全等三角形的性质及判定(习题及答案)

合集下载

全等三角形的判定(一)(人教版)(含答案)

全等三角形的判定(一)(人教版)(含答案)

全等三角形的判定(一)(人教版)一、单选题(共10道,每道10分)1.如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是( )A.∠B=∠CB.∠AEB=∠ADCC.AE=ADD.BE=DC答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定2.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定3.能使两个直角三角形全等的条件是( )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定4.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定5.下列各组图形中,是全等图形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形答案:B解题思路:试题难度:三颗星知识点:全等三角形的性质6.下列条件一定能推得△ABC与△DEF全等的是( )A.在△ABC与△DEF中,∠A=∠B,∠D=∠E,AB=DEB.在△ABC与△DEF中,AB=AC,∠A=∠F,FD=FEC.在△ABC与△DEF中,,∠B=∠ED.在△ABC与△DEF中,,∠B=∠E答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定7.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定8.如图,在△ABC中,已知AB=AC,BD=DE=EF=FC,则图中全等三角形有( )A.1对B.2对C.3对D.4对答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定9.如图,有三棱锥ABCD和三棱锥EFGH,其中甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.若∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则下列叙述正确的是( )A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等答案:B解题思路:试题难度:三颗星知识点:全等三角形的判定10.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )A.①②B.②③C.①③D.①②③答案:A解题思路:试题难度:三颗星知识点:全等三角形的判定。

三角形全等的判定证明题-(含答案)

三角形全等的判定证明题-(含答案)

三角形全等的判定一、(SSS)1.如图,AD=AC ,BD=BC ,QA 求证:△ABC≌△ABD .证明:在△ABC 和ABD 中,⎩⎨⎧ AD =ACBD =BCAB =AB ,∴△ABC≌△ABD(SSS )2.如图,AB=AD ,CB=CD ,求证:△ABC≌△AD C .证明:∵在△ABC 和△ADC 中⎩⎨⎧ AB =ADBC =CDAC =AC,∴△ABC≌△ADC(SSS ).3.如图,A 、D 、B 、E 在同一直线上,AC=EF ,AD=BE ,BC=DF ,求证:∠C=∠F.证明:∵AD=BE∴AD+DB=BE+DB,即:AB=DE ,在△ABC 和△DEF 中,⎩⎨⎧ AC =EFAB =DEBC =DF ,∴△ABC≌△DEF(SSS ),∴∠C=∠F.4.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等)二、(SAS )5.已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .6.如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB (SAS )∴DE=AB .7. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .8. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB(SAS)∴DE=AB.三、(ASA)(AAS)9.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.证明:∵FB=CE,∴BC=EF.∵AB∥ED,∴∠B=∠E∵AC∥EF,∴∠ACB=∠DFE.在△ABC和△DEF中{∠B=∠EBC=EF∠ACB=∠DFE∴△ABC≌△DEF(ASA).∴AC=DF.10. 如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,AE∥DF,AB=CD,求证:CE=BF。

全等三角形习题及答案

全等三角形习题及答案

全等三角形习题及答案全等三角形习题及答案三角形是初中数学中的重要内容之一,而全等三角形则是三角形中的一个重要概念。

全等三角形是指两个三角形的所有对应边和对应角都相等。

在解题过程中,我们需要掌握一些关于全等三角形的性质和判定条件。

下面将介绍一些常见的全等三角形习题及其答案,帮助大家更好地理解和掌握这一知识点。

1. 已知两个三角形的两边分别相等,且夹角相等,能否判断这两个三角形全等?答案:可以判断这两个三角形全等。

根据全等三角形的定义,两个三角形的两边分别相等,且夹角相等,即满足全等三角形的判定条件之一,因此可以判断这两个三角形全等。

2. 已知两个三角形的两边分别相等,且夹角不相等,能否判断这两个三角形全等?答案:不能判断这两个三角形全等。

全等三角形的判定条件是两个三角形的对应边和对应角都相等,而这道题中夹角不相等,因此无法判断这两个三角形全等。

3. 两个三角形的两边分别相等,且夹角相等,但是第三边不相等,能否判断这两个三角形全等?答案:不能判断这两个三角形全等。

全等三角形的判定条件是两个三角形的对应边和对应角都相等,而这道题中第三边不相等,因此无法判断这两个三角形全等。

4. 已知两个三角形的两边分别相等,且夹角相等,第三边分别平行,能否判断这两个三角形全等?答案:可以判断这两个三角形全等。

根据全等三角形的判定条件,两个三角形的两边分别相等,且夹角相等,第三边分别平行,即满足全等三角形的判定条件,因此可以判断这两个三角形全等。

5. 已知两个三角形的两边分别相等,且夹角相等,对应的高分别相等,能否判断这两个三角形全等?答案:可以判断这两个三角形全等。

根据全等三角形的判定条件,两个三角形的两边分别相等,且夹角相等,对应的高分别相等,即满足全等三角形的判定条件,因此可以判断这两个三角形全等。

通过上述习题的解答,我们可以发现,判断两个三角形全等的关键在于对全等三角形的判定条件的掌握。

只有当两个三角形的对应边和对应角都相等时,才能判断这两个三角形全等。

三角形全等的判定(含例题)

三角形全等的判定(含例题)

1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。

全等三角形的判定AAS练习

全等三角形的判定AAS练习
注意边角对应关系
在应用AAS判定定理时,要特 别注意边和角的对应关系,确 保角度和边长能够匹配。
简化计算过程
在证明三角形全等时,尽量采 用简单的计算方法,避免复杂 的运算过程,提高解题效率。
多做练习
通过多做练习,加深对全等三 角形判定定理的理解和应用,
提高解题能力。
05 练习题答案与解析
基础练习题答案与解析
综合练习题答案与解析
题目5
题目:已知$bigtriangleup ABC cong bigtriangleup DEF$,且$angle A + angle D = 150^circ$,则$angle C + angle F = ($ )
综合练习题答案与解析
• A.$150^\circ$ B.$130^\circ$ C.$120^\circ$ D.$100^\circ$
04 解题思路与技巧
解题思路分析
检查答案
最后,检查推导出的答案是否符合题目的 要求,确保解答正确无误。
理解题意
首先,需要明确题目给出的条件和要求, 理解全等三角形的判定定理AAS的含义和 应用场景。
分析条件
根据题意,分析给出的已知条件,如角度 、边长等,并确定哪些条件可用于证明三 角形全等。
逻辑推理
全等三角形的性质
01
02
03
04
全等三角形的对应边相等,对 应角相等。
全等三角形的周长、面积和对 应角所对的弧都相等。
全等三角形的对应高、中线、 角平分线也相等。
全等三角形具有相同的内角和 外角。
02 AAS判定定理的介绍
AAS判定定理的内容
两个三角形中,如果两个角和一边分 别相等,则这两个三角形全等。

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。

一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。

2.书写格式①先写出所要判定的两个三角形。

②列出条件:用大括号将两个三角形中相等的边分别写出。

③得出结论:两个三角形全等。

如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。

如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。

3.作一个角等于已知角已知:∠AOB 。

求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。

②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。

D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。

初中数学全等三角形判定及性质练习题(附答案)

初中数学全等三角形判定及性质练习题(附答案)

