因式分解练习题(计算)[含答案]
因式分解计算题大全及答案
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.假设x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解以下各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解以下各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解练习题精选及答案
因式分解练习题精选及答案一、基础练习题1. 将以下代数式进行因式分解:a) 6x^2 + 3xb) 4y^3 - 8y^2c) 9z^2 - 6z + 1解答:a) 因式分解6x^2 + 3x为3x(2x + 1)b) 因式分解4y^3 - 8y^2为4y^2(y - 2)c) 因式分解9z^2 - 6z + 1为(3z - 1)(3z - 1)2. 将以下代数式进行因式分解:a) x^2 - 4b) 9y^2 - 16c) 16z^2 - 25解答:a) 因式分解x^2 - 4为(x + 2)(x - 2)b) 因式分解9y^2 - 16为(3y - 4)(3y + 4)c) 因式分解16z^2 - 25为(4z - 5)(4z + 5)3. 将以下代数式进行因式分解:a) 25x^2 - 10x + 1b) 2y^2 + 4y + 2c) 9z^3 - 12z^2 + 4z解答:a) 因式分解25x^2 - 10x + 1为(5x - 1)(5x - 1)b) 因式分解2y^2 + 4y + 2为2(y^2 + 2y + 1)c) 因式分解9z^3 - 12z^2 + 4z为z(3z - 2)(3z - 2)4. 将以下代数式进行因式分解:a) x^4 - 81b) 16y^2 - 9z^2c) 25z^4 - 16解答:a) 因式分解x^4 - 81为(x^2 - 9)(x^2 + 9)b) 因式分解16y^2 - 9z^2为(4y - 3z)(4y + 3z)c) 因式分解25z^4 - 16为(5z^2 - 4)(5z^2 + 4)二、进阶练习题1. 将3x^3 - 6x^2 - 9x进行因式分解。
解答:先提取公因式,可得3x(x^2 - 2x - 3)再将x^2 - 2x - 3进行因式分解,可得3x(x - 3)(x + 1)2. 将以下代数式进行因式分解:a) 2x^3 + 8x^2 - 32xb) 3y^3 + 27y^2 + 81yc) 4z^3 - 16z^2 + 16z解答:a) 先提取公因式2x,得2x(x^2 + 4x - 16)再将x^2 + 4x - 16进行因式分解,得2x(x + 8)(x - 2)b) 先提取公因式3y,得3y(y^2 + 9y + 27)再将y^2 + 9y + 27进行因式分解,得3y(y + 3)(y + 9)c) 先提取公因式4z,得4z(z^2 - 4z + 4)再将z^2 - 4z + 4进行因式分解,得4z(z - 2)(z - 2)3. 将以下代数式进行因式分解:a) x^3 - 4x^2 + 5x - 2b) y^3 + 3y^2 - 4y - 12c) z^3 - 7z - 6解答:a) 可以先尝试因式分解法、穷举法等,找到其中一个根为2,得到因式(x - 2)。
因式分解练习题(有答案)
因式分解练习题(有答案)篇一:因式分解过关练习题及答案因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将以下各式分解因式3322(1)xy﹣xy (2)3a﹣6ab+3ab.3.分解因式222222 (1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232 (1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y (4)4+12(x﹣y)+9(x﹣y)5.因式分解:(1)2am﹣8a (2)4x+4xy+xy23226.将以下各式分解因式:322222 (1)3x﹣12x (2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y223 (2)(x+2y)﹣y228.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把以下各式分解因式:42422 (1)x﹣7x+1 (2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把以下各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc ﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2. 