一阶电路和二阶电路的阶跃响应、冲击响应

合集下载

二阶电路阶跃响应和冲激响应讲解

二阶电路阶跃响应和冲激响应讲解

50 W
50 V
R iR
0.5H L C
100 μF
iL
iC
(5)求iR
iR iL iC
iL
LC
d2iL dt 2
或设解答形式为: iR 1 Ae100t sin(100t )
50W
定常数
R iR
50 V
2A
iC
i
R
(0
)
diR dt
(0
)
1
iC ?
(0
)
1
iR
50 R
uc
5Ω 解 (1) uc(0-)=25V iL(0-)=5A
(2)开关打开为RLC串 联电路,方程为:
LC
d 2uc dt
RC
duc dt
uc
0
特征方程为: 50P2+2500P+106=0
P 25 j139
uc Ae25t sin(139t )
uc Ae25t sin(139t )
0
A U0 , arctg
sin
ω,ω0,δ间的关系:
ω0
ω
sin
0
A
0
U
0
δ
uc
0
U0e
t
sin(t
)
uc
0
U0e
t
sin(t
)
uc是其振幅以
0
U0为包线依指数衰减的正弦函数。
t=0时 uc=U0
uc U0
0
U0
e
t
uc零点:t = -,2- ... n- uc极值点:t =0, ,2 ... n
L
di dt

阶跃响应冲击响应与卷积积分法

阶跃响应冲击响应与卷积积分法

补充第一章 阶跃响应冲击响应与卷积积分法电路中除电阻元件外,还包括有电容和电感等动态元件,如此的电路称为动态电路。

在动态电路分析中,鼓励和响应都表示为时刻t 的函数,采纳微分方程求解电路和分析电路的方式,称为时域分析法。

本章要紧讨论一阶电路的阶跃响应、冲激响应、任意输入的零状态响应,和二阶电路在恒定输入下的零状态响应。

§1-1 阶跃响应和冲激响应电路的输入除恒定不变的常量(即恒定输入或直流输入)和按正弦规律变更的交流量(即正弦输入)之外,常见的还有另外两种奇异函数,即阶跃函数和冲激函数。

本节就来讨论这两种函数的概念、性质及作用于线性动态电路时所引发的响应。

单位阶跃函数(unit step function )用()t ε来表示,它概念为 0(0)()1(0)t t t ε<⎧=⎨>⎩ 波形如图1-1(a )所示,在0t =处,()t ε由0跃变至1。

若是单位阶跃函数的跃变点不是在0t =处,而是在0t t =处,波形如图1-1(b )所示,那么称它为延迟的单位阶跃函数,用0()t t ε-表示,即0000()()1()t t t t t t ε<⎧-=⎨>⎩图1-1单位阶跃函数与任一常量K 的乘积()K t ε仍是一个阶跃函数,现在阶跃的幅度为K 。

单位阶跃函数与任一函数()f t 的乘积将只保留该函数在阶跃点以后的值,而使阶跃点以前的值变成零,即有0000(0)()()()(0)0()()()()()t f t t f t t t t f t t t f t t t εε<⎧=⎨>⎩<⎧-=⎨>⎩因此,单位阶跃函数能够用来“起始”一个任意函数()f t ,这给函数的表示带来了方便。

例如关于线性函数()(f t Kt K =为常数),由图1-2(a)、(b)、(c)能够清楚地看出()f t 、()()f t t ε及0()()f t t t ε-的不同。

第七章 一阶电路和二阶电路的时域分析

第七章  一阶电路和二阶电路的时域分析
1 阶跃响应法: 2 等效初值法:
等效初始值:
等效初始值:
难点 1. 初始值的求解; 2. 时间常数的求解; 3. 阶跃响应与冲激响应。 §7.1 动态电路的方程及其初始条件 动态电路 含有动态元件电容和电感的电路。 特点: 当动态电路状态发生改变时(换路)需要经历一个变化过程才能达 到新的稳定状态。这个变化过程称为电路的过渡过程。 2. 换路 电路结构或电路参数发生突变而引起电路变化统称为换路。 意义:能量不能发生突变。 产生原因:电路内部含有储能元件 L、C,电路在换路时能量发生变 化,而能量的储存和释放都需要一定的时间来完成。
3 同一电路中所有响应具有相同的时间常数。 4 一阶电路的零输入响应和初始值成正比,称为零输入线性。 §7.3 一阶电路的零状态响应 零状态响应:动态元件初始能量为零,由t >0电路中外加激励作用所产 生的响应。
1. RC电路: t<0,K在1,电路稳定, 有 t=0,K从1打到2,有 t>0,K在2, 有 解答形式为:
换路定律: 在换路前后电容电流和电感电压为有限值的条件下,换路前后瞬间电容 电压和电感电流不能跃变。 (1)若iC 有限,则: uC ( 0+ )= uC ( 0- ) (2)若uL 有限,则: iL( 0+ )=iL( 0- )
3. 电路初始值的确定
电路初始值 独立初始值:uC (0+)、 iL(0+); 非独立初始值:其余电量在t= 0+时的值;
应用条件:一阶电路;开关激励 时间常数计算:RC电路:;
RL电路:; 实际现象讨论:
(1) 当负载端接有大电容时,电源合闸可能会产生冲击电流。
(1)
(2)
(2) 当负载端接有大电感时,开关断开可能会产生冲击电压。