初中数学全等三角形判定及性质练习题一、单选题1 •如图,将厶ABC沿BC方向平移2cm得到ZXDEF,若厶ABC的周长为16cm,则四边形ABFD的周长为()A.16 CInB. 18 CmC. 20 CmD. 22 Cm2.如图,在RtZXABC中,ZC = 90o, AC = 12cm, BC = GCn一条线段PQ = AB, P,0两点分别在线段AC和AC的垂线AX上移动,若AABC和AAPQ全等•则AP的值为()A. 6 CmB.12cmC.12cm 或6cmD.以上都不对3•如图,ΛACB=ΛA f CB∖ ZBCB' = 32。

,则ZACA'的度数为()A.30oB.32C.35oD.45o4.如图,AB,CD表示两根长度相等的铁条,若O为AB.CD的中点,经测≡AC = 15c m,则容器内径为()A. 12 cmB. 13 CmC. 14 CmD. 15 Cm5. 如图,ZACB = 90°, AC = BC, AD 丄 CE, BE 丄 CE ,垂足分别是点 D,E,AD = 3,BE = I,则 DE 的长是()6•在△ ABC 中,若AD 是ZXABC 的中线,AB = 39 AC = 5,则AD 的长度可以是(C.57. 在正方形网格中,OoB 的位宜如图所示,到ZAoB 两边距离相等的点是()A.M 点 B ・N 点 C.P 点 D.Q 点8. 如图,AB = AC, BE 丄AC 于点E 、CF 丄AB 于点F, BE,CF 相交于点D,则① △ABE =ΛACF ,②厶BDF ≡∆CDE ;③点、D 在ZBAC 的平分线上•以上结论正确的有()2 D .√ΓOA.®B•② C.①② D.①②®9.已知ZXABC 与ZXDEF全等,ZA = ZD = 90o,ZB = 25° ,则ZE 的度数是()A.25oB.65oC.25o或55°D. 25°或65°10.如图,在Z∖PAB中,ZA = ZEM,N, K分别是PA.PB. AB ±的点,且AM=BK.BN = AK,若ZMKN = 44°,则ZP的度数为()A.44oB.66oC.88oD.92o二、解答题11 •如图所示,EF分别为线段AC上的两个点,且DE丄AC于点E.BF丄Ae于点F,若AB = CD、AE = CF、BD交AC 于点M.(1)试猜想£>£与3尸的关系,并证明你的结论;⑵求HE:MB = MD・D12.如图,点P是△/!BC内一点,EF分别是边Ae,BC上的两点,连接PE, PF,且PE = PF,点D 为AC延长线上一点,连接PD,且DE=BF,ZAEP+ ZBFP = 180。

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。

八年级数学全等三角形(含解析答案)

八年级数学全等三角形(含解析答案)

全等三角形练习题温故而知新:1、全等形:能够完全重合的图形叫做全等形。

2、全等三角形:能够完全重合的两个三角形叫做全等三角形3、全等三角形的性质:(1)对应角相等,对应边相等。

(2)对应线段(角平分线、中线、高)相等,周长相等、面积相等。

4、全等三角形的判定:(1)一般三角形全等的判定方法有四种:SSS, SAS, ASA, , AAS。

(2)判定直角三角形全等,除了可用以上方法外,还有HL。

注意:“AAA”和“SSA”不能判定两个三角形全等。

5、构造全等三角形的规律:(1)在角的两边截等长的线段,构造全等三角形;(2)过角平分线上一点向角两边作垂线,构造全等三角形;(3)若有中线时,常加倍中线,构造全等三角形。

全等三角形的性质例1如图3-4,点A、E、F、C在同一条直线上,△AED≌△CFB,你能得出哪些结论?(答出5个即可,不需证明)答案:解:AD=CB,AE=CF,ED=FB,∠ADE=∠CBF,∠AED=∠CFB,∠EAD=∠FCB等.小结:(1)全等三角形的对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,对应边所夹的角是对应角;(3)公共边是对应边、公共角是对应角;(4)两个全等三角形中一对最长边(最大角)是对应边(对应角),一对最短边(最小角)是对应边(对应角)。

“边边边”定理(SSS)例2 如图3-5,点C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.解析:答案:证明:∵点C是AB的中点,∴AC=CB.在△ACD和△CBE中,AD=CE,CD=BE,AC=CB,∴△ACD≌△CBE(SSS).小结:(1)判定两个三角形全等的条件的前后顺序与书写两个三角形全等的前后顺序保持一致,即等号左边是全等号左边的三角形的三边,等号右边是全等号右边的三角形的三边;(2)书写两个三角形全等时,对应顶点的字母写在对应的位置上.“边角边”定理(SAS)例3 如图3-7,点E,F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE.解析:答案:证明:∵AB∥CD,∴∠A=∠C.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.又∵AB=CD,∴△ABF≌△CDE.小结:注意边角之间的位置关系必须是两边及夹角,而不是只要有两边及一角.两边及一边的对角对应相等的两个三角形不一定全等.例如,如图3-9,在△ABC和△ADB中,AB=AB,BC=BD,∠A=∠A,但是△ABC和△ADB不全等.“角边角”(ASA)或“角角边”(AAS)定理例4 已知:如图3-10,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.解析:答案:证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.在△BAC和△EAD中,∠B=∠E,AB=AE,∠BAC=∠EAD,∴△ABC≌△AED(ASA),∴BC=ED.小结:在证明格式中,条件的排列尽量按照所运用的定理的符号顺序,比如ASA中按照角相等,边相等,角相等的顺序来写,这样不容易出错,而容易解题.例5 如图3-12,AB∥DF,AC∥FE,AB=DF.求证:BD=CE.解析:答案:证明:∵AB∥DF,∴∠B=∠FDE.∵AC∥FE,∴∠ACB=∠E.在△ABC和△FDE中,∠B=∠FDE,∠ACB=∠E,AB=DF,∴△ABC≌△FDE(AAS).∴BC=DE,∴BD=CE.小结:判定两个三角形全等的AAS定理中,利用平行线的性质可证明角相等.“斜边,直角边”定理(HL)例6 如图3-14,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.答案:(1)全等的三角形有:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)选择△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,BD=CD,BE=CF,∴Rt△BDE≌Rt△CDF.举一反三:1.如图3-15,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.AB=ACB.∠BAC=90°C.BD=ACD.∠B=45°2、如图3-16,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BE=CD.3.如图3-17,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F,求证:AC=EF.4.如图3-18,CE=CB,CD=CA, ∠DCA=∠ECB.求证:DE=AB.5 如图3-19,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线)参考答案:1.A2.证明:∵在△ABE和△ACD中,∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA),∴BE=CD.3.证明:∵BC∥DF,∴∠CBD=∠BDF,∴∠ABC=∠EDF.∵AD=EB,∴AB=DE,又∵∠C=∠F,∴△ABC≌△EDF,∴AC=EF.4.证明:∵∠DCA=∠ECB,∴∠DCE=∠ACB.在△DCE和△ACB中,CE=CB,∠DCE=∠ACB,CD=CA,∴△DCE≌△ACB,∴DE=AB.5.解:添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).证明:在△BDF和△CDE中,∵BD=CD,∠FDB=∠EDC,DF=DE,∴△BDF≌△CDE.。

