具有广泛的应用领域,因此在不同领域中使用不同类型的温度传感器。
1. 工业控制在工业控制领域中,温度传感器通常用于检测和控制工业过程中液体、气体和固体材料的温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种温度传感器分类及其原理各种温度传感器分类及其原理温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。
众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。
1.热电偶的工作原理当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。
这种由于温度不同而产生电动势的现象称为塞贝克效应。
与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向,称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向,称为汤姆逊效应。
两种不同导体或半导体的组合称为热电偶。
热电偶的热电势EAB(T,T0是由接触电势和温差电势合成的。
接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。
温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。
无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。
当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图2-1(b所示。
并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。
实验表明,当△ V很小时,△ V与厶T成正比关系。
定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。
塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。
2.热电偶的种类目前,国际电工委员会(IEC推荐了8种类型的热电偶作为标准化热电偶,即为T 型、E型、J型、K型、N型、B型、R型和S型。
热电阻1.热电阻材料的特性导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500C温度范围内的温度测量。
纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。
②电阻率高,热容量小,反应速度快。
③材料的复现性和工艺性好,价格低。
④在测温范围内化学物理特性稳定。
目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。
2■铂电阻铂电阻与温度之间的关系接近于线性,在0~630.74C范围内可用下式表示Rt=R0(1 +At+Bt2 (2-1 在-190~0°C范围内为Rt =R0(1+At+Bt2 十Ct3 (2-2式中,RO、Rt为温度0及t时铂电阻的电阻值,t为任意温度,A、B、C为温度系数,由实验确定,A =3.9684 10-3/E, B =-5.847 10-7/C 2, C =422 10-12厂C 3。
由式(2-1和式(2-2看出,当R0值不同时,在同样温度下,其Rt值也不同3■铜电阻在测温精度要求不高,且测温范围比较小的情况下,可采用铜电阻做成热电阻材料代替铂电阻。
在-50~150C的温度范围内,铜电阻与温度成线性关系,其电阻与温度关系的表达式为Rt =R0(1+At (2-3 式中,A =4.25 10-3~4.28 10-3C为铜电阻的温度系数按照温度传感器输出信号的模式,可大致划分为三大类:数字式温度传感器、逻辑输出温度传感器、模拟式温度传感器。
一、模拟温度传感器传统的模拟温度传感器,如热电偶、热敏电阻和RTDS对温度的监控,在一些温度范围内线性不好,需要进行冷端补偿或引线补偿;热惯性大,响应时间慢。
集成模拟温度传感器与之相比,具有灵敏度高、线性度好、响应速度快等优点,而且它还将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,有实际尺寸小、使用方便等优点。
常见的模拟温度传感器有LM3911、LM335、LM45、AD22103电压输出型、AD590电流输出型。
这里主要介绍该类器件的几个典型。
1、AD590温度传感器AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,输出电流223卩A50C ~423卩A(+15C,灵敏度为1卩A C。
当在电路中串接采样电阻R时,R两端的电压可作为喻出电压。
注意R 的阻值不能取得太大,以保证AD590两端电压不低于3V。
AD590输出电流信号传输距离可达到1km以上。
作为一种高阻电流源,最高可达20MQ ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。
适用于多点温度测量和远距离温度测量的控制。
2、LM135/235/335温度传感器LM135/235/335系列是美国国家半导体公司(NS生产的一种高精度易校正的集成温度传感器,工作特性类似于齐纳稳压管。