3243222242432因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将以下各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式开展二次分解即可;(2)首先提取公因式3a,再利用完全平方公式开展二次分解即可.2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a ﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x ﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy ﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式开展因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y);222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322 (1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2);322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将以下各式分解因式:322222(1)3x﹣12x (2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y ﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的构造特点,利用平方差公式开展因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y). 223222328.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式开展因式分解. 解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式开展分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法开展分解.此题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把以下各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;222422222424322222222篇二:因式分解练习题加答案200道因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解以下各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解以下各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解专项练习题(含答案)
因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
因式分解专项练习题(含答案)
因式分解专题过关1.将以下各式分解因式2﹣6pq 〔 2〕 2x 2〔 1〕 3p +8x+82.将以下各式分解因式33 2 2.〔 1〕 x y ﹣ xy 〔 2〕 3a ﹣ 6a b+3ab3.分解因式2〔y ﹣ x 〕 2 2 2 2 2〔1〕 a 〔 x ﹣ y 〕 +16 〔 2〕〔 x +y 〕﹣ 4x y4.分解因式:〔1〕 2x 2﹣x 2 〔 3〕 6xy 2 ﹣ 9x 2 3 〔 4〕 4+12〔 x ﹣ y 〕+9 〔 x ﹣y 〕 2〔2〕 16x ﹣ 1 y ﹣ y5.因式分解:2﹣ 8a 〔 2〕4x 3 2 2〔1〕 2am +4x y+xy6.将以下各式分解因式:32 2 2 2 2〔1〕 3x ﹣ 12x 〔 2〕〔 x +y 〕﹣ 4x y22 3 2 27.因式分解:〔 1〕 x y ﹣ 2xy +y 〔2〕〔 x+2y 〕﹣ y8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕〔2〕〔x ﹣ 1〕〔x ﹣ 3〕+1229.分解因式:a ﹣ 4a+4﹣ b2210.分解因式:a ﹣ b ﹣2a+111.把以下各式分解因式:424 2 2〔1〕 x ﹣ 7x +1 〔 2〕 x +x +2ax+1 ﹣ a2 2 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔4〕 x +2x +3x +2x+112.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4 ; 5;〔 2〕2a b +2a c +2b c ﹣ a ﹣ b ﹣ c 〔3〕 x +x+132 ﹣ 9; 43 2〔4〕 x +5x +3x 〔 5〕2a ﹣ a ﹣ 6a ﹣a+2.因式分解专题过关1.将以下各式分解因式〔1〕 3p 2﹣ 6pq ; 〔 2〕 2x 2+8x+8分析:〔 1〕提取公因式 3p 整理即可;〔 2〕先提取公因式 2,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 3p 2﹣6pq=3p 〔 p ﹣ 2q 〕,222.〔 2〕 2x +8x+8 , =2〔x +4x+4 〕, =2〔 x+2〕2.将以下各式分解因式33 2 2.〔1〕 x y ﹣xy〔 2〕3a ﹣ 6a b+3ab分析:〔 1〕首先提取公因式xy ,再利用平方差公式进展二次分解即可;〔 2〕首先提取公因式3a ,再利用完全平方公式进展二次分解即可.解答: 解:〔 1〕原式 =xy 〔 x 2﹣1〕 =xy 〔 x+1 〕〔 x ﹣ 1〕;〔 2〕原式 =3a 〔 a 2﹣ 2ab+b 2〕 =3a 〔a ﹣ b 〕2.3.