一阶电路与二阶电路PPT

一阶电路与二阶电路PPT

t 0
t RC
duc (t ) U 0 e dt R
t0
3.解的物理含义:uc及i的波形
从图可见,电容电压从初始值U0开始按指数规律衰减到0, 电流在换路瞬间有1个跳变,从i(0-)=0跳变到i(0+)=U0/R, 然后按指数规律衰减到0。
U0 U0 R
U0 R

RC 电路零输入响应 电压电流波形图
图示一阶RC电路,电容处于零状态, 求电路中的响应。

ic(t) C
物理过程分析:
理论求解:
(t ) R

iR(t)
+ uc(t) _
1.列方程: ic (t ) iR (t ) (t )
第四章 一阶电路与二阶电路
4.1 一阶电路的零输入响应 4.2 一阶电路的阶跃响应
4.3 一阶电路的冲激响应
4.4 一阶电路对阶跃激励全响应 4.5 二阶电路的冲激响应
学 习 目 标
深刻理解零输入响应、零状态响应、暂态响 应、稳态响应的含义,并掌握它们的分析计算 方法 。 理解一阶电路阶跃响应和冲击响应的概念。 熟练掌握输入为直流信号激励下的一阶电路的 三要素分析法。 了解二阶电路的冲击响应。
L R
RC电路: RC
L RL电路: R
R多数情况下是等效电阻。
例1:求换路后的零输入响应i(t)和u0(t):
分析: 换路前为直流电路,电容开路 S1(t=0) +uC(t) - 20 + 200 0.02uF u c (0 ) u c (0 ) 60 120V + 60 u0(t) 60 40 200V 60 80 换路后电容两端看进去的等效电阻 Req 60 80 2 100

阶跃响应与冲激响应1

阶跃响应与冲激响应1

duC uC C + = δ (t) dt R
图 6.30
duC uC C + = δ (t) dt R
对方程积分并应用冲击函数的性质得:
图 6.30

0+
0
duC uC +∫ = ∫ δ (t ) = 1 C 0 dt R 0
0+
0+
因为 uc不是冲激函数,否则电路的 KVL 方程中将出现冲击函 数的导数项使方程不成立,因此上式第一项积分为零,得:
L[iL (0 ) iL (0 )] = 1,
+
1 iL (0 ) = ≠ iL (0 ) L
+
说明电感上的冲激电压使电感电流发生跃变。
2) t>0+ 后冲击电源为零,电路为一阶 RL 零输入响应问题, 如图 6.34 所示, 因此
iL = iL (0 + )e
t
τ
1 τt = e , t ≥ 0+ L
duC 1 2t iC = C = e ε (t ) mA dt 5
由齐次性和叠加性得实际响应为:
1 2t 1 2 ( t 0. 5 ) iC = 5[ e ε ( t ) e ε ( t 0.5)] 5 5
= e ε (t ) e
2 t
2 ( t 0. 5 )
ε ( t 0.5) mA
1
1
(1) u ( t )ε ( t )
( 2 ) u ( t 1)ε ( t )
0
2 t 1
-1
0
1
t
( 3 ) u ( t 1)ε ( t 1) 1
( 4 ) u ( t 2 )ε ( t 1 )

一阶电路

一阶电路

uc (t0 + τ ) = U0e
(t0 +τ )
τ
= U0e1e τ = e1uc (t0 ) = 0.368uc (t0 )
t0
即经过一个时间常数后,衰减了63.2%,成为原来的 36.8%。 t = 2τ , t = 3τ , t = 4τ ....,时刻的电容电压值列于下表中。
t Uc(t) 0 U0 2 3 4 5 … 0 0.368U0 0.135U0 0.05U0 0.018U0 0.007U0 …
Lp + R = 0
p = R L

