《算法设计与分析》实验报告快速排序
算法实验报告结果分析
一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。
为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。
二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。
实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。
实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。
同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。
三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。
从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。
在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。
总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。
2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。
实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。
与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。
3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。
实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。
可以看出,随着数据量的增加,插入排序的性能明显下降。
算法设计与分析实验报告三篇
算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }}五.程序调试中的问题调试过程,页码出现报错。
算法实验报告
算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
算法设计与分析实验报告_3
实验一全排列、快速排序【实验目的】1.掌握全排列的递归算法。
2.了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集, 用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应, 因此在此就以n个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外, 都有一个后继;除第一个排列外, 都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到, 全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是: 通过一趟排序将要排序的数据分割成独立的两部分, 其中一部分的所有数据都比另外一部分的所有数据都要小, 然后再按此方法对这两部分数据分别进行快速排序, 整个排序过程可以递归进行, 以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1.全排列:快速排序:实验二最长公共子序列、活动安排问题【实验目的】了解动态规划算法设计思想, 运用动态规划算法实现最长公共子序列问题。
了解贪心算法思想, 运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>, 则:..i.若xm=yn, 则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列...ii.若xm≠yn且zk≠x., 则Z是Xm-1和Y的最长公共子序列...iii.若xm≠yn且zk≠y.,则Z是X和Yn-1的最长公共子序列.其中Xm-1=<x1, x2, …, xm-1>, Yn-1=<y1, y2, …, yn-1>, Zk-1=<z1, z2, …, zk-1>。
算法课设实验报告(3篇)
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法设计与分析实验教案_快速排序
课程
算法设计与分析
实验题目
快速排序
实验时数
0.5学时
实验目的
1、理解算法设计的基本步骤及各步的主要内容、基本要求;