分解因式〔1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕;〔 2〕〔 x 2 +y 2〕2﹣4x 2y 2.分析:〔 1〕先提取公因式〔x ﹣ y 〕,再利用平方差公式继续分解;〔 2〕先利用平方差公式,再利用完全平方公式继续分解.解答: 解:〔 1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕,=〔 x ﹣ y 〕〔 a 2﹣ 16〕, =〔 x ﹣ y 〕〔 a+4〕〔 a ﹣ 4〕;22222222222〔 2〕〔 x +y 〕﹣ 4x y , =〔 x +2xy+y 〕〔 x ﹣2xy+y 〕,=〔x+y 〕〔x ﹣ y 〕 .4.分解因式:〔1〕2x 2﹣x ; 〔 2〕16x 2 ﹣ 1; 2 2 3 2〔 3〕6xy ﹣ 9x y ﹣y ; 〔 4〕4+12〔 x ﹣y 〕+9〔 x ﹣ y 〕.分析:〔 1〕直接提取公因式x 即可;( 2〕利用平方差公式进展因式分解;( 3〕先提取公因式﹣ y ,再对余下的多项式利用完全平方公式继续分解;( 4〕把〔 x ﹣ y 〕看作整体,利用完全平方公式分解因式即可.解答: 解:〔 1〕 2x 2﹣x=x 〔 2x ﹣1〕;( 2〕 16x 2﹣ 1=〔 4x+1〕〔 4x ﹣1〕;〔 3〕 2 2 32 22;6xy ﹣ 9x y ﹣ y , =﹣ y 〔 9x ﹣ 6xy+y 〕, =﹣ y 〔 3x﹣ y 〕〔 4〕 4+12〔 x ﹣ y 〕 +9〔 x ﹣ y 〕2, =[2+3 〔 x ﹣ y 〕 ]2, =〔 3x ﹣ 3y+2〕2.5.因式分解:2﹣ 8a ;〔 322〔1〕 2am2〕 4x +4x y+xy分析:〔 1〕先提公因式2a ,再对余下的多项式利用平方差公式继续分解;( 2〕先提公因式 x ,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 2am 2﹣ 8a=2a 〔 m 2﹣ 4〕 =2a 〔m+2〕〔 m ﹣ 2〕;( 2〕 4x 3+4x 2y+xy 2,=x 〔 4x 2+4xy+y 2〕, =x 〔2x+y 〕2.6.将以下各式分解因式:〔1〕 3x ﹣ 12x 3〔 2〕〔 x 2 +y 2〕2﹣ 4x 2 y 2.分析:〔 1〕先提公因式 3x ,再利用平方差公式继续分解因式;〔 2〕先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答: 解:〔 1〕 3x ﹣12x 3 =3x 〔 1﹣ 4x 2〕 =3x 〔 1+2x 〕〔 1﹣ 2x 〕;22 2 2 2 2 2 2 2﹣ 2xy 2 2.〔 2〕〔 x +y 〕 ﹣ 4x y =〔 x +y +2xy 〕〔 x +y 〕 =〔x+y 〕 〔 x ﹣ y 〕7.因式分解:22 3 ; 2 2〔1〕 x y ﹣2xy +y 〔 2〕〔 x+2y 〕﹣ y .分析:〔 1〕先提取公因式y ,再对余下的多项式利用完全平方式继续分解因式;〔 2〕符合平方差公式的构造特点,利用平方差公式进展因式分解即可.223222解答: 解:〔 1〕 x y ﹣ 2xy +y =y 〔 x ﹣ 2xy+y 〕 =y 〔x ﹣ y 〕 ;8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕;〔 2〕〔x ﹣ 1〕〔 x ﹣ 3〕 +1.分析:〔 1〕提取公因式n 〔 m ﹣ 2〕即可;( 2〕根据多项式的乘法把 〔 x ﹣ 1〕〔 x ﹣ 3〕展开,再利用完全平方公式进展因式分解.解答:解:〔 1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣ m 〕 =n 2〔 m ﹣ 2〕 +n 〔 m ﹣ 2〕 =n 〔 m ﹣ 2〕〔n+1 〕;( 2〕〔 x ﹣ 1〕〔 x ﹣ 3〕 +1=x 2﹣ 4x+4= 〔 x ﹣2〕2.229.分解因式:a ﹣4a+4﹣ b.分析: 此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有 a 的二次项 a 2,a 的一次项﹣ 4a ,常数项 4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进展分解.222222解答: 解: a ﹣ 4a+4﹣ b =〔 a ﹣ 4a+4〕﹣ b =〔 a ﹣ 2〕 ﹣ b =〔 a ﹣ 2+b 〕〔 a ﹣ 2﹣ b 〕.22 ﹣ 2a+110.分解因式: a ﹣ b分析: 当被分解的式子是四项时,应考虑运用分组分解法进展分解.此题中有 a 的二次项,a 的一次项,有常数项.所以要考虑2为一组.a ﹣2a+12 2 22 2 2解答: 解: a ﹣ b ﹣ 2a+1=〔 a ﹣ 2a+1〕﹣ b =〔 a ﹣ 1〕 ﹣ b =〔 a ﹣ 1+b 〕〔 a ﹣ 1﹣ b 〕.11.