实验报告—代数方程与微分方程求解

实验报告—代数方程与微分方程求解
实验报告—代数方程与微分方程求解

实 验 报 告 四

代数方程求解

1、【示例】以下命令可求出方程 (x +1)e –x +e x sin x =0在0附近的一个根:

>>y=sym('(x+1)*exp(-x)+exp(x)*sin(x)'); % 用sym 命令定义符号表达式

>>x=solve(y,'x') % 用准解析方法求出方程最接近0的一个根

x =-0.86508244315736795185621568221837

或可用以下命令求解该方程以指定点为初始搜索点的数值解:

>> y=inline('(x+1)*exp(-x)+exp(x)*sin(x) ', 'x'); % 用数值方法求解时,方程要用inline 命令定义 >> x=fsolve(y,0) % 用数值方法从初始点1开始搜索方程的近似解 x = -0.8651

注:准解析命令solve 只能求出方程最接近0的一个实数根,而数值解法fsolve 可以通过初始搜索点的变化,得到不同的解(如果方程有多个实数解)。

【要求】仿照示例,用准解析方法求出30.5sin(42)4cos(2)0.5t t e t e t --++=的一个根;再用数值方法分别求该方程在-0.6和3附近的两个根。

y=sym('exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)-0.5');

t=solve(y,'t')

t =0.67374570500134756702960220427474

y=inline('exp(-3*t).*sin(4*t+2)+4*exp(-0.5*t).*cos(2*t)-0.5','t');

t=fsolve(y,0.6)

t =

0.6737

y=inline('exp(-3*t).*sin(4*t+2)+4*exp(-0.5*t).*cos(2*t)-0.5','t');

t=fsolve(y,3)

t =

2.5937

2、【示例】以下命令可求解非线性方程组339820

x y x x y ?+-=?+-=?

>> eq1=sym('x^3+y^3-x-98'); % 定义第一个方程表达式

>> eq2=sym('x+y-2'); % 定义第二个方程表达式

>> [x,y]=solve(eq1,eq2) % 解方程组(用准解析方法)

x =

13/12+1/12*2329^(1/2)

13/12-1/12*2329^(1/2)

y =

11/12-1/12*2329^(1/2)

11/12+1/12*2329^(1/2)

或可用以下命令求解上述方程组以指定点为初始搜索点的数值解:

>> f=inline('[x(1) ^3+x(2) ^3-x(1)-98; x(1)+x(2)-2]', 'x'); % 用inline 命令定义方程组

>> x=fsolve(f,[1;1]) % 用数值方法从初始点(1,1)开始搜索方程组的一个近似解 x =

-2.9383

4.9383

【要求】仿照示例,求解

(1)方程35323=+-x x x 和方程组??

???-==+=++14

30122yz z x x x 35323=+-x x x

(1)y=sym('x^3-3.*x^2+5*x');

x=solve(y,'x')

x =

1.

1.+1.4142135623730950488016887242097*i

1.-1.4142135623730950488016887242097*i

(2)y=inline('x^3-3.*x^2+5*x-3 ', 'x');

x=fsolve(y,0)

x =

1.0000

?????-==+=++14

30122yz z x x x

(1)eq1=sym('x^2+2*x+1');

eq2=sym('x+3*z-4');

eq3=sym('y*z+1');

[x,y,z]=solve(eq1,eq2,eq3)

x =-1

y =-3/5

z =5/3

(2)f=inline('[x(1)^2+2*x(1)+1; x(1)+3*x(3)-4;x(2)*x(3)+1]', 'x');

x=fsolve(f,[1;1;1])

x = -0.9979

-0.6003

1.6660

(2)方程组x 2+y =0, e x +sin y =0在[-5,5]内的所有根。

>> ezplot('-x^2',[-5,5])

>> hold on

>> ezplot('asin(-exp(x))',[-5,5])

-5-4-3-2-10

12345-1

-0.8

-0.6

-0.4

-0.2

x

asin(-exp(x))

f=inline('[x(1)^2+x(2); exp(x(1))+sin(x(2))]', 'x');

x=fsolve(f,[-0.7,-0.5])

x =

-0.7150 -0.5112

3、【示例】以下命令可求解线性方程组

124

1234

1234

1234

2328

522

37

42212

x x x

x x x x

x x x x

x x x x

-+=

?

?+++=

?

?

-+-=

?

?+++=

?