2、加深对分治设计方法基本思想的理解,并利用其解决现实生活中的问题;
3、通过本次实验初步掌握将算法转化为计算机上机程序的方法。
实验内容
1、设计和实现快速排序算法;
2、设计和实现随机的快速排序算法;
3、分析算法的效率;
实验要求
1、设计用分治法求解“快速排序”的算法;
2、上机实现所设计的算法;
3、分析所设计的算法的时间/空间复杂性。
实验步骤
1、充分理解算法设计的基本步骤,在此基础上分析本实验内容,建立其数学模型;
2、根据所建立的数学模型,设计求解算法;
3、利用C/C++/Java等语言实现所设计的算法;
4、设计有代表性的典型输入数据,运行程序,分析运行结果的正确性;
5、进行算法效率分析;
6、写出实验报。
实现提示
快速排序的基本思想
学生可能出现的问题
1、
具体实现
算法分析与设计实验报告合并排序快速排序
算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
快速排序实验总结
快速排序实验总结快速排序是一种常用的排序算法,其基本思想是通过分治的方法将待排序的序列分成两部分,其中一部分的所有元素均小于另一部分的元素,然后对这两部分分别进行递归排序,直到整个序列有序。
下面是我在实验中对于快速排序算法的一些总结和思考。
一、算法步骤快速排序的基本步骤如下:1.选择一个基准元素(pivot),将序列分成两部分,一部分的所有元素均小于基准元素,另一部分的所有元素均大于等于基准元素。
2.对于小于基准元素的部分和大于等于基准元素的部分,分别递归地进行快速排序,直到两部分都有序。
3.合并两部分,得到完整的排序序列。
二、算法优缺点优点:1.快速排序的平均时间复杂度为O(nlogn),在排序大数据集时表现优秀。
2.快速排序是一种原地排序算法,不需要额外的空间,因此空间复杂度为O(logn)。
3.快速排序具有较好的可读性和可维护性,易于实现和理解。
缺点:1.快速排序在最坏情况下的时间复杂度为O(n^2),此时需要选择一个不好的基准元素,例如重复元素较多的序列。
2.快速排序在处理重复元素较多的序列时,会出现不平衡的分割,导致性能下降。
3.快速排序在递归过程中需要保存大量的递归栈,可能导致栈溢出问题。
三、算法实现细节在实现快速排序时,以下是一些需要注意的细节:1.选择基准元素的方法:通常采用随机选择基准元素的方法,可以避免最坏情况的出现。
另外,也可以选择第一个元素、最后一个元素、中间元素等作为基准元素。
2.分割方法:可以采用多种方法进行分割,例如通过双指针法、快速选择算法等。
其中双指针法是一种常用的方法,通过两个指针分别从序列的两端开始扫描,交换元素直到两个指针相遇。
3.递归深度的控制:为了避免递归过深导致栈溢出问题,可以设置一个递归深度的阈值,当递归深度超过该阈值时,转而使用迭代的方式进行排序。
4.优化技巧:在实现快速排序时,可以使用一些优化技巧来提高性能。
例如使用三数取中法来选择基准元素,可以减少最坏情况的出现概率;在递归过程中使用尾递归优化技术,可以减少递归栈的使用等。
算法分析与设计实验报告
Wi
Vi
(ms)
2
5.0000
2.0000
26.0000 2.0000 26.0000 38.0000 1.00000000
10.0000 40.0000 3.0000 12.0000
3
8.3333
10.0000 21.0000 3.0000 58.0000 92.3704 1.00000000
3.0000
m=b[i]; low=0; high=i-1;// 设置初始区 while(low<=high) {
mid=(low+high)/2; if(m>=b[mid])
low=mid+1; else
high=mid-1; } for(j=i-1;j>=high+1;j--)//high 为插入位置
b[j+1]=b[j];// 后移元素,留出插入的空位 b[high+1]=m;// 将元素插入正确的位置 }
printf("\n 两种排序相差的时间是: %6.6f\n\n",between_time);
}
2 用贪心算法实现背包问题,按下表格式列出其中的五种情况,其中物品个数、背包容量、
物品重量和物品价值要随机产生。
物品个数 背 包 容 量 物 品 重 量 物 品 价 值 最优值
最优解 所 需 时 间
N
C
struct _timeb timebuffer1,timebuffer2;
int startm,finishm;
double total1=0,total2=0;
//1 表示规模为 N 时,快速排序所需的累计时间, 累计时间
2 表示规模为 N 是,插入排序所需的
快速排序实验报告
快速排序实验排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为“有序”的记录序列。