2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)

2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)

2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。

2.三角形的内角和定理:三角形的三个内角之和等于180°。

3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。

大于它不相邻的任意一个内角。

4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。

5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。

②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。

③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。

④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。

⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。

全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。

在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。

专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。

(完整版)全等三角形知识总结和经典例题

(完整版)全等三角形知识总结和经典例题

全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS)9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测等距离。

以及等角,用于工业和军事。

有一定帮助。

5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。

最新人教版数学八年级上册第十二章-全等三角形(含答案)

最新人教版数学八年级上册第十二章-全等三角形(含答案)

第十二章 --全等三角形一、基本概念1.全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;(3)能够完全重合的三角形叫做全等三角形2.全等三角形的表示两个三角形全等用“≌”符号表示;例如:△ABC与△DEF全等,那么我们可以表示为:△ABC≌△DEF。

3.全等三角形的基本性质(1)全等三角形对应边相等;(2)全等三角形对应角相等4.全等三角形的判定方法(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)例:在如图所示的三角形中,AB=AC,AD是△ABC的中线,求证△ABD≌△ACD.AB D C(2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)例:如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C不经过池塘可以直接到达点A和B。

连接AC并延长到点D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离。

为什么?(3)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C。

求证AD=AE.AD EB C(4)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).例:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证△ABC≌△DEF(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)例:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.5.角平分线的性质及判定性质:角平分线上的点到角两边的距离相等判定:到一个角的两边距离相等的点在这个角的平分线上。

二、灵活运用定理1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找相等的可能性。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)三、常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等(2)利用判定公理来证明两个三角形全等练习题1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.33.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 4.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+25.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB 的依据是()A.SSS B.SAS C.ASA D.AAS 7.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(2015•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45°B.∠BAC=90°C.BD=AC D.AB=AC 9.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对10.(2015春•泰山区期末)如图,△A BC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2015春•沙坪坝区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是.13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.20.如图,在△A BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三.解答题(共7小题)21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB 延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系请证明你的结论.23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.24.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少请说明理由.练习题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.C 6.A 7.D 8.D 9.B 10.C 二.填空题(共10小题)11.4 12.70°13.30 14.30°15.AB=CD 16.AC=DE 17.60 18.90 19. 20.4三.解答题(共7小题)21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+E B=AF+2EB.25.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.。

【人教版】八年级上小专题(4)全等三角形的性质与判定同步练习及答案

【人教版】八年级上小专题(4)全等三角形的性质与判定同步练习及答案

小专题(四) 全等三角形的性质与判定1.如图所示,D、E是△ABC中BC边上的点,AD=AE,∠ADC=∠AEB,EB=DC,那么∠1和∠2之间是什么关系?说你的理由.2.已知:如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE =CE.3.已知:如图,AB,CD交于点O,E,F为AB上两点,OA=OB,OE=OF,∠A=∠B,∠ACE=∠BDF.求证:△ACE≌△BDF.4.如图,已知AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.5.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)6.如图,在△ABC中,MN⊥AC,垂足为N,且MN平分∠AMC,△ABM的周长为9 cm,AN=2 cm,求△ABC的周长.7.如图所示,要测量湖中小岛E距岸边A和D的距离,作法如下:(1)任作线段AB,取中点O;(2)连接DO并延长使DO=CO;(3)连接BC;(4)用仪器测量E,O在一条线上,并交CB 于点F,要测量AE,DE,只需测量BF,CF即可,为什么?8.两个大小不同的等腰直角三角板如图1所示方式放置,图2是由它抽象出的几何图形,B,C,E在同一直线上,连接DC.(1)请找出图2中的全等三角形,并予以证明;(2)求证:DC⊥BE.9.如图,在Rt△ABC中,∠BAC=90°,点D、E在边BC上,∠CAE=∠B,E是CD的中点,且AD平分∠BAE,试问:BD与AC相等吗?请说说你的理由.10.(1)如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,且∠ABC、∠DEF 都是钝角,求证:△ABC≌△DEF.(2)在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,且∠ABC、∠DEF都是锐角,请你用尺规在图2中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)参考答案1.在△ADC 和△AEB 中,⎩⎨⎧AD =AE ,∠ADC =∠AEB,DC =EB ,所以△ADC≌△A EB(SAS). 所以∠DAC=∠EAB.因为∠EAB-∠DAE=∠DAC-∠DAE, 所以∠1=∠2.2.证明:∵FC∥AB,∴∠ADE =∠CFE.在△ADE 和△CFE 中,⎩⎨⎧∠ADE=∠CFE,DE =FE ,∠AED =∠CEF,∴△ADE ≌△CFE(ASA). ∴AE=CE.3.证明:∵OA=OB ,OE =OF ,∴OA -OE =OB -OF ,即AE =BF.在△ACE 和△BDF 中,⎩⎨⎧∠A=∠B,∠ACE =∠BDF,AE =BF ,∴△ACE ≌△BDF(AAS).4.(1)五个结论:OB =OC ;OA =OD ;AC =DB ;∠ABO=∠DCO;∠ABC=∠DCB.(2)选证OB =OC.在△ABO 和△DCO 中,⎩⎨⎧∠AOB=∠DOC,∠A =∠D,AB =DC ,∴△ABO ≌△DCO(AAS). ∴OB=OC.5.答案不唯一,可以是∠E=∠B,∠D =∠A,FD =CA ,AB ∥ED 等.以DF =AC 加以证明.∵BF=EC , ∴BF -CF =EC -CF ,即BC =EF.在△ABC 和△DEF 中,⎩⎨⎧BC =EF ,∠1=∠2,CA =FD ,∴△ABC ≌△DEF(SAS).6.因为MN 平分∠AMC,所以∠AMN=∠CMN, 因为MN⊥AC,所以∠MNA=∠MNC=90°.在△AMN 和△CMN 中,⎩⎨⎧∠AMN=∠CMN,MN =MN ,∠MNA =∠MNC,所以△AMN≌△CMN(ASA). 所以AN =NC ,AM =CM.因为AN =2 cm ,所以AC =2AN =4 cm. 又因为△ABM 的周长为9 cm , 所以△ABC 的周长为9+4=13(cm). 7.由条件可知,△AOD ≌△BOC ,∴BC =AD.又∠A=∠B,∠AOE =∠BOF,AO =BO ,故△AOE≌△BOF. ∴AE=BF. ∴DE=CF.因此只要测出BF ,CF 即可知AE ,DE 的长度了. 8.(1)图2中△ABE≌△ACD.证明:∵△ABC 和△AED 都是等腰直角三角形, ∴AB =AC ,AE =AD ,∠BAC =∠EAD=90°.∴∠BAC +∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD. ∴△ABE≌△AC D(SAS).(2)证明:由(1)知△ABE≌△ACD,∴∠ACD =∠B=45°. 又∵∠ACB=45°,∴∠BCD =∠ACB+∠ACD=90° .∴DC ⊥BE.9.BD =AC ,理由如下:过D 点作AC 的平行线交AE 的延长线于F ,则∠CAE=∠F. 又∵∠AEC=∠DEF,E 是CD 的中点, ∴CE =DE.∴△AEC≌△FED. ∴AC=FD.又∵AD 平分∠BAE, ∴∠DAE =∠BAD.又∵∠B=∠F,AD 为公共边, ∴△ABD ≌△AFD. ∴BD =DF. ∴BD=AC.10.(1)证明:过点C 作CG⊥AB 交AB 的延长线于G ,过点F 作FH⊥DE 交DE 的延长线于H , ∵∠ABC =∠DEF,且∠ABC、∠DEF 都是钝角, ∴180°-∠ABC=180°-∠DEF,即∠CBG=∠FEH.在△CBG 和△FEH 中,⎩⎨⎧∠G=∠H=90°,∠CBG =∠FEH,BC =EF ,∴△CBG ≌△FEH(AAS).∴CG=FH.在Rt △ACG 和Rt △DFH 中,⎩⎨⎧AC =DF ,CG =FH ,∴Rt △ACG ≌Rt △DFH(HL). ∴∠A =∠D.在△ABC 和△DEF 中,⎩⎨⎧∠ABC=∠DEF,∠A =∠D,AC =DF ,∴△ABC ≌△DEF(AAS). (2)略。