把以下各式分解因式:42;422〔1〕 x ﹣ 7x +1〔 2〕 x +x +2ax+1 ﹣ a22 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔 4〕x +2x +3x +2x+1分析:〔 1〕首先把﹣ 7x 2变为 +2x 2﹣ 9x 2,然后多项式变为 x 4﹣ 2x 2 +1﹣ 9x 2,接着利用完全平方公式和平方差公式分解因式即可求解;〔 2〕首先把多项式变为42 22x +2x +1 ﹣ x +2ax ﹣ a ,然后利用公式法分解因式即可解;〔 3〕首先把﹣ 2x 2〔1﹣ y 2〕变为﹣ 2x 2〔 1﹣ y 〕〔 1﹣y 〕,然后利用完全平方公式分解因式即可求解;4 32 3 22〔 4〕首先把多项式变为x +x +x ++x+x +x+x +x+1 ,然后三个一组提取公因式,接着提取公因式即可求解.4 2 4 2 ﹣ 9x 2 22 ﹣〔 3x 〕 2 2 2 解答: 解:〔 1〕 x ﹣ 7x +1=x +2x +1 =〔x +1〕 =〔 x +3x+1 〕〔x ﹣ 3x+1 〕;4 24 2 2 2 22 2 〔 2〕 x +x +2ax+1﹣ a=x+2x +1﹣ x +2ax ﹣ a =〔 x +1〕﹣〔 x ﹣ a 〕 =〔x +1+x﹣ a 〕〔 x 2﹣ x+a 〕;+12 ﹣ 2x 2〔1﹣ y242221+y 〕 +x 4〔 3〕〔 1+y 〕 〕 +x 〔 1﹣ y 〕 =〔 1+y 〕﹣2x 〔 1﹣y 〕〔〔 1﹣ y 〕 22 2222〔 1=〔 1+y 〕 ﹣ 2x 〔 1﹣ y 〕〔1+y 〕 +[x 〔1﹣ y 〕 ]=[ 〔1+y 〕﹣ x22 22﹣ y 〕 ]=〔 1+y ﹣x +x y 〕3 2 22 2243243 2( 4〕 x +2x +3x +2x+1=x +x +x ++x +x +x+x +x+1=x 〔 x +x+1 〕 +x 〔x +x+1 〕+x 2+x+1= 〔 x 2+x+1 〕2.12.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4;〔 2〕 2a b +2a c +2b c ﹣a ﹣ b ﹣ c5 ;3 2﹣ 9;〔3〕 x +x+1 〔 4〕x +5x +3x( 5〕 2a 4﹣ a 3﹣6a 2﹣ a+2.分析:〔 1〕需把﹣ 31x 拆项为﹣ x ﹣ 30x ,再分组分解;2 2 2 2 2 2 ,再按公式法因式分解;〔 2〕把 2ab 拆项成 4a b ﹣2ab 5 522〔 3〕把 x +x+1 添项为 x ﹣ x+x +x+1 ,再分组以及公式法因式分解;32322﹣ 9〕,再提取公因式因〔 4〕把 x +5x +3x ﹣ 9 拆项成〔 x ﹣x 〕 +〔 6x ﹣ 6x 〕 +〔 9x 式分解;〔 5〕先分组因式分解,再用拆项法把因式分解彻底.解答: 解:〔 1〕4x 3﹣31x+15=4x 3﹣ x ﹣ 30x+15=x 〔 2x+1 〕〔2x ﹣ 1〕﹣ 15〔 2x ﹣1〕 =〔 2x ﹣ 1〕( 2x 2+1﹣ 15〕=〔 2x ﹣ 1〕〔 2x ﹣5〕〔 x+3 〕;2 2 2 2 2 2 4 4 4 2 2 4 4 4 2 2 2 2 2 2〔 2〕2a b +2a c +2b c﹣a﹣ b ﹣ c =4a b ﹣〔 a +b +c +2a b﹣2a c ﹣ 2bc 〕=2 222222 2222〔 2ab 〕 ﹣〔 a +b ﹣ c 〕 = 〔2ab+a +b ﹣ c 〕〔 2ab ﹣ a ﹣b +c 〕 =〔a+b+c 〕 〔 a+b ﹣c 〕〔 c+a ﹣b 〕〔 c ﹣ a+b 〕;5 5 22 2 322 2〔 3〕 x +x+1=x ﹣ x+x +x+1=x 〔 x﹣ 1〕 +〔 x +x+1 〕 =x 〔 x ﹣ 1〕〔x +x+1 〕+2232〔 x +x+1 〕 =〔 x +x+1 〕〔 x ﹣ x +1〕;3232 2﹣6x 〕+〔9x2〔 4〕x +5x +3x ﹣ 9=〔 x ﹣ x 〕+〔 6x ﹣ 9〕=x 〔 x ﹣ 1〕+6x 〔 x ﹣ 1〕+9〔x ﹣ 1〕=〔 x ﹣ 1〕〔 x+3 〕2;〔 5〕2a 4﹣ a 3﹣ 6a 2﹣ a+2=a 3〔2a ﹣ 1〕﹣〔2a ﹣ 1〕〔 3a+2〕=〔 2a ﹣1〕〔 a 3﹣ 3a ﹣ 2〕3 2 2 2〔 a+1〕﹣ a 〔 a+1〕﹣ 2=〔2a ﹣ 1〕〔 a +a ﹣ a ﹣ a ﹣ 2a ﹣2〕 =〔 2a ﹣ 1〕 [a ( a+1〕 ]= 〔 2a ﹣ 1〕〔 a+1〕〔a2﹣ a ﹣ 2〕=〔 a+1〕2〔a ﹣ 2〕〔 2a ﹣ 1〕.。
分解因式练习题及答案有过程
分解因式练习题及答案有过程一、选择题:1.下列各多项式中,不能用平方差公式分解的是 A. a2b2-1 B.4-0.25a C.-a2-b D.-x2+12.如果多项式x2-mx+9是一个完全平方式,那么m的值为 A.-3B.- C.± D.±6.下列变形是分解因式的是A.6x2y2=3xy·2xyB.a2-4ab+4b2=C.=x2+3x+ D.x2-9-6x=-6x.下列多项式的分解因式,正确的是12xyz?9xy?3xyz3ay?3ay?6y?3y?x?xy?xz??x ab?5ab?b?b.满足m?n?2m?6n?10?0的是m?1,n?m?1,n??3m??1,n?m??1,n??6.把多项式m?m分解因式等于A B C、mD、m.下列多项式中,含有因式的多项式是B、? D、?2?1222C、?28.已知多项式2x?bx?c分解因式为2,则b,c的值为A、b?3,c??1B、b??6,c?2C、b??6,c??4D、b??4,c??6)9.a、b、c是△ABC的三边,且a2?b2?c2?ab?ac?bc,那么△ABC的形状是。