这也是一阶齐次微分方程。令 i = Ae
pt
i + L uL -
uR
- -
di 而 u R = Ri , u L = L dt 电路的微分方程为 di L + Ri = 0 dt
S
+ U0 -
i + uL -
R
R
根据 i(0+) =i(0) = I0 代入上式可求得 有 i = i(0 )e +
t
τ
A = U S
t
uC = U S U S e
τ
= U S (1 e τ )
t
t
duc U S τ i =C = e dt R
能量:W R =
=


0
i 2 Rdt =
2


0
U S τ 2 ( e ) Rdt R
t
1 CU 2
S
充电率只有50%。 消耗的能量与R无关。
uC
i uC ′
uC US R
RC
方程通解 u C = u C + u C ′ uC = U S 特解 t 则对应齐次方程通解为 uC ″ = Ae τ

一阶电路的冲激响应基础知识讲解

一阶电路的冲激响应基础知识讲解

2. t > 0 零输入响应 (C放电)
uC
1 C
t
e RC
(t 0)
iC + R C uC
iC
uC R
1
t
e RC
RC
(t 0)
uC
(0
)
1 C
uC
1
C
全时间域表达式:
o
t
uC
1 C
t
e RC (t )
iC
iC
(t)
1 RC
e
t
RC (t )
(1) o 1
t
RC
例2.
+
(t)
1 L
i L (0
)
iL (0
)
1 L
0
0 uLd
1 L
2. t > 0 (L放电)
L
R
iL
1
e
t
L
t 0
uL
iLR
R L
t
e
t0
全时间域表达式:
iL
1
e
t
(t)
L
uL
(t)
R L
t
e (t)
R iL
+ L uL
iL(0 )
1 L
iL
1 L
o uL
(t)
o R
L
t t
返回首页
卷积积分
一、卷积积分(Convolution)的定义
定义:设 f1(t), f2(t) t < 0 均为零
t
f1(t )* f2 (t ) 0 f1( ) f2 (t )d
二、卷积积分的性质
性质1 f1(t)* f2(t) f2(t)* f1(t)

一阶电路和二阶电路

一阶电路和二阶电路

iL Is
t
iL Ae L R
iL
=
I (1 S
e-
R L
t
)
A由初值: A Is
uL
=
L diL dt
=
IS Re- RLt
佛山科§学7技-术3学院 一阶电路的零状态响应
现代制造装备工程技术开发中心
佛山科§学技7术-学2院 一阶电路的零输入响应
现代制造装备工程技术开发中心
t=0时 , 打开开关K,求uv。
电压表量程:50V 现象 :电压表坏了
分析
iL (0+) = iL(0-) 1 A
iL e t /
L 4 4104 s
R RV 10000
uV RV i L 10000e 2500t t 0
uV (0+)= - 10000V 造成 V 损坏。
佛山科§学7技-术2学院 一阶电路的零输入响应
现代制造装备工程技术开发中心
四、小结 <一阶电路零输入响应的求解>
+
P
C Uc
P
iL
-
u(0 ) uc (0 ) U0
iL (0 ) iL (0 ) I0
分析:戴维南定理化简
佛山科§学技7术-学2院 一阶电路的零输入响应
3)作 0 等效电路
L 用一电流为 iL (0 )的电流源代替 C 用一电压为 uc (0 )的电压源代替
4) 求解0电路。求出其它 f (0 )
佛山科§学技7术-学1院动态电路的方程及其初始条件
现代制造装备工程技术开发中心
(1) 由0-电路求 uC(0-) 或 iL(0-) uC(0-)=8V

电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上)

电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上)

二阶电路
dx a1 a0 x e(t ) t 0 dt
2
二阶电路中有二个动态元件,描述 电路的方程是二阶线性微分方程。
dx dx a2 2 a1 a0 x e(t ) t 0 dt dt
返 回 上 页 下 页
高阶电路
n
电路中有多个动态元件,描述 电路的方程是高阶微分方程。
前一个稳定状态
O
?
t1
u uL= 0,L i=US /R
过渡状态
有一过渡期 t
返 回 上 页 下 页
+ US -
(t →∞) R i + uL –
L
+ US
(t ∞) R i + S uL –
L
S未动作前,电路处于稳定状态: uL= 0, S断开瞬间
i=US /R
i = 0 , uL =∞
注意 工程实际中在切断电容或电感电路时
f (0 ) f (0 )
0- O 0+ t
注意 初始条件为 t = 0+时,u 、i 及其各阶导
数的值。
返 回 上 页 下 页
例1-1 图示为电容放电电路,电容原先带有电压Uo,
解 求开关闭合后电容电压随时间的变化。 (t=0)
Ri uC 0 (t 0)
duC RC uC 0 dt 特征根方程: RCp 1 0
会出现过电压和过电流现象。
返 回
上 页
下 页
换路
电路结构、状态发生变化 支路接入或断开 电路参数变化
过渡过程产生的原因 电路内部含有储能元件 L、C,电路在换路时 能量发生变化,而能量的储存和释放都需要一定的 时间来完成。
ΔW p Δt