该系列器件灵敏度为10mV/K,具有小于1Q的动态阻抗,工作电流范围从400卩到5mA ,精度为1C, LM135的温度范围为-55r ~+150C, LM235 的温度范围为-40C ~+125C, LM335 为-40C~+100C。
封装形式有TO-46、T0-9 2、SO-8。
该系列器件广泛应用于温度测量、温差测量以及温度补偿系统中。
二、逻辑输出型温度传感器在许多应用中,我们并不需要严格测量温度值,只关心温度是否超出了一个设定范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器。
LM56、MAX6501-MAX6504、MAX6509/6510是其典型代表。
1、LM56温度开关LM56是NS公司生产的高精度低压温度开关,内置1.25V参考电压输出端。
最大只能带50 ^A勺负载。
电源电压从2.7~10V,工作电流最大230卩A内置传感器的灵敏度为6.2mV/C,传感器输出电压为6.2mV/C 刃+395mV2、MAX6501/02/03/04温度监控开关MAX6501/02/03/04是具有逻辑输出和SOT-23封装的温度监视器件开关,它的设计非常简单:用户选择一种接近于自己需要的控制的温度门限(由厂方预设在-45r到+115C,预设值间隔为10C。
直接将其接入电路即可使用,无需任何外部元件。
其中MAX6501/MAX6503为漏极开路低电平报警输出,MAX6502/MAX6504为推/拉式高电平报警输出,MAX6501/MAX6503提供热温度预置门限(35E到+115C,当温度高于预置门限时报警;MAX6502/MAX6504提供冷温度预置门限(-45 C到+15 r,当温度低于预置门限时报警。
对于需要一个简单的温度超限报警而又空间有限的应用如笔记本电脑、蜂窝移动电话等应用来说是非常理想的,该器件的典型温度误差是±.5E,最大±rc,滞回温度可通过引脚选择为2r或io r,以避免温度接近门限值时输出不稳定。
这类器件的工作电压范围为 2.7V到5.5V,典型工作电流30 ^Ao三、数字式温度传感器1、MAX6575/76/77数字温度传感器如果采用数字式接口的温度传感器,上述设计问题将得到简化。
同样,当A/D和微处理器的I/O管脚短缺时,采用时间或频率输出的温度传感器也能解决上述测量问题。
以MA X6575/76/77系列SOT-23封装的温度传感器为例,这类器件可通过单线和微处理器进行温度数据的传送,提供三种灵活的输出方式--频率、周期或定时,并具备±).8 C的典型精度,一条线最多允许挂接8个传感器,150卩典型电源电流和2.7V 到5.5V的宽电源电压范围及-45 C到+125C的温度范围。
它输出的方波信号具有正比于绝对温度的周期,采用6脚SOT-23封装,仅占很小的板面。
该器件通过一条I/O与微处理器相连,利用微处理器内部的计数器测出周期后就可计算出温度。
2、可多点检测、直接输出数字量的数字温度传感器DS1612DS1612是美国达拉斯半导体公司生产的CMOS数字式温度传感器。
内含两个不挥发性存储器,可以在存储器中任意的设定上限和下限温度值进行恒温器的温度控制,由于这些存储器具有不挥发性,因此一次定入后,即使不用CPU 也仍然可以独立使用。
温度测量原理和精度:在芯片上分别设置了一个振荡频率温度系数较大的振荡器(OS C1和一个温度系数较小的振荡器(OSC2。
在温度较低时,由于OSC2的开门时间较短,因此温度测量计数器计数值(n较小;而当温度较高时,由于OSC2的开门时间较长,其计数值(m增大。
如果在上述计数值基础上再加上一个同实际温度相差的校正数据,就可以构成一个高精度的数字温度传感器。
该公司将这个校正值定入芯片中的不挥发存储器中,这样传感器输出的数字量就可以作为实际测量的温度数据,而不需要再进行校准。
它可测量的温度范围为-55C ~+125C,在0C ~+70C范围内,测量精度为±SC ,输出的9位编码直接与温度相对应。
DS1621同外部电路的控制信号和数据的通信是通过双向总线来实现的,由CPU 生成串行时钟脉冲(SCL , SDA是双向数据线。
通过地址引脚A0、A1、A2将8个不同的地址分配给各器件。
通过设定寄存器来设置工作方式,并对工作状态进行监控。
被测的温度数据被存储在温度传感器寄存器中,高温仃H 和低温仃L阈值寄存器存储了恒温器输出仃out的阈值。
现在,各种集成的温度传感器的功能越来越专业化。
比如,MAXIM公司近期推出的M AX16佃是一种增强型精密远端数字温度传感器,能够监测远端P-N结和其自身封装的温度。
它具有双报警输出:ALERT和OVERT。
ALERT用于指示各传感器的高/低温状态,OVERT信号等价于一个自动调温器,在远端温度传感器超上限时触发,MAX16佃与MAX 1617A完全软件兼容,非常适合于系统关断或风扇控制,甚至在系统死锁”后仍能正常工作。
美国达拉斯半导体公司的DS1615 是有记录功能的温度传感器。
器件中包含实时时钟、数字式温度传感器、非易失性存储器、控制逻辑电路以及串行接口电路。
数字温度传感器的测量范围为-40C ~+85C,精度为也C,读取9位时的分辨率是0.03125C。
时钟提供的时间从秒至年月,并对到2100年以前的闰年作了修正。
电源电压为2.2V~5.5V,8脚SOIC封装。
DS17775 是数字式温度计及恒温控制器集成电路。
其中包含数字温度传感器、A/D转换器、数字寄存器、恒温控制比较器以及两线串行接口电路。