。计算A*x,即可验证求解结果。

>> A=[2 -3 0 2;1 5 2 1;3 -1 1 -1;4 1 2 2]; % 定义方程组的系数矩阵>> B=[8 2 7 12] ' ; % 定义方程组的常数项向量>> x=A\B % A\B为A左除B,即A-1B x =

3.0000

0.0000

-1.0000

1.0000

【要求】执行以上命令,并仿照示例,解线性方程组

123

23

123 241658 32710 117331 x x x

x x

x x x

++=?

?

-=

?

?+-=

?

A=[24 16 5;0 3 -27;11 7 -3]; B=[8 10 31]';

x=A\B

x = 19.4087

-27.5410

-3.4305

实 验 报 告 五

微分方程求解

一、解析方法(dsolve 命令)

【示例】1、以下命令可求微分方程2

dy y dx x

=的通解: >> y=dsolve('Dy=y^2/x','x') % Dy 表示未知函数y 的一阶导,x 为自变量

y =-1/(log(x)-C1)

2、以下命令可求微分方程2x y y dy e x e dx --=+满足初始条件00x y ==的特解:

>> y=dsolve('Dy=exp(x-y)+x^2*exp(-y)', 'y(0)=0 ', 'x')

y =log(exp(x)+1/3*x^3)

3、以下命令可求微分方程组,dx dy y x t dt dt ==-+在初始条件001,2t t x y ====下的特解:

>>[x,y]=dsolve(' Dx=y, Dy= -x+t ', ' x(0)=1, y(0)=2 ', ' t ' ) %此题中x 、y 均为未知函数,t 为自变量

4、以下命令可求二阶微分方程1y y x '''-+=在初始条件001,1x x y y =='==的通解:

>>y=dsolve('D2y-Dy+x=1', 'y(0)=1, Dy(0)=1 ', 'x') % D2y 表示未知函数y 的二阶导,x 为自变量 y =1/2*x^2+exp(x)

【要求】1、执行以上命令,并仿照示例,解微分方程22

(1)0xy dx x dy ++=,并求它满足初始条件01x y ==的特解。

y=dsolve('Dy=(x*y^2)/(1+x^2)','x')

y =-2/(log(1+x^2)-2*C1)

y=dsolve('Dy=(x*y^2)/(1+x^2)', 'y(0)=1 ','x')

y =-2/(log(1+x^2)-2)

2、求二阶微分方程2413(1)sin x y y y e x x -'''++=+的通解。

y=dsolve('D2y+4*Dy+13*y=exp(-2*x)*(x+1)*sin(x)', 'x')

y =exp(-2*x)*sin(3*x)*C2+exp(-2*x)*cos(3*x)*C1+1/32*exp(-2*x)*(-cos(x)+4*sin(x)*x+4*sin(x))

二、数值方法(ode 命令)

用解析方法求解,可求得未知函数的函数表达式,但是局限性大,复杂的方程一般无法用解析解法;实际问题大多要用数值方法求解,这类方法无法得到函数表达式,只能获得一系列随自变量变化的函数值的近似值,但可以利用所得的点坐标绘制出未知函数的近似曲线。

1、【示例】以下命令可求微分方程组2(1)dx y dt dy x y x dt

?=????=--??当自变量在[0,30]之间的数值解。 先在Editor 窗口中编写M 文件:

function dz=fun1(t,z) % fun1称为函数名,保存该文件的时候自动以此作为文件名,不要改名。 dz=zeros(2,1);

dz(1)=z(2); % z(1)、z(2)分别表示未知函数x 和y ,t 为函数的自变量。

dz(2)= (1-z(1)^2)*z(2)-z(1); % dz(1)、dz(2)分别表示x 和y 关于t 的导数,必须单独写在左边。

然后在命令窗口中输入命令

>>[t,z]=ode45('fun1',[0,30],[1,0]); z % ode45是微分方程数值解法中最常用的命令,引用的函数名必须与前面的函数名一致,[0,30]表示自变量的取值范围,[1,0]表示x 和y 的初始值。

z =

1.0000 0

1.0000 -0.0001

1.0000 -0.0001

1.0000 -0.0002

1.0000 -0.0002

1.0000 -0.0005

1.0000 -0.0007

1.0000 -0.0010

1.0000 -0.0012

1.0000 -0.0025

1.0000 -0.0037

1.0000 -0.0050

1.0000 -0.0062

0.9999 -0.0125

0.9998 -0.0188

0.9997 -0.0251

0.9995 -0.0313

0.9980 -0.0627

0.9956 -0.0940

0.9921 -0.1253

0.9877 -0.1564

0.9546 -0.2994

偏微分方程的历史与应用

偏微分方程的历史及应用 数学与信息科学学院 09级数学与应用数学专业 学号 09051140129 姓名项猛猛 摘要 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。本文旨在介绍偏微分方程的起源和历史,以及偏微分方程在人口调查、传染病动力学等实际问题中的应用。了解偏微分方程曲折的发展史并了解其广阔的应用前景,从而激励读者更深入的学习和研究偏微分方程。 关键字偏微分方程偏微分方程历史偏微分方程应用 引言 偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁.本文阐述了偏微分方程的发展历史及在实际生活中的应用,为以后更深入的研究及更广的应用提供了例证。 正文 一、偏微分方程的起源及历史 微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶偏微分方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。 和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。 对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822