阶跃响应、冲激响应

阶跃响应、冲激响应

iS
iC +
(t)
R
C uC
定性分析
(1) t 在 0- ~ 0+ 间
uC(0)=0,电容相当于短路
iC (t )
0
Δq 0 iCdt 1
uC
(0
)
Δq C
uC
(0
)
1 C
(2) t > 0+ 零输入响应。
解 (1) t 在 0- ~ 0+ 间
C duC uC (t )
dt R
0 C duC dt
返回目录
9.1 阶跃函数和冲激函数
一、单位阶跃函数(unit step function)
(t)
1. 定义
(t)
def
0 1
(t 0) (t 0)
1
0
t
用 (t )可描述开关的动作。
S
US
R+ uC C

开关在t =0 时闭合
US(t)
R+ uC C –
def 0 (t 0)
US (t) US (t 0)
(t) 线性网络 h(t)
一、卷积积分(convolution)定义 设 f1(t) , f2(t)在 t < 0时均为零
t
f1(t )* f2 (t ) 0 f1( ) f2 (t )d
性质1 f1(t)* f2(t) f2(t)* f1(t)
t
证明 f1(t )* f2 (t ) 0 f1( ) f2 (t )d
01
t
(1< t) f (t) (t 1)
则 f (t) t [ (t) (t 1)] (t 1)
二、单位冲激函数(unit pulse function)

李裕能_第九章一阶电路和二阶电路习题及解答

李裕能_第九章一阶电路和二阶电路习题及解答

第九章一阶电路和二阶电路本章意图本章主要介绍动态电路的时域分析法。

主要内容有动态电路及其方程,动态电路的换路定则及初始条件的计算,一阶电路的时间常数,一阶电路的零输入响应,一阶电路的零状态响应,一阶电路的全响应,一阶电路的阶跃响应,一阶电路的冲激响应,二阶电路的零输入响应,二阶电路的零状态响应及阶跃响应,二阶电路的冲激响应和卷积积分。

第一节内容提要一、动态电路电路有两种工作状态——稳态和动态。

描述直流稳态电路的方程是代数方程;用相量法分析交流电路时,描述交流稳态电路的方程也是代数方程。

描述动态电路的方程则是微分方程。

描述一阶电路的方程是一阶微分方程,描述二阶电路的方程是二阶微分方程。

二、动态电路的初始条件1 . 换路当电路中的开关被断开或闭合,使电路的接线方式或元件参数发生变化,我们称此过程为换路。

2 . 换路定则在一般情况下,在换路前后瞬间,电容电流i C为有限值,故有u C(0+) = u C(0 - )在一般情况下,在换路前后瞬间,电感电压u L为有限值,故有i L(0+) = i L(0 - )3 . 如何计算电路的初始条件对于一个动态电路,其独立的初始条件是u C( 0+ )和i L( 0+ ),其余的是非独立初始条件。

如果要计算电路的初始条件,可以由换路前的电路计算出u C( 0 - )和i L( 0 - ),然后令其相等即可求得u C( 0+ )和i L( 0+ )。

最后由换路后的等效电路就可以求出所需要的非独立初始条件。

三、一阶电路的响应1 . 一阶电路的时间常数在换路之后电路中,令独立电源为零,将电路化简成为一个等效电阻与储能元件的并连电路。

对于RC、RL电路的时间常数分别为:τ= RC、τ=L / R。

2 . 一阶电路的零输入响应在换路之后电路中无独立电源,由换路之前储能元件储存的能量在电路中产生响应,称为零输入响应。

3 . 一阶电路的零状态响应在换路之前储能元件没有储存能量,由换路之后电路中独立电源的能量在电路中产生响应,称为零状态响应。

一阶电路的阶跃响应和冲激响应

一阶电路的阶跃响应和冲激响应

一阶电路的阶跃响应和冲激响应一阶电路的阶跃响应和冲激响应零状态是零原始状态的简称。

电路在零原始状态下,仅由输入激励产生的响应称为零状态响应( zero-state response )。

电路在单位阶跃电压或单位阶跃电流激励下的零状态响应称为单位阶跃响应(unit-step response), 简称阶跃响应 (step response) 。

图1 表示由单位阶跃电流激励的 RC 并联电路。

图中ε( t )为单位阶跃电流。

当 t&lt;0 时电路无输入激励, ;当 t&gt;0 时,电流源向电路提供1A 的恒定电流。

这时,电路中的任一响应( 电流或电压 ) 仅仅是由单位阶跃电流激励产生的,即为电路的的RC 并联电路当 t=0 时,由于电容电流是有限值,电容电压不能跳变,故 uc(0 + )= uc(0 - )=0, iR (0 + )=uc(0 +) /R=0 ,ic(0 + )=1A 。