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判断(习题)例题示范例 1:已知:如图, C 为 AB 中点, CD=BE,CD∥BE.求证:△ ACD≌△ CBE.A【思路剖析】① 读题标明:DA CB EDCB E② 梳理思路:要证全等,需要三组条件,此中一定有一组边相等.由已知得, CD=BE;依据条件 C 为 AB 中点,得 AC=CB;这样已经有两组条件都是边,接下来看第三边或已知两边的夹角.由条件 CD∥BE,得∠ ACD=∠B.发现两边及其夹角相等,所以由SAS可证两三角形全等.【过程书写】先准备不可以直接用的两组条件,再书写全等模块.过程书写中需要注意字母对应.证明:如图∵C为 AB中点∴ AC=CB∵CD∥BE∴∠ ACD=∠B在△ ACD和△ CBE中AC= CB(已证)ACD= B (已证)CD = BE(已知)∴△ ACD≌△ CBE(SAS)稳固练习1.如图,△ ABC≌△ AED,有以下结论:①AC=AE;②∠ DAB=∠EAB;③ED=BC;④∠ EAB=∠DAC.此中正确的有()A.1 个B.2 个C.3 个D.4 个EA A1F EB C2BD C D第1 题图第2 题图2.如图, B, C, F,E 在同向来线上,∠ 1=∠2,BF=EC,要使△ABC≌△ DEF,还需要增添一组条件,这个条件能够是,原因是;这个条件也能够是,原因是;这个条件还能够是,原因是.3.如图, D 是线段 AB 的中点,∠ C=∠E,∠ B=∠A,找出图中的一对全等三角形是,原因是.A C AGD FE CHB E B D第3 题图第4 题图4.如图, AB=AD,∠ BAE=∠DAC,要使△ ABC≌△ ADE,还需要增添一组条件,这个条件能够是,原因是;这个条件也能够是,原因是;这个条件还能够是,原因是.5.如图,将两根钢条 AA' ,BB' 的中点连在一同,使 AA' ,BB' 能够绕着中点O 自由旋转,这样就做成了一个丈量工具,A'B'的长等于内槽宽 AB.此中判断△ OAB≌△OA'B' 的原因是()A. SAS B.ASA C.SSS D.AASAAOB'B A'BC DFE第5 题图第6题图6.要丈量河两岸相对的两点A,B 的距离,先在AB 的垂线BF上取两点 C,D,使 CD=BC,再定出 BF 的垂线 DE,使 A,C,E 在一条直线上(如下图),能够说明△ EDC≌△ ABC,得ED=AB,所以测得 ED的长就是 AB 的长.判断△ EDC≌△ABC最适合的原因是()A. SAS B.ASA C.SSS D.AAA7.已知:如图, M 是AB 的中点,∠ 1=∠2,∠ C=∠D.求证:△ AMC≌△ BMD.C D【思路剖析】① 读题标明:② 梳理思路:要证全等,需要由已知得:依据条件所以,由【过程书写】证明:如图12A M B组条件,此中一定有一组相等.=,=.,得=.可证两三角形全等.8. 已知:如图,点 B, F, C, E 在同一条直线上,且 BC=EF,AB∥DE,AB=DE.A求证:△ ABC≌△ DEF.【思路剖析】B F① 读题标明:② 梳理思路:要证全等,需要组条件,此中一定有一组由已知得:=,=依据条件,得=所以,由可证两三角形全等.【过程书写】证明:如图CED相等...思虑小结1.两个三角形全等的判断有,, _,,此中 AAA,SSA不可以证明三角形全等,请举反例进行说明.2.如图, A,B 两点分别位于一个池塘的两头,小明想用绳索丈量A,B 间的距离,但绳索不够长,一个叔叔帮他出了这样一个想法:先在地上取一个能够直接抵达 A 点和 B 点的点 C,连结 AC 并延伸到 D,使 CD=CA;连结 BC并延伸到 E,使CE=CB,连结 DE 并丈量出它的长度, DE 的长度就是 A,B 间的距离.你能说明此中的道理吗A ECB D【参照答案】稳固练习1. B2.AC=DF,SAS;∠ B=∠ E, ASA;∠ A=∠D,AAS3.△BCD≌△ AED,AAS4.AC=AE,SAS;∠ B=∠ D,ASA;∠ C=∠E,AAS5. A6. B7.①略②3,边∠1,∠ 2;∠ C,∠ DM 是 AB的中点, AM,BMAAS【过程书写】证明:如图,∵M 是 AB的中点∴AM=BM在△ AMC 和△ BMD中 C= D (已知)1 = 2(已知)AM = BM (已证)∴△ AMC≌△ BMD(AAS)8.①略②3,边BC,EF, AB,DEAB∥DE,∠ B,∠E SAS【过程书写】证明:如图,∵AB∥ DE∴∠ B=∠E在△ ABC和△ DEF中AB = DE (已知)B = E(已证)BC= EF(已知)∴△ ABC≌△ DEF(SAS)思虑小结1.SAS,SSS,ASA,AASAAA 反例:大小三角板SSA反例:作图略2.证明:如图,在△ ABC和△ DEC中AC = DC (已知)ACB= DCE(对顶角相等)BC= EC(已知)∴△ ABC≌△ DEC( SAS)∴AB=DE(全等三角形对应边相等)即DE的长度就是 A,B 间的距离。