把余下的部分剪拼成一个矩形。
通过计算图形的面积,验证了一个等式,则这个等式是 A、a?b?22222B、?a?2ab?b2222C、?a?2ab?bD、a?ab?a二、填空题:11.多项式-2x2-12xy2+8xy3的公因式是_____________. 12.利用分解因式计算:32003+6×32002-32004=_____________. 13._______+49x2+y2=2.14.请将分解因式的过程补充完整: a3-2a2b+ab2=a =a 15.已知a2-6a+9与|b-1|互为相反数,计算a3b3+2a2b2+ab的结果是_________.x21116. ??1?2, x2?2?[x?][?2y]164217.若x?px?q?,则p,q。
因式分解练习题加答案-200道
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解练习题及答案
因式分解练习题及答案因式分解练习题及答案如何掌握了解因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解,下面是小编整理的因式分解练习题及答案,欢迎来参考!一、填空题(10×3'=30')1、计算3×103-104=_________2、分解因式 x3y-x2y2+2xy3=xy(_________)3、分解因式–9a2+ =________4、分解因式 4x2-4xy+y2=_________5、分解因式 x2-5y+xy-5x=__________6、当k=_______时,二次三项式x2-kx+12分解因式的结果是(x-4)(x-3)7、分解因式 x2+3x-4=________8、已知矩形一边长是x+5,面积为x2+12x+35,则另一边长是_________9、若a+b=-4,ab= ,则a2+b2=_________10、化简1+x+x(1+x)+x(1+x)2+…+x(1+x)1995=________二、选择题(12×3'=36')1、下列各式从左到右的变形,是因式分解的是( )A、m(a+b)=ma+mbB、ma+mb+1=m(a+b)+1C、(a+3)(a-2)=a2+a-6D、x2-1=(x+1)(x-1)2、若y2-2my+1是一个完全平方式,则m的值是( )A、m=1B、m=-1C、m=0D、m=±13、把-a(x-y)-b(y-x)+c(x-y)分解因式正确的结果是( )A、(x-y)(-a-b+c)B、(y-x)(a-b-c)C、-(x-y)(a+b-c)D、-(y-x)(a+b-c)4、-(2x-y)(2x+y)是下列哪一个多项式分解因式后所得的答案( )A、4x2-y2B、4x2+y2C、-4x2-y2D、-4x2+y25、m-n+ 是下列哪个多项式的一个因式( )A、(m-n)2+ (m-n)+B、(m-n)2+ (m-n)+C、(m-n)2- (m-n)+D、(m-n)2- (m-n)+6、分解因式a4-2a2b2+b4的结果是( )A、a2(a2-2b2)+b4B、(a-b)2C、(a-b)4D、(a+b)2(a-b)27、下列多项式(1) a2+b2 (2)a2-ab+b2 (3)(x2+y2)2-x2y2(4)x2-9 (5)2x2+8xy+8y2,其中能用公式法分解因式的个数有( )A、2个B、3个C、4个D、5个8、把多项式4x2-2x-y2-y用分组分解法分解因式,正确的分组方法应该是( )A、(4x2-y)-(2x+y2)B、(4x2-y2)-(2x+y)C、4x2-(2x+y2+y)D、(4x2-2x)-(y2+y)9、下列多项式已经进行了分组,能接下去分解因式的有( )(1) (m3+m2-m)-1 (2) –4b2+(9a2-6ac+c2)(3) (5x2+6y)+(15x+2xy) (4)(x2-y2)+(mx+my)A、1个B、2个C、3个D、4个10、将x2-10x-24分解因式,其中正确的`是( )A (x+2)(x-12) B(x+4)(x-6)C(x-4)(x-6) D(x-2)(x+12)11、将x2-5x+m有一个因式是(x+1),则m的值是( )A、6B、-6C、4D、-412、已知x2+ax-12能分解成两个整系数的一次因式的乘积,则符合条件的整数a的个数是( )A、3个B、4个C、6个D、8个三、分解因式(6×5'=30')1、x-xy22、3、x3+x2y-xy2-y34、1-m2-n2+2mn5、(x2+x)2-8(x2+x)+126、x4+x2y2+y4四、已知长方形周长为300厘米,两邻边分别为x厘米、y厘米,且x3+x2y-4xy2-4y3=0,求长方形的面积。
因式分解专项练习题(含答案)
因式分解专项练习题(含答案)1. 二次多项式的因式分解问题描述给定一个二次多项式ax2+bx+c,请将其进行因式分解。
解答步骤1.首先确定二次多项式的系数a、b和c。
2.接着,我们需要找到两个因子,使得它们的乘积等于ac,并且它们的和等于b。
3.最后,将多项式按照因子的形式进行因式分解。
示例问题:将二次多项式2x2+3x−2进行因式分解。
解答:1.确定系数a=2,b=3和c=−2。
2.找到两个因子,它们的乘积等于ac=−4,并且它们的和等于b=3。
在本例中,-2 和 2 是满足要求的因子。
3.将多项式进行因式分解:2x2+3x−2=(x−2)(2x+1)。
因此,二次多项式2x2+3x−2的因式分解结果为(x−2)(2x+1)。