即此时电容的充电电流等于电流源的电流。

随着充电过程的进行,电容电压将从零开始逐渐升高,电阻中的电流也将从零开始逐渐增大,但电流源输出的电流( 1A )却保持不变,因此,电容电流必将逐步减小。

当电容充电结束后,,电流源的全部电流通过电阻。

为了研究上述 RC 并联电路的阶跃响应,首先根据电路的基本约束关系建立电路方程或 (1 )当 t 〉 0 时,式( 1 )变为( 2 )此即为 t&gt;0 时电路的输入 - 输出方程,它是一个一阶常系数线性非齐次微分方程。

令式( 2 )的右端等于零,得齐次微分方程为于是可得阶跃响应电压的自由分量为由于电路的激励函数在 t&gt;0 时是一个常数,可设阶跃响应电压的强制分量为一常数 K ,即将此式代入非齐次微分方程式( 2 ),得到于是有 K=R强制分量因此式(2 )的通解为 ( 5 )由式 (5 )令,并代入初始条件,可得B+R=0从而解得积分常数 B=-R将积分常数代入式( 5 ),并将该式右端乘以单位阶跃函数,便得到电路的阶跃响应电压为或阶跃响应的强制分量在 t 〉 0 的区间内是一个常量,因此,又被称为阶跃响应的稳态分量 (steady-statecomponent) ,或称稳态响应 (steaty-state response) 。

一二阶电路阶跃、冲激响应

一二阶电路阶跃、冲激响应
稳态时,电感相当于短路,因 此电路中的电压为零,电流等 于输入电压除以电阻。
时间常数概念及计算方法
时间常数是一阶电路的重 要参数,它表示了电路过 渡过程的快慢程度。
时间常数越大,电路过渡过 程越缓慢;时间常数越小, 电路过渡过程越迅速。
ABCD
时间常数τ的计算方法根据电路 类型不同而有所不同。对于RC 电路,τ=RC;对于RL电路, τ=L/R。
阶跃信号与冲激信号介绍
阶跃信号
阶跃信号是一种特殊的信号,其值在某一时刻突然发生变化 ,并保持不变。在电路中,阶跃信号常用于测试系统的瞬态 响应。
冲激信号
冲激信号是一种具有突变性质的信号,其值在极短时间内发 生巨大变化。在电路中,冲激信号常用于模拟雷电、开关操 作等瞬间过程。
响应类型及分析方法
响应类型
一二阶电路阶跃、冲激响应
目录
• 电路基本概念与分类 • 一阶电路阶跃响应分析 • 二阶电路阶跃响应分析 • 冲激响应概念及分析方法 • 实际应用场景举例与仿真实验 • 总结与展望
01 电路基本概念与分类
电路定义及组成要素
电路定义
电路是由电气元件(如电阻、电容、 电感等)按照一定方式连接而成,用 于传输和转换电能的系统。
同,但同样受到阻尼比和自然频率等参数的影响。
阻尼比、自然频率等参数影响
阻尼比
阻尼比决定了电路的振荡性质,不同阻尼比下电路的响应形态不 同。
自然频率
自然频率决定了电路振荡的频率,与电路元件的参数有关。
参数变化对响应的影响
当电路元件的参数发生变化时,阻尼比和自然频率等参数也会随之 变化,从而影响电路的响应。
二阶电路冲激响应求解方法
1 2
经典法
通过求解二阶微分方程得到冲激响应表达式。

实验一 RC与RLC电路的阶跃响应

实验一 RC与RLC电路的阶跃响应
▪ 连接P904与P905。
▪ 将示波器CH2的探头接于TP909,调整W902, 使电路分别工作于欠阻尼、临界阻尼和过阻 尼三种状态。
▪ 观察并记录电路处于以上三种状态时激励信 号与响应信号的波形。
五. 实验报告要求
1. 将实验测算出的时间常数分别填入表1-1与表1-2 中,并与理论计算值比较。
1台
数字万用表
1台

