阶动态电路的响应测试实验报告

合集下载

电路与信号系统实验报告2-二阶电路的动态响应

电路与信号系统实验报告2-二阶电路的动态响应

二阶电路的动态响应
一、实验内容
1.Multisim仿真
(1)创建电路:
(2)设置=10mH、=22nF,电容的初始电压为5V,电源电压为10V。

利用Transient Analysis观测电容两端的电压。

(3)用Multisim瞬态分析仿真零输入响应(参数欠阻尼、临界阻尼、过阻尼三
种情况);在同一张图中画出三条曲线,标出相应阻值。

(4)用Multisim瞬态分析仿真零响应(参数欠阻尼、临界阻尼、过阻尼三种情况);在同一张图中画出三条曲线,标出相应阻值。

(5)利用Multisim中的函数发生器、示波器和波特仪创建如图所示的电路,观测各种响应。

函数信号发生器设置:方波、频率1kHz、幅度5V、偏置5V。

2.在电路板上按图所示的电路(R1=100Ω、L=10mH、C=47nF)焊接实验电路。

3.调节可变电阻器R2,观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临界阻尼,最后过渡到欠阻尼的变化过渡过程,分别定性地描绘、记录响应的典型变化波形,按表记录所测数据和波形。

欠阻尼:R2=35Ω
临界阻尼:R2=819Ω,衰减时间=100us
过阻尼:R2=1kΩ,衰减时间=160us
4.调节R2使示波器荧光屏上呈现稳定的欠阻尼响应波形,定量测定此时电路的衰减振荡角频率
二、实验结论
电阻越高,响应衰减地越快;电阻越低,响应衰减地越慢。

当电阻为零时,
电路无衰减。

电路实验报告 二阶动态电路的响应测试

电路实验报告 二阶动态电路的响应测试

二阶动态电路的响应测试实验报告实验摘要1.实验内容○1在面板板上搭接RLC串联电路;○2研究RLC串联电路的零状态响应和零输入响应。

电路参数:R=51Ω和电位器R=1K、C=10uF、L=10mH、电源电压Vi=5V;○3用示波器观测Uc(t)、UL(t)的波形,记录两种响应的过阻尼、欠阻尼和临界阻尼情况。

2.名词解释二阶电路在一个电路简化后(如电阻的串并联,电容的串并联,电感的串并联化为一个元件),只含有含有两个独立的动态元件的线性电路,因为要用线性、常系数二阶微分方程来描述,故称为二阶电路。

实验目的○1进一步了解二阶动态电路的特点、基本组态、性能参数;○2熟练掌握示波器的测量方法和操作步骤。

实验环境(仪器用品等)实验地点:工训中心C栋203实验时间:12月13日晚实验仪器与元器件:数字万用表(UNI-T UT805A)、函数信号发生器(RIGOL DG1022U)、示波器(Tektronix DPO 2012B)、电位器、电容、电感、导线若干、镊子、面包板等本次实验的原理电路图如下图所示:(来自Multisim 12)二阶测试电路实验原理含用二阶微分方程描述的动态电路称为二阶电路。

可以用下述二阶线性常系数微分方程来描述:式(1)初始值为求解该微分方程,可以得到电容上的电压uc(t)。

再根据可求得,即回路电流。

式(1)的特征方程为:特征值为:式(2)定义:衰减系数(阻尼系数)α=R/2L自由振荡角频率(固有频率)※实验步骤※1.准备工作:检查示波器/函数信号发生器是否显示正常;选取电位器/电容/电感○1检查示波器的使用状况,先进行自检,观察波形是否符合要求,如有问题,检查探头或接口是否存在问题;○2选出电位器、值为10μF电容和值为10mH的电感;○3检查函数信号发生器是否工作正常:先设置参数(Vpp=5Vf=500Hz 方波),再用调节好的示波器测量,看是否符合要求。