答案(x−2)(2x+1)2. 完全平方式的因式分解问题描述给定一个完全平方式a2−b2,请将其进行因式分解。
解答步骤1.首先确定完全平方式的两个因子a和b。
2.接着,根据公式(a−b)(a+b)进行因式分解。
示例问题:将完全平方式9x2−4进行因式分解。
解答:1.确定完全平方式的两个因子a=3x和b=2。
2.根据公式进行因式分解:9x2−4=(3x−2)(3x+2)。
因此,完全平方式9x2−4的因式分解结果为(3x−2)(3x+2)。
答案(3x−2)(3x+2)3. 其它特殊情况的因式分解问题描述除了二次多项式和完全平方式外,还有一些特殊情况需要进行因式分解。
下面是几个例子:1.差平方式:形式为a2−b2的差平方式可以利用公式(a−b)(a+b)进行因式分解。
2.特殊二次多项式:形式为ax2+bx+c的二次多项式,如果不能直接进行因式分解,可以尝试使用求根公式进行因式分解。
3.多项式的公因式提取:对于多项式ax2+bx,可以提取公因式得到x(ax+b)进行因式分解。
示例问题:将差平方式16x2−9进行因式分解。
解答:根据公式(a−b)(a+b)进行因式分解:16x2−9=(4x−3)(4x+3)。
因式分解练习题加答案 200道分解因解题目
因式分解3a3b2c—6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6—2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y—x)=(x+y)(x-y)^25。
因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x—1得因式,试分解x3+3x2-4=(x—1)(x+2)^28、因式分解ab(x2-y2)+xy(a2—b2)=(ay+bx)(ax—by)9、因式分解(x+y)(a-b-c)+(x-y)(b+c—a)=2y(a—b-c)10、因式分解a2-a-b2-b=(a+b)(a—b—1)11。
因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a—7b)^212、因式分解(a+3)2-6(a+3)=(a+3)(a-3)13、因式分解(x+1)2(x+2)—(x+1)(x+2)2=-(x+1)(x+2)abc+ab—4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2—30x+25=(3x-5)^2(4)x2-7x—30=(x—10)(x+3)35。
因式分解x2-25=(x+5)(x-5)36。
因式分解x2-20x+100=(x-10)^237。
因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x—1)(2x—5)39、因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)—x=x(x+1)(3)x2-4x—ax+4a=(x—4)(x—a)(4)25x2—49=(5x-9)(5x+9)(5)36x2—60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x—3)(x-6)(8)2x2-5x—3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x—4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41。
因式分解练习题100道及答案
因式分解练习题100道及答案2.) 16x2-813.) xy+6-2x-3y4.) x+y5.)x2-x-ab6.) a4-9a2b27.) x3+3x2-48.) ab+xy9.)+10.) a2-a-b2-b11.) 2-4+4212.)-613.)-14.)16x2-8115.)x2-30x+2516.) x2-7x-3017.) x-x18.) x2-4x-ax+4a19.) 5x2-4920.)x2-60x+2521.) x2+12x+922.) x2-9x+1823.) x2-5x-324.) 12x2-50x+825.) x2-6x26.)x2-2527.) x2-13x+528.) x2+2-3x29.) 12x2-23x-2430.) -31.) -32.) x2+42x+4933.) x4-2x3-35x34.) x6-3x235.) x2-2536.) x2-20x+10037.) x2+4x+338.)x2-12x+539.)ax2-6ax40.)+41.)ax2-3x+2ax-342.)x2-66x+12143.)-2x244.) x2-x+1445.)x2-30x+2546.)-20x2+9x+2047.) 12x2-29x+1548.)6x2+39x+949.)1x2-31x-2250.)x4-35x2-451.)+52.)ax2-3x+2ax-353.) x-x-y-154.) +55.) x2-66x+12156.) -2x257.) x4-158.) x2+4x-xy-2y+459.) x2-12x+560.) 1x2-31x-2261.) x2+4xy+y2-4x-2y-362.) x5-35x3-4x63.)若n?81 = ,那么n的值是若9x2?12xy+m是两数和的平方式,那么m的值是把多项式a4?a2b2+b4因式分解的结果为66.)把?4+4分解因式为 ) )1?67.) ?????2?2001?1?????2?200068)已知x,y为任意有理数,记M = x2+y2,N =xy,则M与N的大小关系为69)对于任何整数m,多项式?9都能A.被8整除B.被m整除C.被整除 D.被整除70.)将?3x2n?6xn分解因式,结果是71.)多项式?的公因式是272.)若x?2x?16是完全平方式,则m的值等于_____。