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、单选题1.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC = 2.如图所示,则下面图形中与图中△ABC 一定全等的三角形是( )A .B .C .D .3.如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是( )A.90°B.120°C.135°D.150°4.有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边5.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧6.如图,已知,,,则图中全等三角形的总对数是A.3 B.4 C.5 D.67.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=( )A.40°B.50°C.60°D.70°8.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD等于()A.2cm B.3cm C.4cm D.5cm9.如图,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )A.大于100 m B.等于100 mC.小于100 m D.无法确定10.如图,AB⊥BC且AB=BC,DE⊥CD且DE=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.36 B.48 C.72 D.108二、填空题11.如图,若AB=AD,加上一个条件_____,则有△ABC≌△ADC.12.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=__________.13.如图,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形.14.如图,Rt∆ABC 中,∠BAC = 90°,AB =AC ,分别过点B、C 作过点A 的直线的垂线BD、CE ,垂足分别为D、E ,若BD = 4,CE=2,则DE= (_________)15.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =______.三、解答题16.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.17.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:(1)PD=PE .(2)AD=AE .18.已知:如图,AE ∥CF ,AB=CD ,点B 、E 、F 、D 在同一直线上,∠A=∠C .求证:(1)AB∥CD;(2)BF=DE.19.如图,点M.N在线段AC上,AM=CN,AB∥CD,AB=CD.请说明△ABN≌△CDM的理由;答案1.D 2.B3.A4.A5.D6.D7.D8.C9.B10.C11.BC =DC12.150°13.314.615.816.解:AF 与BE 平行且相等,因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE .17.解:证明:(1)连接AP .在△ABP 和△ACP 中,AB=AC PB=PC AP=AP ⎧⎪⎨⎪⎩,∴△ABP ≌△ACP (SSS ).∴∠BAP=∠CAP ,又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,∴PD=PE (角平分线上点到角的两边距离相等).(2)在△APD 和△APE 中,∵90PAD PAE ADP AEP AP AP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△APD ≌△APE (AAS ),∴AD=AE ;18.解:(1)∵AB ∥CD ,∴∠B=∠D .在△ABE 和△CDF 中,A CAB CD B D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴∠B=∠D ,∴AB ∥CD ;(2)∵△ABE ≌△CDF ,∴BE=DF .∴BE+EF=DF+EF ,∴BF=DE .19.∵AM=CN∴AM+MN=CN+MN即AN=CM∵AB ∥CD∴∠A=∠C在△ABN 和△CDM 中=AN CMA C AB CD=⎧⎪∠∠⎨⎪=⎩∴△ABN ≌△CDM (SAS )人教版八年级上册12.2全等三角形判定同步练习(包含答案)11 / 11。