偏微分方程数值解实验报告

偏微分方程数值解实验报告

1、用有限元方法求下列边值问题的数值解:''()112x -y +y =2s i n ,0∈∈??∈(0,)?, 其中取1ν= 要求画出解曲面。迭代格式如下: 1221212111111111122142212n n n n n n j j j j j j n n n n n n j j j j j j V V V V V V h h V V V V V V h h τ++++++++++-+-??-()-()()-()??++?????? ??-+-+??=+??????

1、 %Ritz Galerkin方法求解方程 function u1=Ritz(x) %定义步长 h=1/100; x=0:h:1; n=1/h; a=zeros(n-1,1); b=zeros(n,1); c=zeros(n-1,1); d=zeros(n,1); %求解Ritz方法中内点系数矩阵 for i=1:1:n-1 b(i)=(1/h+h*pi*pi/12)*2; d(i)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2+h*pi*pi/2*sin(pi/2*x(i+1))/2; end %右侧导数条件边界点的计算 b(n)=(1/h+h*pi*pi/12); d(n)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2; for i=1:1:n-1 a(i)=-1/h+h*pi*pi/24; c(i)=-1/h+h*pi*pi/24; end %调用追赶法 u=yy(a,b,c,d) %得到数值解向量 u1=[0,u] %对分段区间做图 plot(x,u1) %得到解析解 y1=sin(pi/2*x); hold on plot(x,y1,'o') legend('数值解','解析解') function x=yy(a,b,c,d) n=length(b); q=zeros(n,1); p=zeros(n,1); q(1)=b(1); p(1)=d(1); for i=2:1:n

081数值计算方法—常微分方程(组)

科学计算—理论、方法 及其基于MATLAB 的程序实现与分析 微分方程(组)数值解法 §1 常微分方程初值问题的数值解法 微分方程(组)是科学研究和工程应用中最常用的数学模型之一。如揭示质点运动规律的Newton 第二定律: ()()()?????'='==0 00022x t x x t x t F dt x d m (1) 和刻画回路电流或电压变化规律的基尔霍夫回路定律等,但是,只有一些简单的和特殊的常微分方程及常微分方程组,可以求得用公式给出的所谓“解析解”或“公式解”,如一阶线性微分方程的初值问题: () ()0 0y y t f ay dt dy =+= (2) 的解为: ()()()τττd f e y e t y t t a at ?-+=00 (3) 但是,绝大多数在实际中遇到的常微分方程和常微分方程组得不到“解析解”,因此,基于如下的事实:

1、绝大多数的常微分方程和常微分方程组得不到(有限形式的)解析解; 2、实际应用中往往只需要知道常微分方程(组)的解在(人们所关心的)某些点处的函数值(可以是满足一定精度要求的近似值); 如果只需要常微分方程(组)的解在某些点处的函数值,则没有必要非得通过求得公式解,然后再计算出函数值不可,事实上,我们可以采用下面将介绍的常微分方程(组)的初值问题的数值解法,就可以达到这一目的。 一般的一阶常微分方程(组)的初值问题是指如下的一阶常微分方程(组)的定解问题: ()()0 00,y t y t t t y t F dt dy f =≤≤= (7) 其中 ()()()()???? ?? ? ??=t y t y t y t y n 21 (8) ()()()()???? ?? ? ??=y t f y t f y t f y t F n ,,,,21 (9) 常微分方程(组)的初值问题通常是对一动态过程(动态系统、动力系统)演化规律的描述,求解常微分方程(组)的初值问题就是要了解和掌握动态过程演化规律。 §1.1 常微分方程(组)的Cauch 问题数值解法概论

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

偏微分方程的应用

偏微分方程在生物学上的应用 刘富冲pb06007143 1偏微分方程的发展 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,物理学中的许多基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 2偏微分方程的应用 在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。 随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。 对相应的偏微分方程模型进行定性的研究。 根据所进行的定性研究,寻求或选择有效的求解方法。 编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。 下面主要讲一下大家比较熟悉的人口问题及传染病动力学问题,详细阐述偏微分方程在解决实际问题中的应用。