因式分解练习题加答案-100题
因式分解下列各式:1.3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)2.xy+6-2x-3y=(x-3)(y-2)3.x2(x-y)+y2(y-x)=(x+y)(x-y)^24.2x2-(a-2b)x-ab=(2x-a)(x+b)5.a4-9a2b2=a^2(a+3b)(a-3b)6.x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^27.ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)8.(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)9.a2-a-b2-b=(a+b)(a-b-1)10.(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^211.(a+3)2-6(a+3)=(a+3)(a-3)12.(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.x2-25=(x+5)(x-5)36.x2-20x+100=(x-10)^237.x2+4x+3=(x+1)(x+3)38.4x2-12x+5=(2x-1)(2x-5)39.(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.2ax2-3x+2ax-3=(x+1)(2ax-3)42.9x2-66x+121=(3x-11)^243.8-2x2=2(2+x)(2-x)44.x2-x+14 =整数内无法分解45.9x2-30x+25=(3x-5)^246.-20x2+9x+20=(-4x+5)(5x+4)47.12x2-29x+15=(4x-3)(3x-5)48.36x2+39x+9=3(3x+1)(4x+3)49.21x2-31x-22=(21x+11)(x-2)50.9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.2ax2-3x+2ax-3=(x+1)(2ax-3)53.x(y+2)-x-y-1=(x-1)(y+1)54.(x2-3x)+(x-3)2=(x-3)(2x-3)55.9x2-66x+121=(3x-11)^256.8-2x2=2(2-x)(2+x)57.x4-1=(x-1)(x+1)(x^2+1)58.x2+4x-xy-2y+4=(x+2)(x-y+2)59.4x2-12x+5=(2x-1)(2x-5)60.21x2-31x-22=(21x+11)(x-2)61.4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解练习题(含答案)
因式分解练习题(含答案)1.下列变形中,是因式分解的是()A。
x(x-1) = x^2 - xB。
x^2 - x + 1 = x(x-1) + 1C。
x^2 - x = x(x-1)D。
2a(b+c) = 2ab + 2ac2.多项式12ab3c + 8a3b中各项的公因式是() A。
4ab2B。
4abcC。
2ab2D。
4ab3.把多项式m2 - 9m分解因式,结果正确的是() A。
m(m-9)B。
(m+3)(m-3)C。
m(m+3)(m-3)D。
(m-3)^24.分解因式:1) 5a - 10ab = 5a(1-2b)2) x^4 + x^3 + x^2 = x^2(x^2 + x + 1)3) m(a-3) + 2(3-a) = -m(a-3) + 2(a-3) = (a-3)(2-m)5.计算: - 2018×2017 = - xxxxxxx = xxxxxxxx6.分解因式:1) 2mx - 6my = 2m(x-3y)2) 3x(x+y) - (x+y)^2 = (x+y)(2x-y)7.先分解因式,再求值:a2b + ab2,其中a+b=3,ab=2. a^2b + ab^2 = ab(a+b) = 2(3) = 614.3.2 公式法第1课时运用平方差公式分解因式1.多项式x^2 - 4分解因式的结果是()A。
(x+2)(x-2)B。
(x-2)^2C。
(x+4)(x-4)D。
x(x-4)2.下列多项式中能用平方差公式分解因式的是()A。
a^2 + b^2B。
5m^2 - 20mnC。
x^2 + y^2D。
x^2 - 93.分解因式3x^3 - 12x,结果正确的是()A。
3x(x-2)^2B。
3x(x+2)^2C。
3x(x^2 - 4)D。