假设含n个记录的序列为{ R1, R2, …, R n }其相应的关键字序列为 { K1, K2, …,K n }这些关键字相互之间可以进行比较,即在它们之间存在着这样一个关系:K p1≤K p2≤…≤K pn按此固有关系将上式记录序列重新排列为{ R p1, R p2, …,R pn }的操作称作排序。
排序算法是计算机科学中最重要的研究问题之一。
对于排序的研究既有理论上的重要意义,又有实际应用价值。
它在计算机图形、计算机辅助设计、机器人、模式识别、及统计学等领域具有广泛应用。
常见的排序算法有起泡排序、直接插入排序、简单选择排序、快速排序、堆排序等。
例1:有时候应用程序本身就需要对信息进行排序。
为了准备客户账目,银行需要根据支票的号码对支票排序;例2:在一个绘制互相重叠的图形对象的程序中,可能需要根据一个“在上方”关系将各对象排序,以便自下而上地绘出对象。
例3:在一个由n个数构成的集合上,求集合中第i小/大的数。
例4:对一个含有n个元数的集合,求解中位数、k分位数。
问题描述在操作系统中,我们总是希望以最短的时间处理完所有的任务。
但事情总是要一件件地做,任务也要操作系统一件件地处理。
当操作系统处理一件任务时,其他待处理的任务就需要等待。
虽然所有任务的处理时间不能降低,但我们可以安排它们的处理顺序,将耗时少的任务先处理,耗时多的任务后处理,这样就可以使所有任务等待的时间和最小。
只需要将n 件任务按用时去从小到大排序,就可以得到任务依次的处理顺序。
当有 n 件任务同时来临时,每件任务需要用时n i,求让所有任务等待的时间和最小的任务处理顺序。
基本要求(1)数据的输入输出格式:输入:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
输出:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
数据结构实验八快速排序实验报告
数据结构实验八快速排序实验报告一、实验目的1.掌握快速排序算法的原理。
2. 掌握在不同情况下快速排序的时间复杂度。
二、实验原理快速排序是一种基于交换的排序方式。
它是由图灵奖得主 Tony Hoare 发明的。
快速排序的原理是:对一个未排序的数组,先找一个轴点,将比轴点小的数放到它的左边,比轴点大的数放到它的右边,再对左右两部分递归地进行快速排序,完成整个数组的排序。
优缺点:快速排序是一种分治思想的算法,因此,在分治思想比较适合的场景中,它具有较高的效率。
它是一个“不稳定”的排序算法,它的工作原理是在大数组中选取一个基准值,然后将数组分成两部分。
具体过程如下:首先,选择一个基准值(pivot),一般是选取数组的中间位置。
然后把数组的所有值,按照大小关系,分成两部分,小于基准值的放左边,大于等于基准值的放右边。
继续对左右两个数组递归进行上述步骤,直到数组只剩一个元素为止。
三、实验步骤1.编写快速排序代码:void quicksort(int *a,int left,int right) {int i,j,t,temp;if(left>right)return;temp=a[left];i=left;j=right;while(i!=j) {// 顺序要先从右往左移while(a[j]>=temp&&i<j)j--;while(a[i]<=temp&&i<j)i++;if(i<j) {t=a[i];a[i]=a[j];a[j]=t;}}a[left]=a[i];a[i]=temp;quicksort(a,left,i-1);quicksort(a,i+1,right);}2.使用 rand() 函数产生整型随机数并量化生成的随机数序列,运用快速排序算法对序列进行排序。
四、实验结果实验结果显示,快速排序能够有效地快速地排序整型序列。
在随机产生的数值序列中,快速排序迅速地将数值排序,明显快于冒泡排序等其他排序算法。
常见算法设计实验报告(3篇)
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
算法设计算法实验报告(3篇)
第1篇一、实验目的本次实验旨在通过实际操作,加深对算法设计方法、基本思想、基本步骤和基本方法的理解与掌握。
通过具体问题的解决,提高利用课堂所学知识解决实际问题的能力,并培养综合应用所学知识解决复杂问题的能力。
二、实验内容1. 实验一:排序算法分析- 实验内容:分析比较冒泡排序、选择排序、插入排序、快速排序、归并排序等基本排序算法的效率。
- 实验步骤:1. 编写各排序算法的C++实现。
2. 使用随机生成的不同规模的数据集进行测试。
3. 记录并比较各算法的运行时间。
4. 分析不同排序算法的时间复杂度和空间复杂度。
2. 实验二:背包问题- 实验内容:使用贪心算法、回溯法、分支限界法解决0-1背包问题。