2.按照电路图在面包板上连接电路○1根据面包板竖向孔导通的特性,设计串并联电路;○2用镊子把所需的元器件插在面包板上。

一阶电路动态响应实验报告

一阶电路动态响应实验报告

一阶电路动态响应实验报告一、实验报告概述一阶电路动态响应这个实验啊,可有意思啦。

这就像是探索电路世界里的一个小秘密一样。

咱这个实验呢,就是要看看电路在不同的初始条件下,它是怎么随着时间变化而做出反应的。

这就好比是观察一个小生物,看它在不同环境里是怎么生存的。

二、实验目标1. 我们要搞清楚一阶电路动态响应的特点。

就像是认识一个新朋友,要知道他的脾气秉性一样。

2. 学会用实验仪器来测量相关的数据。

这就像是厨师要学会用锅碗瓢盆做出美味佳肴一样。

3. 能够根据实验数据画出准确的响应曲线。

这曲线就像是这个电路的一张画像,能让我们一眼看出它的变化情况。

三、实验重点和难点1. 重点准确连接电路。

这就像是搭积木,每一块都要放对位置,不然整个电路就没法正常工作啦。

正确读取实验仪器的数据。

这数据可不能读错呀,读错了就像认错了路,会把我们带偏的。

2. 难点理解动态响应的概念。

这个概念有点抽象呢,就像雾里看花,要费点功夫才能看清楚。

对实验中出现的误差进行分析。

误差就像调皮的小捣蛋鬼,要找出它是从哪里冒出来的可不容易。

四、实验方法1. 我们采用的是实验测量法。

就像探险家拿着地图和工具去探索未知的地方一样,我们拿着仪器去测量电路的各种参数。

2. 还有对比法。

把不同条件下的实验结果进行对比,就像比较两个苹果,看哪个更甜一样。

五、实验过程1. 电路连接首先把电源、电阻、电容这些元件都拿出来。

就像准备食材一样,要把做菜的材料都准备好。

然后按照电路图小心翼翼地连接起来。

这时候要特别小心,就像走钢丝一样,一步都不能错。

我会跟同学们说:“同学们啊,这电路连接就像搭乐高积木,每个零件都有它的位置,可不能乱放哦。

”要是有同学接错了,我会笑着说:“哎呀,这个小零件跑错地方啦,咱们把它送回正确的家吧。

”2. 数据测量打开电源之后呢,我们就用仪器开始测量电压和电流啦。

这时候要眼睛紧紧盯着仪器的显示屏,就像小侦探在寻找线索一样。

我会提醒同学们:“大家的眼睛要像老鹰一样锐利哦,别错过任何一个数据。

系统阶跃响应实验报告

系统阶跃响应实验报告

一、实验目的1. 了解系统阶跃响应的基本概念和特性。

2. 掌握系统阶跃响应的测试方法。

3. 分析系统阶跃响应的动态性能指标。

4. 通过实验验证理论知识,加深对系统动态特性的理解。

二、实验原理阶跃响应是指系统在单位阶跃输入信号作用下的输出响应。

对于线性时不变系统,其阶跃响应具有以下特点:1. 稳态值:系统达到稳定状态后的输出值。

2. 超调量:系统输出在稳定前达到的最大值与稳态值之差与稳态值之比。

3. 调节时间:系统输出达到并保持在稳态值的±2%范围内的持续时间。

4. 过渡过程时间:系统输出从0%达到并保持在100%稳态值范围内的持续时间。

三、实验仪器与设备1. 自动控制系统实验箱2. 计算机及实验软件3. 阶跃信号发生器4. 数据采集卡四、实验内容1. 构建实验系统,包括一阶系统和二阶系统。

2. 分别对一阶系统和二阶系统进行阶跃响应实验。

3. 测试并记录系统的稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 分析实验结果,验证理论公式。

五、实验步骤1. 构建一阶系统实验电路,包括惯性环节和比例环节。

2. 将阶跃信号发生器输出接入系统输入端,通过数据采集卡采集系统输出信号。

3. 测试一阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 构建二阶系统实验电路,包括惯性环节、比例环节和积分环节。

5. 同样地,测试二阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

6. 对比一阶系统和二阶系统的阶跃响应特性,分析实验结果。

六、实验结果与分析1. 一阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:0%- 调节时间:0.5s- 过渡过程时间:0.5s2. 二阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:10%- 调节时间:1.5s- 过渡过程时间:1.5s从实验结果可以看出,二阶系统的阶跃响应超调量较大,调节时间和过渡过程时间较长,说明二阶系统的动态性能相对较差。

RC一阶电路的响应测试 实验报告

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试一、实验目的1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用虚拟示波器观测波形。

二、原理说明1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图6-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法用示波器测量零输入响应的波形如图6-1(a)所示。

根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。

当t=τ时,Uc(τ)=0.368U m。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632U m所对应的时间测得,如图6-1(c)所示。

(a) 零输入响应(b) RC一阶电路(c) 零状态响应图6-14. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<<2T时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,这就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图6-2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

(a) 微分电路 (b) 积分电路图6-2若将图6-2(a)中的R 与C 位置调换一下,如图6-2(b)所示,由 C 两端的电压作为响应输出。

电路实验八 二阶电路的响应与状态轨迹

电路实验八 二阶电路的响应与状态轨迹

1实验八 二阶电路的响应与状态轨迹一、实验目的1.学习用实验方法研究二阶动态电路的响应,了解电路元件参数对响应的影响。

2.观察、分析二阶电路响应的三种状态轨迹及其特点,以加深对二阶电路响应的认识与理解。

二、实验原理一个二阶电路在方波正、负阶跃信号的激磁下,可获得零状态与零输入响应,其响应的变化轨迹决定于电路的固有频率,当调节电路的元件参数值,使电路的固有频率分别为负实数、共轭复数及虚数时,可获得单调地衰减、衰减振荡和等幅振荡的响应。

在实验中可获得过阻尼,欠阻尼和临界阻尼这三种响应图形。

简单而典型的二阶电路是一个RLC 串联电路和GCL 并联电路,这二者之间存在着对偶关系。

本实验仅对GCL 并联电路进行研究。

三、实验仪器及设备四、实验内容与步骤利用动态线路板中的元件与开关的配合作用,组成如图8-1所示的GCL 并联电路。

令R 1=10KΩ,L =10mH ,C =1000PF ,R 2为10KΩ可调电阻器,令函数信号发生器的输出为Um =3V ,f =1KHz 的方波脉冲信号,通过同轴电缆线接至上图的激励端,同时用同轴电缆线将激励端和响应输出端接至双踪示波器的Y A 和YB 两个输入口。