偏微分方程数值解实验报告

精品文档 偏微分方程数值解 上 机 实 验 报 告 (一)实验一 一、上机题目: 用线性元求解下列边值问题的数值解:

精品文档 ′′22?? ?? ??,0

精品文档 (二)实验二 四、上机题目: 求解 Helmholtz 方程的边值问题: u k 2u 1 ,于(0,1)*(0,1) u0,于1{ x0,0y1} U{0x1, y 1} 1{ x0,0y1} U{0x1, y1} u 0,于2{0x1, y 0} U { x1,0y1} n 其中 k=1,5,10,15,20 五、实验程序:

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

偏微分方程数值及matlab实验报告.docx

偏微分方程数值实验报告八 实验题目:利用有限差分法求解 u ( x) u(x) f (x), u( 1) 0, u(1) 0. 真解为 u( x) e x 2 (1 x 2 ) 实现算法:对于两点边值问题 d 2u f , x l , dx 2 (1) u(a),u(b) , 其中 l ( a, b) (a b), f 为 l [ a,b] 上的连续函数, , 为给定常数 . 其相应的有限差分法的算法如下: 1.对求解区域做网格剖分,得到计算网格 .在这里我们对区间 l 均匀剖分 n 段,每个剖分单元 b a 的剖分步长记为 h . n 2.对微分方程中的各阶导数进行差分离散,得到差分方程 .运用的离散方法有: 方法一 :用待定系数和泰勒展开进行离散 d 2u( x i ) i 1 u( x i 1) i u( x i ) i 1 u( x i 1) d( x i )2 方法二:利用差商逼近导数 d 2u( x i ) u( x i 1 ) 2u( x i ) u( x i 1 ) d( x i )2 h 2 将(2) 带入 (1)可以得到 u(x i 1) 2u(x i ) u(x i 1 ) ) R i (u) , h 2 f ( x i 其中 R i (u) 为无穷小量,这时我们丢弃 R i (u) ,则有在 x i 处满足的计算公式: u(x i 1) 2u( x i ) u( x i 1 ) 1,..., n 1 h 2 f ( x i ), i 3.根据边界条件,进行边界处理 .由 (1)可得 u 0 , u n (2) (3) (4) 称(3)(4)为逼近 (1) 的差分方程,并称相应的数值解向量 U n 1 为差分解, u i 为 u( x i ) 的近似值 . 4.最后求解线性代数方程组,得到数值解向量U n 1 .

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

计算方法_微分方程数值解

120 第6章 常微分方程初值问题数值解法 6.1 问题的描述和基本概念 1、常微分方程初值问题 ● 一般形式 0(,)()y f x y y a y '=??=? 式中(,)f x y 已知,0()y a y =称为初值条件. ● 初值问题的数值方法和数值解 求函数()y y x =在若干离散点k x 上的近似值 (0,1,)k y k = 的方法称为初值问题的数值方法,而 称(0,1,)k y k = 为初值问题的数值解.

121 2. 建立数值解法的思想与方法 用离散化方法将初值问题化为差分方程, 然后再求解. 设节点为 011n n a x x x x +=<<<<< 距离1k k k h x x +=-称为步长. 求数值解一般是从0y 开使逐次顺序求出12,,y y . 初值问题的解法有单步法和多步法两种: ● 单步法:计算1k y +时只用到k y 一个值; ● 多步法:计算1k y +时要用1,,,k k k l y y y -- 多个值。 数值解法还有显格式和隐格式之分。

122 微分方程离散化方法主要有 数值微分法,数值积分法和Taylor 展开法 1) 数值微分法 由'()(,())k k k y x f x y x =,用数值微分的2点前差公式代替'()k y x ,得近似离散化方程 记1k k h x x +=-,做k k ,“”,得差分方程 1(,)k k k k y y f x y h +-= 即 1(,)k k k k y y hf x y +=+ (Euler 公式) 由初值条件0()y y a =及Euler 公式可求出数值解 12,,,,n y y y .Euler 公式是显式单步法.