八年级数学上册《三角形全等的判定》练习题及答案

八年级数学上册《三角形全等的判定》练习题及答案

八年级数学上册《三角形全等的判定》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.如图,//BC EF ,BC EF =,要使得ABC DEF △≌△,需要补充的条件不能是( )A .B E ∠=∠ B .AB DE =C .AD CF = D .//AB DE2.如图,已知ABC ,用直尺和圆规按以下步骤作出DEF .(1)画射线DM ,以点D 为圆心,AB 长为半径画弧,与DM 交于点E ;(2)分别以D ,E 为圆心,线段AC ,BC 长为半径画弧,两弧相交于点F ;(3)连接DF ,EF .则能用于证明ABC DEF ≌△△的依据是( )A .SSSB .SASC .ASAD .AAS3.如图,由AB =AC ,∠B =∠C ,便可证得BAD ∠CAE ,其全等的理由是( )A .SSSB .SASC .ASAD .AAS4.如图,在矩形ABCD 中,DE 平分ADC ∠交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE PD <,将DPF ∠绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:∠DH DE =;∠DP DG =;∠DG DF +;∠DP DE DH DC ⋅=⋅,其中一定正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠5.已知:如图AB //EF ,BC ∠CD ,则∠α,∠β,∠γ之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=C .90αβγ∠+∠-∠=D .90βγα∠+∠-∠=6.如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ∠BC ,EG ∠CD ,垂足分别是F 、G .若CG =3,CF =4,则AE 的长是( )A .3B .4C .5D .7二、填空题7.如图,在Rt ABC 中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP =__________时,ABC 和PQA △全等.8.如图,AB 是∠O 的直径,AC 是∠O 的切线,A 为切点,连接BC ,与∠O 交于点D ,连接OD .若82AOD ∠=︒,则C ∠=_________︒.9.正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.10.如图,已知l 1∠l 2,MN 分别和直线1l 、2l 交于点A 、B ,ME 分别和直线1l 、2l 交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合)如果点P 在直线AB 运动时,α∠、β∠、γ∠之间有何数量关系______.11.如图,EFG 和HIJ 都是等边三角形,连接HG ,EI 交于点P ,则EPH ∠=_________度.12.如图,ABC 中,AB AC =,AD BD ⊥于点D ,20BAD ∠=︒,若2BC BD =,则BAC ∠的度数为 _____.三、解答题13.如图,已知ABC(1)用直尺和圆规按下列要求作图:(保留作图痕迹)在BC 上作点D ,使点D 到AB 和AC 的距离相等;过点B 作//BE AD 交CA 的延长线于E ;(2)若AF BE ⊥,垂足为F ,证明BF EF =.14.在∠ABC 中,D 是BC 的中点,DE ∠AB ,DF ∠AC ,垂足分别是E ,F .(1)若BE =CF ,求证:AD 是∠ABC 的角平分线.(2)若AD 是∠ABC 的角平分线,求证:BE =CF .15.如图,AB CD ,AD 与BC 交于点O ,40C ∠=︒,80AOB ∠=︒,求A ∠的度数.16.在ABC 中,AB AC =,D 是BC 边的中点,E 、F 分别是AD 、AC 边上的点.(1)如图∠,连接BE 、EF ,若ABE EFC ∠=∠,求证:BE EF =;(2)如图∠,若B 、E 、F 在一条直线上,且45ABE BAC ∠=∠=︒,探究BD 与AE 的数量之间有何等量关系,并说明理由;17.如图,在Rt DEF △和Rt ABC 中,90D A ∠=∠=︒,30E ∠=︒,45C ∠=︒,AC 与DF 相交于点G ,若105FGC ∠=︒,请判断EF 与BC 是否平行?并说明理由.18.如图,点D ,E 分别在OA ,OB 上,点P 在OC 上,且PD PE =.若180ODP OEP ∠+∠=︒,求证:OC 平分AOB ∠.参考答案:1.B【分析】根据全等三角形的判定定理判断解答即可.【详解】解:A 、∠BC ∠EF ,∠∠ACB =∠DFE ,又∠B =∠E ,BC =EF ,∠∠ABC ∠∠DEF (ASA ),正确,不符合题意;B 、根据全等三角形的判定定理,不能证明∠ABC ∠∠DEF ,错误,符合题意;C 、∠BC ∠EF ,∠∠ACB =∠DFE ,∠AD=CF ,∠AD+DC=CF+DC ,∠AC=DF ,∠BC=EF ,∠ACB =∠DFE ,AC=DF ,∠∠ABC ∠∠DEF (SAS ),正确,不符合题意;D 、∠BC ∠EF ,AB ∠DE ,∠∠ACB =∠DFE ,∠BAC =∠EDF ,又BC=EF ,∠∠ABC ∠∠DEF (AAS ),正确,不符合题意,故选:B .【点睛】本题考查全等三角形的判定、平行线的性质,熟练掌握全等三角形的判定是解答的关键.2.A【分析】根据作图方法可知,DE AB =,DF AC =,EF BC =,由此可解.【详解】解:根据作图的步骤(1)知DE AB =,由步骤(2)知DF AC =,EF BC =,根据三组边对应相等(SSS ),可证ABC DEF ≌△△. 故答案为:A .【点睛】本题考查尺规作图和全等三角形的判定,根据作图的方法判断出两个三角形的三条边对应相等是解题的关键.3.C【分析】根据全等三角形的判定定理解答即可.【详解】解:在BAD 和CAE 中,A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠BAD ∠CAE ()ASA ,故选:C .【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.4.D【分析】根据旋转的性质判断得()GPH DPF ASA ∆≅∆,可判断∠正确,证PDHCDE ∆∆可判断∠正确,从而得出结果.【详解】解:根据旋转的性质可知,90DPH GPF ∠=∠=︒,∠DE 平分ADC ∠,∠45HDP ∠=︒,∠45DHP PDH PDF ∠=∠=∠=︒,∠PH =PD ,∠90DPH GPF ∠=∠=︒∠GPH DPF ∠=∠在GPH ∆和DPF ∆中, ∠GHP FDP PH PD GPH DPF ∠=∠⎧⎪=⎨⎪∠=∠⎩∠()GPH DPF ASA ∆≅∆∠HG DF =∠45PDH ∠=︒∠DH =∠DF DG GH DG DH +=+==故∠正确;∠45PDH PDF ∠=∠=︒,90DPH DCE ∠=∠=︒∠PDHCDE ∆∆ ∠DH DP DE CD= 即DP DE DH DC ⋅=⋅,故∠正确;根据已知条件无法证明∠DH =DE ,∠DP =DG .故选:D .【点睛】本题主要考查矩形的性质、三角形的全等、三角形的相似,掌握相关知识并灵活应用是解题的关键.5.C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到最终结果.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,,,,,,,90,90,AB EF AB CM DN EF BCM MCD NDC NDE BC CD BCD BCM MCD NDCNDE αγααβαβγ∴∴∠=∠∠=∠∠=∠⊥∴∠=∠+∠=∠+∠=∠+∠-∠=︒∴∠+∠-∠=︒故选:C .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即∠两直线平行,同位角相等;∠两直线平行,内错角相等;∠两直线平行,同旁内角互补.6.C【分析】由“SAS”可证△ABE ∠∠CBE ,可得AE =CE ,可证四边形CFEG 是矩形,可得GC =EF =3,∠EFC =90°,由勾股定理可求解.【详解】解:如图,连接CE ,∠四边形ABCD 是正方形,∠AB =BC ,∠ABD =∠CBD =45°,在△ABE 和△CBE 中,AB BC ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABE ∠∠CBE (SAS ),∠AE =CE ,∠EF ∠BC ,EG ∠CD ,∠BCD =90°,∠四边形CFEG 是矩形,∠GC =EF =3,∠EFC =90°,∠CE5,∠AE =5,故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是解题的关键.7.5或10【分析】当AP =5或10时,∠ABC 和∠PQA 全等,根据HL 定理推出即可.【详解】解:∠∠C =90°,AO ∠AC ,∠∠C =∠QAP =90°,∠当AP =5=BC 时,在Rt ∠ACB 和Rt ∠QAP 中∠AB PQ BC AP =⎧⎨=⎩, ∠Rt ∠ACB ∠Rt ∠QAP (HL ),∠当AP =10=AC 时,在Rt ∠ACB 和Rt ∠P AQ 中AB PQ AC AP =⎧⎨=⎩, ∠Rt ∠ACB ∠Rt ∠P AQ (HL ),故答案为:5或10.【点睛】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA ,AAS ,SAS ,SSS ,HL .8.49【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B =12∠AOD =41°,根据AC 是∠O 的切线得到∠BAC =90°,即可求出答案.【详解】解:∠∠AOD =82°,∠∠B =12∠AOD =41°,∠AC 为圆的切线,A 为切点,∠∠BAC =90°,∠∠C =90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.9.24【分析】过点C 作CE ∠y 轴,由正方形的性质得出∠CBA =90°,AB =BC ,再利用各角之间的关系得出∠CBE =∠BAO ,根据全等三角形的判定和性质得出OA =BE =2,OB =CE =4,确定点C 的坐标,然后代入函数解析式求解即可.【详解】解:如图所示,过点C 作CE ∠y 轴,∠点B(0,4),A(2,0),∠OB=4,OA=2,∠四边形ABCD为正方形,∠∠CBA=90°,AB=BC,∠∠CBE+∠ABO=90°,∠∠BAO+∠ABO=90°,∠∠CBE=∠BAO,∠∠CEB=∠BOA=90°,,∠ABO BCE∠OA=BE=2,OB=CE=4,∠OE=OB+BE=6,∠C(4,6),将点C代入反比例函数解析式可得:k=24,故答案为:24.【点睛】题目主要考查正方形的性质,全等三角形的判定和性质,反比例函数解析式的确定等,理解题意,综合运用这些知识点是解题关键.10.∠α+∠β=∠γ【分析】根据平行线的性质可求出它们的关系,从点P作平行线,平行于AC,根据两直线平行内错角相等可得出.【详解】解:如图,过点P作AC的平行线PO,∠AC∠PO,∠∠β=∠CPO,又∠AC∠BD,∠PO∠BD,∠∠α=∠DPO ,∠∠α+∠β=∠γ,故答案为:∠α+∠β=∠γ.【点睛】本题主要考查了两直线平行,内错角相等,正确作出辅助线是解题的关键.11.60【分析】根据等边三角形的性质可证∠FIH ∠∠GJI ,再证明∠FGH ∠∠GEI ,根据全等三角形的性质可得∠FGH =∠GEI ,从而可得∠GEI +∠HGE =60°,根据外角的性质可得∠EPH 的度数.【详解】解:在等边∠EFG 中,∠F =∠FGE =60°,FG =GE ,∠∠FHI +∠FIH =120°,在等边∠HIJ 中,∠HIJ =60°,HI =JI ,∠∠FIH +∠JIG =120°,∠∠FHI =∠JIG ,在∠FIH 和∠GJI 中,F G FHI GIJ HI JI ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠FIH ∠∠GJI (AAS ),∠FH =GI ,在∠FGH 和∠GEI 中,FH GI F G FG GE =⎧⎪∠=∠⎨⎪=⎩,∠∠FGH ∠∠GEI (SAS ),∠∠FGH =∠GEI ,∠∠FGH +∠HGE =60°,∠∠GEI +∠HGE =60°,∠∠EPH =60°,故答案为:60【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质等,熟练掌握全等三角形的判定和性质是解题的关键.12.40︒【分析】如图(见详解),根据等腰三角形的三线合一性质,过点A 作AE BC ⊥于点E ,可证RT ABE RT ABD △≌△,即可求出BAC ∠的度数.【详解】解:如图,过点A 作AE BC ⊥于点E ,∠AB =AC ,∠E 是BC 的中点,且AE 平分BAC ∠.∠2BC BD =,∠BD =BE .在RT ABE 和RT ABD 中,()AB AB RT ABE RT ABD HL BD BE =⎧⇒⎨=⎩△≌△, ∠20BAD BAE CAE ∠=∠=∠=︒.∠40BAC ∠=︒.故答案为:40︒.【点睛】本题考查等腰三角形的三线合一性质以及直角三角形全等的判定定理,正确运用定理进行判定是解题的关键.13.(1)见解析;(2)见解析【分析】(1)作∠BAC 的平分线,交BC 于D ,作∠ABE =∠BAD ,交CA 延长线于E 即可;(2)根据已知条件,利用ASA 证明∠AFE ∠∠AFB ,可得结果.【详解】解:(1)如图所示,AD 和BE 即为所作;(2)∠BE ∠AD ,AF ∠BE ,∠∠DAF =180°-90°=90°,∠EAF +∠CAD =90°,即∠BAF +∠BAD =90°,由(1)可知:∠BAD =∠CAD ,∠∠CAD +∠BAF =90°,∠∠BAF =∠EAF ,∠∠AFE =∠AFB =90°,AF =AF ,∠∠AFE ∠∠AFB (ASA ),∠EF =BF .【点睛】本题考查了尺规作图,平行线的性质,角平分线的判定,全等三角形的判定和性质,正确的作出图形是解题的关键.14.(1)证明见解析;(2)证明见解析【分析】(1)根据D 是BC 的中点可得BD DC =,根据 DE ∠AB 可得90DEB DFC ∠=∠=︒,利用直角三角形全等的判定和性质可得Rt Rt BDE CDF ≌,DE =DF ,再用角平分线得判定定理即可证明;(2)根据角平分线的性质得到DE =DF ,根据D 是BC 的中点可得BD DC =,再用HL 证明Rt Rt BDE CDF ≌,最后用全等三角形对应边相等证明.(1)证明:∠DE ∠AB ,DF ∠AC ,∠∠BDE 与∠DCF 是直角三角形.在Rt∠BDE 与Rt∠CDF 中,BD CD BE CF=⎧⎨=⎩, ∠Rt∠BDE ∠Rt∠CDF (HL ),∠DE =DF .又∠DE ∠AB ,DF ∠AC ,∠AD 是∠ABC 的角平分线;(2)∠AD 是∠ABC 的角平分线,DE ∠AB 于E ,DF ∠AC 于F ,∠DE =DF ,∠AD 是BC 边的中线,∠BD =CD .在Rt∠BDE 和Rt∠CDF 中,BD CD DE DF =⎧⎨⎩=, ∠Rt∠BDE ∠Rt∠CDF (HL ),∠BE =CF .【点睛】本题考查直角三角形全等的判定(HL ),角平分线的性质定理和判定定理,用HL 证明Rt∠BDE ∠Rt∠CDF 是解题的关键.15.60︒【分析】由AB 与CD 平行,利用两直线平行内错角相等求出B 的度数,在AOB 中,利用三角形内角和定理即可求出A ∠的度数.【详解】解:∠AB CD ,40C ∠=︒,∠40B C ∠=∠=︒,∠180A B AOB ∠+∠+∠=︒,∠18060∠=︒-∠-∠=︒A AOB B .【点睛】此题考查了平行线的性质以及三角形内角和定理,熟练掌握平行线的性质及三角形内角和定理是解本题的关键.16.(1)证明见解析;(2)2AE BD =,理由见解析【分析】(1)AD 为线段BC 的垂直平分线,垂直平分线的性质可得∠ABC =∠ACB ,BE =CE ,通过角的等量替换可得∠ACE =∠EFC ,再证边长相等即可.(2)由(1)可得∠ABE =∠ACE ,直角三角形证明全等即可得出.(1)连接CE ,AB AC =,D 是BC 边的中点,AD ∴为线段BC 的垂直平分线,A ABC CB =∠∠,BE CE ∴=,EBC ECB ∴∠=∠,ABC EBC ACB ECB ∴∠-∠=∠-∠,即ABE ACE =∠∠,ABE EFC ∠=∠,ACE EFC ∴∠=∠,EF CE ∴=,BE EF ∴=;(2)连接CE ,由(1)可得ABE ACE =∠∠,45ABE BAC ∠=∠=︒,ABF ∴和CEF △都是等腰直角三角形,AF BF CF EF ∴==,,CBF EAF ∴≌△△,BC AE ∴=,2AE BD ∴=;(注:辅助线连接CE 不要求)17.EF BC ∥,理由见解析【分析】过G 点作GH BC ∥,根据平行线的性质,角的和差关系,三角形内角和定理可得∠F =∠FGH ,再根据平行线的判定即可求解.【详解】解:EF BC ∥.理由如下:过G 点作GH BC ∥,∠∠C =45°,90A ∠=︒,∠∠CGH =45°,∠∠FGC =105°,∠∠FGH =105°−45°=60°,在Rt ∠DEF 中,∠D =90°,∠E =30°,∠∠F =60°,∠∠F =∠FGH ,∠EF GH ∥,∠EF BC ∥.【点睛】本题考查了平行线的判定与性质,三角形内角和定理,关键是熟悉两条直线都和第三条直线平行,那么这两条直线平行.18.见解析【分析】过点P 作PF OA ⊥,PH OB ⊥,证明∠PDF ∠∠PEH ,得出PF PH =,根据角平分线的判定定理得出OC 平分AOB ∠.【详解】证明:过点P 作PF OA ⊥,PH OB ⊥,∠90PFD PHE ∠=∠=︒∠180ODP OEP ∠+∠=︒,180PEB OEP ∠+∠=︒∠ODP PEB ∠=∠在∠PDF 和∠PEH 中PFD PHE PDF PEH PF PH ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠PDF ∠∠PEHPF PH ∴=,∠OC 平分AOB ∠.【点睛】本题考查了角平分线的判定定理,全等三角形的性质与判定,掌握角平分线的判定定理是解题的关键.。