- 实验步骤:1. 编写贪心算法、回溯法和分支限界法的C++实现。
2. 使用标准测试数据集进行测试。
3. 对比分析三种算法的执行时间和求解质量。
3. 实验三:矩阵链乘问题- 实验内容:使用动态规划算法解决矩阵链乘问题。
- 实验步骤:1. 编写动态规划算法的C++实现。
2. 使用不同规模的矩阵链乘实例进行测试。
3. 分析算法的时间复杂度和空间复杂度。
4. 实验四:旅行商问题- 实验内容:使用遗传算法解决旅行商问题。
- 实验步骤:1. 设计遗传算法的参数,如种群大小、交叉率、变异率等。
2. 编写遗传算法的C++实现。
3. 使用标准测试数据集进行测试。
4. 分析算法的收敛速度和求解质量。
三、实验结果与分析1. 排序算法分析- 通过实验,我们验证了快速排序在平均情况下具有最佳的性能,其时间复杂度为O(nlogn),优于其他排序算法。
- 冒泡排序、选择排序和插入排序在数据规模较大时效率较低,不适合实际应用。
2. 背包问题- 贪心算法虽然简单,但在某些情况下无法得到最优解。
- 回溯法能够找到最优解,但计算量较大,时间复杂度较高。
- 分支限界法结合了贪心算法和回溯法的特点,能够在保证解质量的同时,降低计算量。
3. 矩阵链乘问题- 动态规划算法能够有效解决矩阵链乘问题,时间复杂度为O(n^3),空间复杂度为O(n^2)。
关于算法的实验报告(3篇)
第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
算法分析与设计课程实验报告
算法分析与设计课程实验报告班级: 131213学号: 13121XXX姓名: XXX指导老师:邓凡目录算法分析与设计课程实验报告 (1)实验一排序 (1)1. 课本练习2.3-7 (1)2. 实现优先队列 (2)3.快速排序 (2)4. 第k大元素 (3)实验二动态规划 (4)1. 矩阵链乘 (4)2. 最长公共子序列 (5)3. 最长公共子串 (7)4. 最大和 (9)5. 最短路径 (10)实验三贪心策略 (11)1. 背包问题 (11)2. 任务调度 (14)3. 单源点最短路径 (15)4. 任意两点间最短路径 (16)实验四回溯法 (18)1. 0-1背包问题 (18)2. 8-Queen问题 (21)实验一排序1.课本练习2.3-7(1)问题描述描述一个运行时间为 (nlgn)的算法,给定n个整数的集合S和另一个整数x,该算法能确定S中是否存在两个其和刚好是x的元素。
(2)问题分析该问题首先要进行排序,然后用二分查找法判断S中是否存在两个其和刚好是x的元素,因为时间复杂度为(nlgn),所以可以采用归并排序。
(3)算法分析归并排序的思想是将n个元素分成各含n/2个元素的子序列,然后对两个子序列递归地进行排序,最后合并两个已排序的子序列得到排序结果。
二分查找的思想是对于集合中的每一个数字,用二分法找到x-S[i]的位置,若存在且不为其本身,则输出S中存在有两个和等于x的元素;否则,不存在。
(4)实验结果2.实现优先队列(1)问题描述实现优先队列,维护一组元素构成的集合S。
(2)问题分析优先队列是基于堆排序的。
首先将集合S中的元素进行堆排序。
当进行操作时,要不断维护集合S的有序性,即要不断地调整堆。
(3)算法分析本程序中主要的函数有INSERT():需要调用INCREASE_KEY()来维护堆,其时间复杂度为O(lgn),函数MAXIMUM()仅需要返回S[1],时间复杂度为 (1),函数EXTRACT_MAX()需要调用堆排序中的MAX_HEAPIFY,时间复杂度为O(lgn),函数INCREASE_KEY()更新结点到根结点的路径长度为O(lgn),时间复杂度为O(lgn)。
【精编范文】快速排序算法实验报告-范文word版 (17页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==快速排序算法实验报告篇一:快速排序( 实验报告附C++源码)快速排序一、问题描述在操作系统中,我们总是希望以最短的时间处理完所有的任务。
但事情总是要一件件地做,任务也要操作系统一件件地处理。
当操作系统处理一件任务时,其他待处理的任务就需要等待。
虽然所有任务的处理时间不能降低,但我们可以安排它们的处理顺序,将耗时少的任务先处理,耗时多的任务后处理,这样就可以使所有任务等待的时间和最小。
只需要将n 件任务按用时去从小到大排序,就可以得到任务依次的处理顺序。
当有 n 件任务同时来临时,每件任务需要用时ni,求让所有任务等待的时间和最小的任务处理顺序。
二、需求分析1. 输入事件件数n,分别随机产生做完n件事所需要的时间;2. 对n件事所需的时间使用快速排序法,进行排序输出。
排序时,要求轴值随机产生。
3. 输入输出格式:输入:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