信号与系统实验箱
1台
四. 实验内容和步骤
1.一阶RC电路的暂态响应观测 2. RLC电路阶跃响应与冲激响应的观测

3.一阶RL电路的暂态响应观测(选做)
1.一阶RC电路的暂态响应观测
1. 连接电路。
2. 调节信号源,使之输出频率2.5KHz,幅度 为3V的方波 。
3. 将上述方波作为RC电路的输入,用示波器 观察输入、输出信号的波形,并记录。
2. 画出方波信号作用下RC电路、RL电路各状态下 的响应电压的波形(绘图时注意波形的对称性), 分析实验结果,说明一阶电路的时间常数τ对电路 暂态过程的影响。
3. 对RLC电路,描绘有相同时间轴的阶跃响应与冲 激响应的输入、输出电压波形,要标明信号幅度A、 周期T、方波脉宽T1以及微分电路的τ值。
2. RLC电路阶跃响应与冲激响 应的观测
1、阶跃响应的观测
▪ 连接电路。
▪ 调节信号源,使之输出频率500Hz,幅度为 1.5V的方波 。
▪ 调节电位器,使R的值满足 R 2 L。 ▪ 将上述方波作为RC电路的输入,用C 示波器
观察输入、输出信号的波形,并记录。
R2 L C
▪再调节电位器,使R的值满足 R 2 L ,
4. 测量时间常数τ,将结果填入表1-1中 。

一阶电路和二阶电路的阶跃响应、冲击响应ppt课件

一阶电路和二阶电路的阶跃响应、冲击响应ppt课件

解 1)0–≤t ≤0+:uC(0-)=0
Ri
电容充电,零状态响应
+
RC
duC dt
uC
(t)
(t) C uC

0
0RC duC dt
0
dt
0 0
uCdt
0 (t)dt
0
注意:uC不是冲激函数,否则KVL不成立。
RCuC (0 ) uC (0 ) 1
uC (0 )
1 RC
发生突变
§7-7 一阶和二阶电路的阶跃响应
1.单位阶跃函数
1)单位阶跃函数的定义
(t)
( t ) =
0,t < 0 1,t > 0
2)单位阶跃函数的延迟
( t-t0 ) =
0,t < t0 1,t > t0
整理版课件
1
0
(t – t0)
1
0 t0
t
t
1
3)单位阶跃函数的作用
① 表示开关动作
(t = 0)
+ 10k iC
uS(V) 10
uS -
10k 100F
应用叠加定理
0
0.5 t(s)
uS 10 (t) 10 (t 0.5)V
求单位阶跃响应s(t)
uC (0 ) uC (0 ) 0
iC (0 ) 0.1mA iC () 0 ReqC 0.5s
整理版课件
5
t
s(t) iC () [iC (0 ) iC ()]e
iR
uC 0.2
5uC
iC
2
duC dt
uC
uL
0.25
diL dt

第七章一阶电路和二阶电路的时域分析PPT课件

第七章一阶电路和二阶电路的时域分析PPT课件

U 63.2%U
uC
u
' C
o -36.8%U
u
" C
t
-U
§7-3 一阶电路的零状态响应
uRR iUet
稳态分量(强制分量):电 路到达稳定状态时的电压, 其变化规律和大小都与电 源电压U有关。 瞬态分量(自由分量):仅 存在于暂态过程中,其变 化规律与电源电压U无关, 但其大小与U有关。
§7-3 一阶电路的零状态响应
讲课7学时,习题1学时。
§7-1 动态电路的方程及其初始条件
一、动态电路的有关概念
⒈ 一阶(动态)电路 仅含一个动态元件,且无源元件都是线性和时不
变的电路,其电路方程是一阶线性常微分方程。
⒉ 二阶(动态)电路 含两个动态元件的电路,其电路方程是二阶微分
方程。
§7-1 动态电路的方程及其初始条件
⒊ 过渡过程 当电路的结构或元件的参数发生变化时,可能使
第七章 一阶电路和二阶电路的时域分析
§7-1 动态电路的方程及其初始条件 §7-2 一阶电路的零输入响应 §7-3 一阶电路的零状态响应 §7-4 一阶电路的全响应 §7-5 二阶电路的零输入响应 §7-6 二阶电路的零状态响应和全响应
§7-7 一阶电路和二阶电路的阶跃响应 §7-8 一阶电路和二阶电路的冲激响应 *§7-9 卷积积分 *§7-10 状态方程 *§7-11 动态电路时域分析中的几个问题
dt
t=0
+
所以
eL
L
di dt
很大
+
U-
R uRL
eL可能使开关两触点之
L-
间的空气击穿而造成电弧以
1S
i
延缓电流的中断,开关触点