全等三角形的判定练习题及答案

全等三角形的判定练习题及答案

全等三角形的判定练习题及答案一、1. 如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形2.如图,AO = BO,CO = DO,AD与BC交于E,∠O =0o,∠B =5o,则∠BED的度数是 A.60o B.90o C.75o D.85o 3.如图,已知△ABD和△ACE中,AB = AC,AD = AE,欲证△ABD≌△ACE,须补充的条件是第题第题A.∠B =∠CB.∠D =∠EC.∠DAE =∠BAC D.∠CAD =∠DAC4.在△ABC和△DEF中,下列各组条件中,不能判定两个三角形全等的是A.AB = DE,∠B =∠E,∠C =∠FB.AC = DF,BC = DE,∠C =∠DC.AB = EF,∠A =∠E,∠B =∠FD.∠A =∠F,∠B =∠E,AC = DE5.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是A.都全等 B.乙和丙C.只有乙D.只有丙6.下列判断正确的是A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一角的对边对应相等的两个三角形全等7.如图4所示,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①A S=AR;②QP∥AR;③△BRP≌△QSP中A.全部正确 B、仅①和②正确C.仅①正确D.仅①和③正确8.如图1所示,△ABC与△BDE都是等边三角形,AB A.AE=CD B.AE>CD C.AE 9.如图2所示,在等边△ABC 中,D、E、F,分别为AB、BC、CA上一点,且AD=BE=CF,图中全等的三角形组数为A.3组 B.4组 C.5组 D.6组10. 已知△ABC≌△MNP,?A?48?,?N?62?,则?B? 度数分别为,,.,?C,?M和?P的二、1、已知:如图12,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE?BF,AE=CF.求证:AF?CE;AB∥CD.A B C2.如图,已知AD = CB,AE = CF,DE = BF;求证:AB//CD 图.123.如图,已知AB = CD,AC = DB;求证:∠A =∠D.全等三角形的判定姓名1、已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?2、已知O是AB中点,OC=OD,?AOD??BOC,求证:AC?BD3、已知:如图,?CAB??DBA,AC?BD。