输出:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
4. 测试数据:输入95 3 4 26 1 57 3 输出1 2 3 3 4 5 5 6 7三、概要设计抽象数据类型因为此题不需要存储复杂的信息,故只需一个整型数组就可以了。
算法的基本思想对一个给定的进行快速排序,首先需要选择一个轴值,假设输入的数组中有k 个小于轴值的数,于是这些数被放在数组最左边的k个位置上,而大于周知的结点被放在数组右边的n-k个位置上。
k也是轴值的下标。
这样k把数组分成了两个子数组。
分别对两个子数组,进行类似的操作,便能得到正确的排序结果。
程序的流程输入事件件数n-->随机产生做完没个事件所需时间-->对n个时间进行排序-->输出结果快速排序方法(因图难画,举一个实例):初始状态 72 6 57 88 85 42 l r 第一趟循环 72 6 57 88 85 42 l r 第一次交换 6 72 57 88 85 42 l r 第二趟循环 6 72 57 88 85 42 r l 第二次交换 72 6 57 88 85 42 r l反转交换 6 72 57 88 85 42 r l这就是依靠轴值,将数组分成两部分的实例(特殊情况下,可能为一部分,其中42是轴值)。
快速排序实验报告心得(3篇)
第1篇一、实验背景随着计算机科学的发展,算法在各个领域都扮演着至关重要的角色。
排序算法作为算法领域中的一项基本技能,其重要性不言而喻。
快速排序作为一种高效的排序算法,因其简洁的原理和良好的性能,被广泛应用于各种场景。
本次实验旨在通过实践,深入了解快速排序算法的原理、实现及其性能特点。
二、实验目的1. 掌握快速排序算法的基本原理和实现方法;2. 分析快速排序算法的时间复杂度和空间复杂度;3. 比较快速排序与其他排序算法的性能差异;4. 熟练运用快速排序算法解决实际问题。
三、实验内容1. 快速排序算法原理及实现快速排序是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列划分为两个子序列,一个子序列中的所有元素均小于等于基准元素,另一个子序列中的所有元素均大于等于基准元素。
然后递归地对这两个子序列进行快速排序。
具体实现步骤如下:(1)选择基准元素:从待排序序列中选取一个元素作为基准元素,通常选择序列的第一个或最后一个元素。
(2)划分:将待排序序列划分为两个子序列,左子序列包含小于等于基准元素的元素,右子序列包含大于等于基准元素的元素。
(3)递归排序:递归地对左子序列和右子序列进行快速排序。
2. 快速排序算法性能分析快速排序算法的平均时间复杂度为O(nlogn),最坏情况下的时间复杂度为O(n^2)。
空间复杂度为O(logn),因为快速排序采用递归实现,需要一定的栈空间。
3. 快速排序与其他排序算法的比较与冒泡排序、插入排序等简单排序算法相比,快速排序具有以下优点:(1)时间复杂度较低,适用于大规模数据的排序;(2)空间复杂度较低,节省内存资源;(3)对数据结构无特殊要求,适用于各种数据类型。
然而,快速排序也存在以下缺点:(1)最坏情况下的时间复杂度较高,当数据量较大且分布不均匀时,性能可能不如其他排序算法;(2)递归实现可能导致栈溢出,对数据量较大的排序任务不适用。
四、实验总结通过本次实验,我对快速排序算法有了更深入的了解。
快速排序报告
2011/2012学年第2学期“算法分析与设计”上机报告学院/系信息工程学院计算机科学系专业计算机科学与技术班级项目名称快速排序问题组长小组成员()目录摘要 (3)关键字 (3)问题描述 (3)算法分析 (3)伪代码 (4)快排小组安排及模块 (4)界面 (9)实现功能 (10)总结 (10)2011/2012学年第2学期“算法分析与设计”上机报告快速排序问题一、摘要快速排序(Quicksort)是由C. A. R. Hoare在1962年提出。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
本次上机实验,我们采用快速排序的方法将输入的以空格为间断的任意个整数完成了由小到大的按顺序排列,实现了序列由用户从键盘输入、限制性输入、查看即时排序序列、暂停排序、查看中间轴的选取、查看上一序列和下一序列、查看已确定数字、动态演示、修改时间间隔、代码联动这十项功能。
二、关键字快速排序、分割、交换、GUI、代码联动、暂停查看每一步、限制性输入三、问题描述排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为“有序”的记录序列。
要求设计一个小程序,用快速排序的方法使得输入的以空格为间断的任意个整数由小到大按顺序排列。