一阶电路和二阶电路的动态响应实验报告

一阶电路和二阶电路的动态响应实验报告

一阶电路和二阶电路的动态响应实验报告
一、实验仪器及准备
1、实验仪器:实验装置有示波器、仪表比较电路、模拟可变电阻、电子电路实验板和电池等。

2、实验配件:可变电阻、电容、电阻、NPN 半导体二极管、PNP 半导体三极管。

二、实验目的
通过电子电路实验板和示波器,研究二阶电路的动态响应,了解一阶和二阶电路的差异,观察不同电路的调节响应特性。

三、实验步骤
1、准备好相关电子零件,并在实验板上按照实验图示连接电路;
2、调整模拟可变电阻连接示波器,使其和电路产生联系;
3、接通电源,操作电路,观看示波器显示信号波形;
4、调节模拟可变电阻,改变参数,观察响应特性,记录比较数据;
四、实验结果及分析
1、调节可变电阻调整电路参数后,观察一阶和二阶电路的动态响应,可以发现二阶响应有比一阶高得多的响应速度和抑制程度;
2、当电源电压发生变化时,一阶电路只有一条响应曲线,而二阶电路则有两条响应曲线;
3、一阶电路的相应是线性的,而二阶电路的相应是线性加指数函数;
4、一阶电路响应不灵敏,而二阶电路灵敏度高;
五、实验结论
一阶电路适合于对低频信号的检测和处理,而二阶电路可以拨错并有效抑制非线性信号的出现。

在示波技术中,二阶电路比一阶电路更具响应灵敏度。

一阶电路与二阶电路ppt

一阶电路与二阶电路ppt

uL (t)
L diL (t) dt
Rt
RI0e L
RiL (t)
t0
10
3.解的物理含义:iL及u的波形
从图可见,电感电流从初始值I0开始按指数规律衰减到0 电感电压在换路瞬间有1个跳变,从uL(0-)=0跳变到 uL(0+)=-I0R,然后按指数规律衰减到0。
I0
图3-6 RC 电路零输入响应 电压电流波形图
包权
人书友圈7.三端同步
4.时间常数:
7
换路之后,电路中各电压、电流量都是从各自的初始值开 始按照指数规律衰减到0,那么衰减速率与什么有关?
a. 电容C越大,电容中存储的电荷越多,放电的时间越长
b. 电阻R越大,放电电流越小,放电时间越长。
所以各个电量衰减速率与R和C的乘积即 RC 有关。 越小,衰减速率越快,反之,则慢。U0只是影响瞬时值,
0.5U
I1=I+0.5u
由KVL得:U=3*I+[0.5u+I] *1
13
R=3
I1 R=1
L=4H
U(t)
i(t)
→0.5U=4I →Req=U/I=8
2.求 L 4 0.5
R8
3.求i(t):
t
i(t) i(0 )e
t
i(0 )e
2e2t
4.求u(t) u(t) L di(t) 16e2t
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

duC dt
(0 )

1 C
iL (0
)

0
(t)
-
+ C uC
-
LC
d2uC dt 2

RC
duC dt
uC

(t)
0LC
0
d2uC dt 2
dt

0 RC
duC
0
dt

0
dt
0
0 0
uC
dt

0 (t)dt
0
有限值
有限值
18
LC
duC dt
(0
)

LC
duC dt
(0
)

1
iL (0
)

C
duC dt
(0 )

1 L
uC (0 ) uC (0 ) 0
2)t ≥0+:
uC (0 ) 0
1 iL (0 ) L
LC
d2uC dt 2

RC
duC dt
uC

0
R L iL
+ C uC
-
R 2 L / C 过阻尼
iL (t)

1 L
t
e (t)
1 iL
L
0
t
KVL: RiL uL (t)
uL
(t)


(t)

R L

e
t

(t)
1 uL
0
t
R
L
16
单位冲激响应与单位阶跃响应的关系:
e(t)
r(t)
零状态
激励
响应
e(t) (t) e(t) (t)
r(t) s(t) r(t) h(t)
dt

0 (t)dt
0
注意:iL不是冲激函数,否则KVL不成立。
LiL (0 ) iL (0 ) 1
iL (0 )

1 L
发生突变
15
2)t ≥0+:
iL (0 )

1 L
电感放电,零输入响应
iL (t)

1
t
e
L
t
0


L R
R
+ iL uL L -
RL电路的单位冲激响应:
i
C
(t)

e2t mA 0.632e-2(t-0.5)
(0 mA
t (t

0.5 s) 0.5 s)
1 iC(mA)
波形 0.368
0 0.5
t(s)
-0.632
6
3.二阶电路的阶跃响应 例 已知图示电路中uC(0-)=0, iL(0-)=0,求单位阶跃
响应 iL(t)。
(t)A iR
(t) d (t)
dt
h(t) ds(t) dt
t
(t) ( )d
t
s(t) h( )d