全等三角形的判定和性质(一)(人教版)(含答案)

全等三角形的判定和性质(一)(人教版)(含答案)
使OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上画法证明△POM≌△PON根据的是( )
A.SSS B.SAS
C.AAS D.HL
答案:D
解题思路:
1.思路点拨:
三角板说明∠PMO=∠PNO=90°,结合OM=ON,OP=OP,故判定三角形全等的方法是“HL”.
C.(4)(6)(1) D.(2)(3)(4)
答案:D
解题思路:
1.思路点拨:判定两个三角形是否全等,必须依据全等三角形的五种判定方法;且全等三角形的判定方法中必有一条边相等.
2.解题过程:
根据全等三角形的判定方法,对照图形和选项,注意验证:
选项A:符合判定方法SAS;
选项B:符合判定方法SSS
选项C:符合判定方法AAS;
A.AAS B.SAS
C.ASA D.SSS
答案:B
解题思路:
1.思路点拨:
等边三角形存在边相等,可以证全等.
2.解题过程:
∵△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°
∴DA=BA,AC=AE,∠DAB+∠BAC=∠CAE+∠BAC
在△ADC和△AEB中
∴△ADC≌△ABE(SAS)
A.50° B.60°
C.62° D.64°
答案:B
解题思路:
1.思路点拨:
①把∠BDC看成△ACD的外角,只需求∠ACD;
②利用全等的性质,得到 ;求出 即可.
2.解题过程:
∵∠ACB=90°,∠A=20°
∴∠CBA=70°

∴ , ,



∴∠BDC=∠A+∠ACD=20°+40°=60°,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的性质及判定(习题)例题示范
例1:已知:如图,C 为AB 中点,CD=BE,CD∥BE.求
证:△ACD≌△CBE.
【思路分析】
①读题标注:
D
D
B
B
②梳理思路:
要证全等,需要三组条件,其中必须有一组边相等.由
已知得,CD=BE;
根据条件C 为AB 中点,得AC=CB;
这样已经有两组条件都是边,接下来看第三边或已知两边的
夹角.
由条件CD∥BE,得∠ACD=∠B.
发现两边及其夹角相等,因此由 SAS 可证两三角形全等.
【过程书写】
先准备不能直接用的两组条件,再书写全等模块.过程书写中需
要注意字母对应.
证明:如图
∵C 为AB 中点
A
C
E
A
C
E
∴AC =CB ∵CD ∥BE ∴∠ACD =∠B 在△ACD 和△CBE 中 AC = CB
(已证)
ACD = B (已证) CD = BE (已知) ∴△ACD ≌△CBE (SAS )
E
C
巩固练习
1. 如图,△ABC ≌△AED ,有以下结论:
①AC =AE ;②∠DAB =∠EAB ;③ED =BC ;④∠EAB =∠DAC . 其中正确的有( ) A .1 个
B .2 个
C .3 个
D .4 个
E
A
A
1
F E
B
C 2
B
D
C
D
第 1 题图
第 2 题图
2. 如图,B ,C ,F ,E 在同一直线上,∠1=∠2,BF =EC ,要使
△ABC ≌△DEF ,还需要添加一组条件, 这个条件可以是 ,理由是 ; 这个条件也可以是 ,理由是 ; 这个条件还可以是
,理由是

3. 如图,D 是线段 AB 的中点,∠C =∠E ,∠B =∠A ,找出图中的
一对全等三角形是
,理由是

A
C A
G D
F
H
B E B D
第3 题图第4 题图
4.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需要添
加一组条件,
这个条件可以是,理由是;
这个条件也可以是,理由是;
这个条件还可以是,理由是.
B
C
D
F
5. 如图,将两根钢条 AA' , BB' 的中点连在一起,使 AA' , BB'
可以绕着中点 O 自由旋转,这样就做成了一个测量工具,A'B' 的长等于内槽宽 AB .其中判定△OAB ≌△ OA'B' 的理由是 (

A .SAS
B .ASA
C .SSS
D .AAS
A B'
A'
E
第 5 题图
第 6 题图
6. 要测量河两岸相对的两点 A ,B 的距离,先在 AB 的垂线 BF
上取两点 C ,D ,使 CD =BC ,再定出 BF 的垂线 DE ,使 A ,
C ,E 在一条直线上(如图所示),可以说明△E DC ≌△ABC ,得 E
D =AB ,因此测得 ED 的长就是 AB 的长.判定△EDC ≌ △ABC 最恰当的理由是( ) A .SAS
B .ASA
C .SSS
D .AAA
7. 已知:如图,M 是 AB 的中点,∠1=∠2,∠C =∠D .
求证:△AMC ≌△BMD . 【思路分析】 ① 读题标注: ② 梳理思路: C D
A
要证全等,需要 组条件,其中必须有一组 相等.由已知得:
=

= .
A O
B
根据条件,得= .因此,由可证两三角形全等.
【过程书写】
证明:如图
8.已知:如图,点B,F,C,E 在同一条直线上,且BC=EF,
AB∥DE,AB=DE.A
求证:△ABC≌△DEF.
C
B F E
【思路分析】
①读题标注:
②梳理思路:D
要证全等,需要组条件,其中必须有一组相等.
由已知得:= ,= .
根据条件,得= .
因此,由可证两三角形全等.
【过程书写】
证明:如图
思考小结
1.两个三角形全等的判定有,, _,,其中
AAA,SSA 不能证明三角形全等,请举反例进行说明.
2.如图,A,B 两点分别位于一个池塘的两端,小明想用绳子测
量A,B 间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A 点和B 点的点C,连接AC 并延长到D,使CD=CA;连接BC 并延长到E,使CE=CB ,连接DE 并测量出它的长度,DE 的长度就是A,B 间的距离.你能说明其中的道理吗
A E
C
B D
【参考答案】 巩固练习
1. B
2. AC =DF ,SAS ;∠B =∠E ,ASA ;∠A =∠D ,AAS
3. △BCD ≌△AED ,AAS
4. AC =AE ,SAS ;∠B =∠D ,ASA ;∠C =∠E ,AAS
5. A
6. B
7. ①略
②3,边
∠1,∠2;∠C ,∠D
M 是 AB 的中点,AM ,BM AAS
【过程书写】证明:如图, ∵M 是 AB 的中点 ∴AM =BM
在△AMC 和△BMD 中
C =
D (已知) 1 = 2 (已知) AM = BM (已证) ∴△AMC ≌△BMD (AAS ) 8. ①略
②3,边
BC ,EF , AB ,DE AB ∥DE ,∠B ,∠E SAS
【过程书写】证明:如图, ∵AB ∥DE
∴∠B =∠E
在△ABC 和△DEF 中 AB = DE (已知)
B = E (已证) B
C = EF (已知)
∴△ABC ≌△DEF (SAS )
思考小结
1. SAS ,SSS ,ASA ,AAS
AAA 反例:大小三角板
SSA 反例:作图略
2. 证明:如图,
在△ABC 和△DEC 中
AC = DC (已知)
ACB = DCE (对顶角相等) BC = EC (已知) ∴△ABC ≌△DEC (SAS )
∴AB =DE (全等三角形对应边相等) 即 DE 的长度就是 A ,B 间的距离。

相关文档
最新文档