四、算法分析设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。
值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。
一趟快速排序的算法是:(1)设置两个变量pl、pr,排序开始的时候:pl=0,pr=N-1;(2)以中间数组元素作为关键数据,赋值给key;(3)从pr开始向前搜索,即由后开始向前搜索(pr=pr-1即pr--),找到第一个小于key的值A[j],A[j]与A[i]交换;(4)从pl开始向后搜索,即由前开始向后搜索(pl=pl+1即pl++),找到第一个大于key的A[i],A[i]与A[j]交换;(5)重复第3、4、5步,直到 pl=pr; (3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止。
算法分析与设计实验报告-合并排序、快速排序
实验报告课程计算机算法设计与分析实验名称合并排序、快速排序学号姓名实验日期:实验一合并排序、快速排序一.实验目的(1)学习合并排序和快速排序算法的思想,掌握原理。
(2)运用合并排序和快速排序算法的思想进行编程实现,以加深理解。
二.实验内容(1)输入几个整数,运用合并排序的思想进行编程实现,输出正确的排序结果。
(2)输入10个整数,运用快速排序的思想进行编程实现,输出正确的排序结果三.实验代码(1)合并排序源代码如下:#include <iomanip.h>//调用setw#include <iostream.h> //将b[0]至b[right-left+1]拷贝到a[left]至a[right]template <class T>void Copy(T a[],T b[],int left,int right){ int size=right-left+1;for(int i=0;i<size;i++){a[left++]=b[i];}} //合并有序数组a[left:i],a[i+1:right]到b,得到新的有序数组btemplate <class T>void Merge(T a[],T b[],int left,int i,int right){ int a1cout=left,//指向第一个数组开头a1end=i,//指向第一个数组结尾a2cout=i+1,//指向第二个数组开头a2end=right,//指向第二个数组结尾bcout=0;//指向b中的元素for(int j=0;j<right-left+1;j++)//执行right-left+1次循环{ if(a1cout>a1end){ b[bcout++]=a[a2cout++];continue; } //如果第一个数组结束,拷贝第二个数组的元素到bif(a2cout>a2end){b[bcout++]=a[a1cout++];continue; } //如果第二个数组结束,拷贝第一个数组的元素到bif(a[a1cout]<a[a2cout]){ b[bcout++]=a[a1cout++];continue; } //如果两个数组都没结束,比较元素大小,把较小的放入belse{ b[bcout++]=a[a2cout++];continue;} } } //对数组a[left:right]进行合并排序template <class T>void MergeSort(T a[],int left,int right){ T *b=newint[right-left+1];if(left<right){int i=(left+right)/2;//取中点MergeSort(a,left,i);//左半边进行合并排序MergeSort(a,i+1,right);//右半边进行合并排序Merge(a,b,left,i,right);//左右合并到b中Copy(a,b,left,right);//从b拷贝回来}}int main(){ int n;cout<<"请输入您将要排序的数目:"; cin>>n;int *a=new int[n]; cout<<"请输入相应的数字:"; for(int i=0;i<n;i++){ cin>>a[i]; }MergeSort( a, 0, n-1); cout<<"排序结果:";for(int j=0;j<n;j++){ cout<<setw(5)<<a[j]; }cout<<endl;return 1;}(2)快速排序源代码如下:#include <iostream.h>#define MAX 10int QuickSort(int a[],int l,int r){int pivot; //枢轴int i=l;int j=r;int tmp;pivot=a[(l+r)/2];//取数组中间的数为枢轴do {while (a[i]<pivot) i++; //i右移while (a[j]>pivot) j--; // j左移if (i<=j){tmp=a[i];a[i]=a[j];a[j]=tmp; //交换a[i]和a[j]i++;j--;}} while(i<=j);if (l<j) QuickSort(a,l,j);if (i<r) QuickSort(a,i,r);return 1;}int main(){int array[MAX];int i;cout<<"请输入"<<MAX<<" 个整数:";for (i=0;i<MAX;i++)cin>>array[i];QuickSort(array,0,MAX-1);cout<<"快速排序后:"<<endl;for (i=0;i<MAX;i++)cout<<array[i]<<" ";cout<<endl;return 0;}四.实验结果五.总结与思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》
实验报告
题目:快速排序
姓名:于文静
班级:计科F1203 学号: 0230
指导教师:靳小波
完成时间: 2015-04-06
一、实验题目
用递归分治法编写Hoare快速排序算法
二、实验目的
1. 理解时间复杂度的概念。
2. 深入地掌握C语言编程。
3. 通过编程直观地理解算法分析的意义
三、实验要求
请使用递归分治法编写Hoare快速排序算法,算法的输入如下:7.30 7.15 4.27 2.14 6.29 3.99 0.26 9.10 1.89 2.86 0.44 5.52 4.35 4.39 6.70 9.82 3.55 2.38 9.12 3.54 1.30 5.20 6.59 9.08 1.79 3.52 4.06 0.43 5.31 7.19 6.07 7.06 9.92 7.79 3.46 6.16 1.83 2.78 3.20 2.95 9.20 0.22 7.13 8.28 5.58 0.80 2.63 7.44 3.04 8.58 9.61 4.52
2.12 1.73 4.16
3.66 2.36
4.08 9.36 8.03 4.92 4.90 9.59 9.83 7.85
3.99 2.68 2.49
4.69 7.67 7.56 8.85 3.88 7.74 6.27
5.48 7.29 2.81
3.67 2.52 1.95 1.82
4.38 4.42
5.54 4.41 1.94 0.31 8.41 5.69 4.59
四、程序流程图
五、
#include<stdio.h>
int Partition(double a[],int low,int high){ int i,j;
double temp;
i=low;
j=high;
while(i<j){
while(a[i]<=a[j]&&i<j)
j--;
if(i<j){
temp=a[i];
a[i]=a[j];
a[j]=temp;
i++;
}
while(a[i]<=a[j]&&i<j)
i++;
if(i<j){
temp=a[i];
a[i]=a[j];
a[j]=temp;
j--;
}
}
return i;
}
void quickSort(double a[],int low,int high){ int q;
if(low<high){
q=Partition(a,low,high);
quickSort(a,low,q-1);
quickSort(a,q+1,high);
}
}
void main(){
FILE* file = NULL;
int k,cnt;
double a[1000];
if((file = fopen("input2.txt","r")) == NULL) {
printf("the file does not exist...\n");
return;
}
cnt = 0;
while(!feof(file))
{
fscanf(file,"%lf",&a[cnt]);
cnt++;
}
quickSort(a,0,cnt-1);
for(k=0;k<cnt;k++)
printf("%.2f ",a[k]);
}
六、实验结果
七、实验体会
通过本次实验,我了解到快速排序的基本思想,即通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的数据都小于等于某一个数,另一部分的数据都大于等于这个数,然后再用递归的思想分别对左右两部分的数据进行快速排序,从而使得整个序列都变得有序。
像这种递归分治的思想,它将一个大问题划分成若干个子问题,逐个对各个子问题一一击破,使得大问题得以解决。
这种方法用起来非常方便,以后解决有关算法之类的问题时,要有意识地去想到利用这种方法。