图 8-1 GCL 并联电路1.调节可变电阻器R 2之值,观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临界阻尼,最后过渡到欠阻尼的变化过渡过程,分别定性地描绘、记录响应的典型变化波形。

2.调节R 2使示波器荧光屏上呈现稳定的欠阻尼响应波形,定量测定此时电路的衰减常数α和振荡频率ωd 。

3.改变一组电路参数,如增、减L 或C 之值,重复步骤2的测量,并作记录。

随后仔细观察,改变电路参数时,ω与α的变化趋势,并作记录。

五、实验注意事项1.调节R2时,要细心、缓慢,临界阻尼要找准。

2.观察双踪时,显示要稳定,如不同步,则可采用外同步法(看示波器说明)触发。

六、预习思考题1.根据二阶电路实验线路元件的参数,计算出处于临界阻尼状态的R2之值。

动态电路响应实验报告

动态电路响应实验报告

一、实验目的1. 了解动态电路的基本原理和特性;2. 掌握一阶动态电路的响应规律;3. 熟练使用示波器、信号发生器等实验仪器;4. 提高实验操作能力和数据处理能力。

二、实验原理动态电路是指电路中含有电容或电感元件的电路。

在动态电路中,电容和电感元件的电压与电流之间的关系可以用导数和积分来描述。

一阶动态电路的响应规律主要由时间常数决定,时间常数τ = RC或τ = L/R,其中R为电阻,C为电容,L为电感。

一阶动态电路的响应分为三种:零输入响应、零状态响应和完全响应。

零输入响应是指在没有外加激励的情况下,仅由电路的初始状态引起的响应;零状态响应是指在外加激励作用下,电路的初始状态为零时的响应;完全响应是零输入响应和零状态响应的和。

三、实验仪器与设备1. 示波器 1台;2. 信号发生器 1台;3. 函数信号发生器 1台;4. 电阻(R1K、R10K、R100K)各1个;5. 电容(C10uF、C100nF)各1个;6. 面包板 1个;7. 导线若干;8. 5V电源 1个。

四、实验内容与步骤1. 零输入响应实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)打开电源,使电容充电至5V;(3)断开电源,观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

2. 零状态响应实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)打开电源,使电容放电;(3)观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

3. 完全响应实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)打开电源,使电容充电至5V,然后断开电源;(3)观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

4. 方波激励实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)使用函数信号发生器输出频率为1kHz,峰峰值为5V的方波信号;(3)观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

广工一阶动态电路响应的研究实验报告

广工一阶动态电路响应的研究实验报告

广工一阶动态电路响应的研究实验报告一阶动态响应实验报告一阶动态电路的响应测试实验报告1.实验摘要1、研究RC电路的零输入响应和零状态响应。

用示波器观察响应过程。

电路参数:R=100K、C=10uF、Vi=5V2.从响应波形图中测量时间常数和电容的充放电时间2.实验仪器5V电源,100KΩ电阻,10uF电容,示波器,导线若干2.实验原理(1)RC电路的零输入响应和零状态响应(i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。

t=0时,电容电压uc(0)称为电路的初始状态。

(ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。

(iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。

(iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法:用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632Um所对应的时间测得,即电容充电的时间t.(2)测量电容充放电时间的电路图如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A.4实验步骤和数据记录(i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶动态电路的响应测试实验报告
1.实验摘要
1、研究RC电路的零输入响应和零状态响应。

用示波器观察响应过程。

电路参数:R=100K、C=10uF、Vi=5V
2.从响应波形图中测量时间常数和电容的充放电时间
2.实验仪器
5V电源,100KΩ电阻,10uF电容,示波器,导线若干
2.实验原理
(1)RC电路的零输入响应和零状态响应
(i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。

t=0时,电容电压uc(0)称为电路的初始状态。

(ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。

(iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。

(iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利
用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的
2.时间常数τ的测定方法:
用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到所对应的时间测得,即电容充电的时间t.
(2)测量电容充放电时间的电路图
如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A.
4实验步骤和数据记录
(i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。

(ii)用示波器测量电容两端的电压,示波器的测量模式调整为追踪。

(iii)打开电源开关,将开关和电压源端相接触,使电容充电,用示波器记录电容充电时的电压变化。

(iiii)将开关和另一端相接触,使电容放电,用示波器记录电容放电时的电压变化。

充电时波形图
放电时波形图
充电时:充电时间T=,时间常数τ=
放电时:放电时间T=,时间常数τ=
5.实验总结
(1)实验测得在误差范围内,充电时间T=,时间常数τ=
放电时间T=,时间常数τ=
(2)电路连接好后方可打开电源,否则会损坏器件,产生误差。

实验时应注意同示波器动态测量电容两端电压的方法,以便得到正确波形。

(3)将实验数据与一阶动态电路的原理进行对比,并找出实验误差,进行改进实验。

相关文档
最新文档