17
3. 二阶电路的冲激响应
例 已知uC(0-)=0,iL(0-)=0,求RLC电路的单位冲激
响应.
R L iL
解 1)0–≤t ≤0+:uC(0-)=0
+
13
2)t ≥0+:
uC (0 )
1 RC
电容放电,零输入响应
uC (t)

1 RC
t
e RC
t

0
Ri
+ C uC

RC电路的单位冲激响应:
uC (t)

1 RC

e
t
RC (t)
1 uC
RC
0
t
KVL: RiC uC (t)
iC (t)

1 R

(t)
1 R2C

e
§7-7 一阶和二阶电路的阶跃响应
1.单位阶跃函数
1)单位阶跃函数的定义
(t)
(t)=
0,t < 0 1,t > 0
2)单位阶跃函数的延迟
( t-t0 ) =
0,t < t0 1,t > t0
1
0
(t – t0)
1
0 t0
t
t
1
3)单位阶跃函数的作用
① 表示开关动作 (t = 0)
S
US
u(t)
US (t)
② 起始信号作用
f(t)
f(t)(t t0)
O t0
t
O t0
t
2
4)用单位阶跃函数表示复杂信号
f (t) 1
(t)
1
0
t0 t
f (t) (t) (t t0)
f (t) 2
1
0 t0
t
- (t-t0)
f(t) t (t)
1
0 123 t
f (t) (t) (t 1) (t 2) (t 3)
t
( )d
0 t ≤0

1 t ≥0
t
(t) (t)dt
(t) d (t)
dt
(t)等于 (t)的积分 (t)等于 (t)的导数
11
② (t)的“筛分”性质 f (t)·(t) = f (0)·(t)


f (t) (t)dt f (0) (t)dt f (0)
t
RC (t)
1 iC
R
0
1 R2C
t
14
例2 已知iL(0-)=0,求RL电路的单位冲激响应.
解 1)0–≤t ≤0+:iL(0-)=0 电感充电,零状态响应
R
+
+ iL
L
diL dt

RiL


(t)
(t) uL L
-
-
0
L 0 diL dt
0 dt
0 0
Ri
L
5
t
s(t) iC () [iC (0 ) iC ()]e
0.1e2t (t) mA 根据叠加定理,得到电路的响应为:
iC (t) 10s(t) 10s(t 0.5)
e2t (t) e2(t 0.5) (t 0.5) mA
分段表示为:
iC iL
0.5iC
iS
0.2 2F 0.25H
解 列写电路方程:
iR iC iL 0.5iC (t)
iR

uC 0.2

5uC
iC

2
duC dt
uC

uL

0.25
diL dt
7
0.25
d 2iL dt 2
1.25
diL dt
iL

(t)
方程的解为: iL i i
t
uC (t) (1 e RC ) (t)

i(t)

1
t
e RC (t)
R
1 uC
1i
R
1
t
e RC (t)

1/R
i
1
t
e RC
t

0
R

R
0
t0
t
0
t
4
阶跃响应的性质:设激励为 (t)时,响应为s(t)。
1)线性性质:若激励为k (t),则响应为ks(t)。
2)时不变性:若激励为 (t-t0),则响应为s(t-t0)。
知识回顾 Knowledge
Review

4uC (0 )

4uC (0 )

0
8
得到:
1A1A14
A2 A2

0 0
单位阶跃响应:
A1


4 3
A2

1 3
iL
(t
)

1

4 3
et

1 3
e
4tFra bibliotek(t)A
电路的动态过程是过阻尼性质。
9
§7-7 一阶和二阶电路的冲激响应
1. 单位冲激函数
p(t)
1)单位冲激函数的定义
(t) = 0,t≠0
1
0
2
t
2
冲激函数的形成

(t)dt 1 (t) 1(强度)
t
0
10
2)单位冲激函数的延迟
(t – t0) 1
(t-t0) = 0,t≠0
0 t0 t


(t

t0
)dt

1
3)单位冲激函数的性质
① (t)与 (t)的关系
01
t
(t 1) (t 1)
f (t) t (t) (t 1) (t 1)
3
2.一阶电路的阶跃响应 一阶电路在单位阶跃激励作用下电路的零状态响应
称为单位阶跃响应,用s(t)表示。
Ri
已知 uC (0-)=0,求电路的单
(t)
C
+ uC
位阶跃响应uC(t)和i(t)。


同理:

f (t) (t t0 )dt f (t0 )
单位冲激函数的筛分性质又称为取样性质。
2. 一阶电路的冲激响应 一阶电路在单位冲激激励作用下电路的零状态响
相关文档
最新文档