3x(x-2)(x+2)4.因式分解:1) 9-b^2 = (3-b)(3+b)2) m^2 - 4n^2 = (m-2n)(m+2n)5.利用因式分解计算:752 - 252 = (7+5)(7-5)(2-5) = -1506.若a+b=1,a-b=2007,则a^2 - b^2 = (a+b)(a-b) = -20067.因式分解:1) 4x^2 - 9y^2 = (2x-3y)(2x+3y)2) -16 + 9a^2 = (3a-4)(3a+4)3) 9x^2 - (x+2y)^2 = (3x-x-2y)(3x+x+2y) = (2x-2y)(4x+2y)4) 5m^2a^4 - 5m^2b^4 = 5m^2(a^4-b^4) = 5m^2(a^2-b^2)(a^2+b^2) = 5m^2(a-b)(a+b)(a^2+b^2)3.若代数式x2+kx+49能分解成(x-7)2的形式,则实数k的值为多少?4.若x2+kx+9是完全平方式,则实数k=多少?5.因式分解:1) x2-6x+9=什么?2) -2a2+4a-2=什么?6.因式分解:1) 4m2-2m+1=什么?2) 2a3-4a2b+2ab2=什么?3) (x+y)2-4(x+y)+4=什么?7.先分解因式,再求值:x3y+2x2y2+xy3,其中x=1,y=2. 因式分解14.3.1 提公因式法1.C2.D3.A4.(1) 5(1-2b)(3+b)(3-b)2) (m+2n)(m-2n)5.50006.(1) 2m(x-3y)2) (x+y)(2x-y)7.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) 4(2x+y)(x-y)4) 5m2(a-b)(a+b)(a2+b2)14.3.2 公式法第1课时运用平方差公式分解因式1.A2.D3.D4.(1) (3+b)(3-b)2) (m+2n)(m-2n)5.-144.±67.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) (x+y-2)26.(1) 原式=2m/(2)2) 原式=2a(a-b)2 7.原式=18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*
因式分解练习题(计算)
一、因式分解:
1.m2(p-q)-p+q;
2.a(ab+bc+ac)-abc;
3.x4-2y4-2x3y+xy3;
4.abc(a2+b2+c2)-a3bc+2ab2c2;
5.a2(b-c)+b2(c-a)+c2(a-b);
6.(x2-2x)2+2x(x-2)+1;
7.(x-y)2+12(y-x)z+36z2;
8.x2-4ax+8ab-4b2;
9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);
10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;
11.(x+1)2-9(x-1)2;
12.4a2b2-(a2+b2-c2)2;
13.ab2-ac2+4ac-4a;
14.x3n+y3n;
15.(x+y)3+125;
17.x6(x2-y2)+y6(y2-x2);
18.8(x+y)3+1;
19.(a+b+c)3-a3-b3-c3;
20.x2+4xy+3y2;
21.x2+18x-144;
22.x4+2x2-8;
23.-m4+18m2-17;
24.x5-2x3-8x;
25.x8+19x5-216x2;
26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;
29.x2+y2-x2y2-4xy-1;
30.(x-1)(x-2)(x-3)(x-4)-48;31.x2-y2-x-y;
32.ax2-bx2-bx+ax-3a+3b;33.m4+m2+1;
34.a2-b2+2ac+c2;
35.a3-ab2+a-b;
36.625b4-(a-b)4;
37.x6-y6+3x2y4-3x4y2;
38.x2+4xy+4y2-2x-4y-35;39.m2-a2+4ab-4b2;
二、证明(求值):
1.已知a+b=0,求a3-2b3+a2b-2ab2的值.
2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).
4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac 的值.
5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.
6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.
7.若x,y为任意有理数,比较6xy与x2+9y2的大小.
8.两个连续偶数的平方差是4的倍数.
参考答案
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*
一、因式分解:
1.(p-q)(m-1)(m+1).
8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).
20.(x+3y)(x+y).21.(x-6)(x+24).
27.(3+2a)(2-3a).
31.(x+y)(x-y-1).
38.(x+2y-7)(x+2y+5).
二、证明(求值):
2.提示:设四个连续自然数为n,n+1,n+2,n+3
6.提示:a=-18.
∴a=-18.
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*。