双曲型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 双曲型偏微分方程的求解及其应用 一、前言部分 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。 应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程[1]。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。 其中,可以变的标准型有:椭圆型、双曲型、抛物型。而基本方程可以归结为四大类:波动、热传导、传输[2]。 随着电子计算机的出现和发展, 偏微分方程的数值解得到了前所未有的发展和应用.在科学的计算机化进程中,科学与工程计算作为工具性、方法性、边缘交叉性的新学科开始了自己的新发展.由于科学基本规律大多是通过偏微分方程来描述的,因此科学与工程计算的主要任务就是求解形形色色的偏微分方程,特别是一些大规模、非线性、几何非规则性的方程. 双曲型和抛物型方程描述了物质扩散和波动等不定常物理过程,这两类偏微分方程的定解问题在力学、热传导理论、燃烧理论、化学、空气动力学、电磁学和经济数学等方面都有

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

数值分析_第五章_常微分方程数值解法

图5畅2 令珔h =h λ,则y n +1=1+珔 h +12珔h 2 +16珔h 3+124 珔 h 4y n .由此可知,绝对稳定性区域在珔h =h λ复平面上满足 |1+珔 h +12珔h 2+16珔h 3+124珔h 4 |≤1的区域,也就是由曲线 1+珔h + 12珔h 2+16珔h 3+124 珔h 4=e i θ 所围成的区域.如图5畅2所示. 例22 用Euler 法求解 y ′=-5y +x ,y (x 0)=y 0,  x 0≤x ≤X . 从绝对稳定性考虑,对步长h 有何限制? 解 对于模型方程y ′=λy (λ<0为实数)这里λ=抄f 抄y =-5.由 |1+h λ|=|1-5h |<1 得到对h 的限制为:0<h <0畅4. 四、习题 1畅取步长h =0畅2,用Euler 法解初值问题 y ′=-y -x y 2 , y (0)= 1.  (0≤x ≤0畅6), 2畅用梯形公式解初值问题 y ′=8-3y ,  (1≤x ≤2),

取步长h=0畅2,小数点后至少保留5位. 3畅用改进的Euler公式计算初值问题 y′=1x y-1x y2, y(1)=0畅5,  1<x<1畅5, 取步长h=0畅1,并与精确解y(x)= x 1+x比较. 4畅写出用梯形格式的迭代算法求解初值问题 y′+y=0, y(0)=1 的计算公式,取步长h=0畅1,并求y(0畅2)的近似值,要求迭代误差不超过10-5. 5畅写出用四阶经典Runge唱Kutta法求解初值问题 y′=8-3y, y(0)=2 的计算公式,取步长h=0畅2,并计算y(0畅4)的近似值,小数点后至少保留4位. 6畅证明公式 y n+1=y n+h9(2K1+3K2+4K3). K1=f(x n,y n), K2=f x n+h2,y n+h2K1, K3=f x n+34h,y n+34h K2, 至少是三阶方法. 7畅试构造形如 y n+1=α(y n+y n-1)+h(β0f n+β1f n-1)

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程 21d d y x y -=过点)1,2 (π 共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 x x y x y +-=d d 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 y x y =d d 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 13、二阶线性齐次微分方程的两个解12(),()y x y x ??==成为其基本解组的充要条件是 线性无关 。

偏微分方程数值及matlab实验报告

偏微分方程数值实验报告八 实验题目:利用有限差分法求解 . 0)1(,0)1(),()()(==-=+''-u u x f x u x u 真解为 ) 1()(22 x e x u x -=-实现算法:对于两点边值问题 , )(,)(,,d 22βα==∈=-b u a u l x f dx u (1) 其中),(b a l =f b a ),(<为],[b a l =上的连续函数,βα,为给定常数. 其相应的有限差分法的算法如下: 1.对求解区域做网格剖分,得到计算网格.在这里我们对区间l 均匀剖分n 段,每个剖分单元的剖分步长记为n a b h -= .2.对微分方程中的各阶导数进行差分离散,得到差分方程.运用的离散方法有:方法一:用待定系数和泰勒展开进行离散 )()()()(d ) (d 11112 2++--++≈i i i i i i i i x u x u x u x x u ααα方法二:利用差商逼近导数 2 112 2) ()(2)()(d )(d h x u x u x u x x u i i i i i -++-≈(2) 将(2)带入(1)可以得到 )()() ()(2)(2 11u R x f h x u x u x u i i i i i +=+-- -+, 其中)(u R i 为无穷小量,这时我们丢弃)(u R i ,则有在i x 处满足的计算公式: 1,...,1)() ()(2)(2 11-==+-- -+n i x f h x u x u x u i i i i ,(3) 3.根据边界条件,进行边界处理.由(1)可得 β α==n u u ,0(4) 称(3)(4)为逼近(1)的差分方程,并称相应的数值解向量1-n U 为差分解,i u 为)(i x u 的近似值.4.最后求解线性代数方程组,得到数值解向量1 -n U .

相关文档
最新文档