全面解析喷泉实验的原理及其应用

合集下载

氨的喷泉实验原理及应用

氨的喷泉实验原理及应用

氨的喷泉实验原理及应用1. 实验原理氨的喷泉实验是研究液体的挥发性和扩散性的一种常见实验方法,其原理基于下列几个基本概念:•氨的挥发性:氨是一种气体,具有较高的挥发性。

在室温下,氨溶液中的氨分子会不断从液体中蒸发到空气中。

•浓度差驱动:液体中各组分的浓度差异会产生差异扩散。

一般来说,浓度越高的组分扩散速率越快。

•氨与水的反应:在水中,氨分子会与水分子发生化学反应,生成氢氧化铵(NH₄OH)。

基于以上原理,氨的喷泉实验可以用来观察和研究氨分子在水中的挥发和扩散过程。

2. 实验步骤进行氨的喷泉实验,需要按照以下步骤进行:1.准备实验器材和试剂:需要一只塑料瓶作为喷泉装置,一定量的氨水溶液(一般浓度为10%左右),以及一个容器用于收集氨气。

2.装配实验装置:将塑料瓶的瓶底剪掉,底部留有一个小孔。

将瓶底插入装有氨水溶液的容器中,确保小孔浸泡在溶液中。

3.开始实验:观察氨气的喷出情况。

初始时,氨水溶液中的氨分子开始挥发,从小孔喷出到空气中。

同样时间,氨分子也在水中发生化学反应,生成氢氧化铵。

4.观察与记录:观察氨气的喷泉现象,记录喷泉持续的时间、喷涌的速度和氨气浓度变化等数据。

5.分析与讨论:根据实验结果,分析氨的挥发速度和扩散性能,探讨影响因素及相关应用。

3. 实验应用氨的喷泉实验在化学实验中具有一定的应用价值,以下列举几个常见的应用场景:•教学演示:通过观察氨的喷泉现象,可以生动形象地展示气体的挥发性和浓度差扩散效应,有助于学生理解液体蒸发和气体扩散的基本原理。

•研究挥发性物质:除了氨,其他液体的喷泉实验也可以用于研究挥发性物质的特性和挥发速率,如酒精、香水等。

•环境污染监测:氨是一种常见的空气污染物,通过测定氨的挥发速度和扩散性能,可以评估环境中氨的浓度和扩散范围,为环境治理提供依据。

•氨气的收集和利用:喷泉实验可以用于收集氨气,进一步对氨气进行分离和利用,如制取氨气的化合物或做某些化学实验。

以上仅是氨的喷泉实验原理及应用的一些基本介绍,实际的实验操作和应用会有更多的细节和技术要求。

化学喷泉实验原理及应用

化学喷泉实验原理及应用

化学喷泉实验原理及应用化学喷泉实验的原理是基于几个重要的化学反应。

首先,我们需要制备一个能够产生气体的混合物,这个混合物通常由氢氧化钠和盐酸或醋酸组成。

当这两种物质混合时,会发生中和反应,产生氯化钠和水。

这个反应释放出大量的热能和气体。

接下来的一个反应是碳酸钠和盐酸的反应。

这个反应会产生二氧化碳气体。

最后,还有一个重要的反应是过氧化氢和无机催化剂之间的反应。

过氧化氢分解产生氧气和水,而催化剂可以加速这个反应的进行。

将这些反应物按照一定的顺序加入一个容器中,并在特定时间和条件下进行,就可以看到一个壮观的喷泉效应。

当气体释放时,它会推动液体从容器底部冒出,形成一个喷泉。

而且,由于颗粒的形成和颗粒之间的摩擦,会形成许多小气泡,增加了实验的效果。

化学喷泉实验有很多应用。

首先,它可以用于化学教学中。

通过观察和研究这个实验,学生可以更好地理解化学反应的原理和过程。

同时,实验中需要考虑的因素,如反应物的浓度、温度、压力等,都可以帮助学生理解化学实验的设计和参数选择的重要性。

此外,化学喷泉实验还可以用于科普活动中。

通过展示这个壮观的实验,可以吸引观众的兴趣,并增加他们对化学的了解。

同时,可以通过对实验的讲解,向观众介绍相关的化学概念和反应原理。

这样一来,化学喷泉实验不仅可以提高观众对化学的认识,还可以增加他们对科学的兴趣。

最后,化学喷泉实验也可以作为一个娱乐项目。

它可以在儿童乐园、科技展览、生日派对等活动中使用,吸引大家的目光,增加活动的乐趣。

在进行化学喷泉实验时,我们需要注意一些安全事项。

首先,实验过程中会产生大量的气体和液体,要确保实验场所通风良好。

其次,化学品应该储存在合适的容器中,避免泄漏导致危险。

最后,实验人员应该佩戴适当的防护装备,如手套、护目镜等,以确保安全。

总结来说,化学喷泉实验是一种有趣又有教育意义的化学实验。

它通过几个化学反应的顺序进行,产生喷泉效应。

这个实验可以用于化学教学、科普活动、环境保护教育等领域。

全面解析喷泉实验的原理及其应用

全面解析喷泉实验的原理及其应用

全面解析喷泉实验的原理及其应用喷泉实验的原理喷泉实验是一种流体实验方法,利用液体的自身重力流动性质和重力势能转化为动能的原理进行实验。

一般来说,液体从较高处的水箱或者水池自由落下,自由流动,最终流向低处的水槽或者水桶中。

流体静力学与水流速度的关系喷泉实验中,流体静力学是非常重要的一部分,它描述了液体在静态条件下的压力关系。

流体静力学的知识主要包括:•流体静力学基本定律:布尔涅定律、帕斯卡定律、阿基米德原理以及等静压面定理。

•流体的流动形式:层流和湍流。

在喷泉实验中,运用流体静力学可以得到液体在不同高度处的压力,从而推导出液体流动中的速度和能量转化情况。

喷泉实验中的势能与动能转化喷泉实验中,液体从水箱或者水池高处落下,具有重力势能,流动过程中势能随着液体降低而逐渐减少,而动能随着流速的增加而逐渐提高。

在喷泉实验中,我们可以利用压力的变化推导出液体流动的速度、高度以及到达目标槽位时的动能大小,从而理解液体势能与动能的相互转化关系。

喷泉实验的应用喷泉艺术喷泉艺术是运用喷泉的水流、水柱、水雾等形式及其变幻,以适当的音乐、灯光、色彩等多种艺术手段展现出美妙的画面形象及其抒发的情感。

喷泉在喷泉艺术中的应用是非常广泛的,通过控制水流速度、高度、角度和流量等参数,可以创造出各种各样形态的水柱、水帘、水幕等图案,在灯光、音乐等配合下形成独具艺术特色的场景。

喷泉调试喷泉在实际应用中,需要进行复杂的调试工作。

喷泉调试主要涉及水流形状和工程应力方面的问题,需要运用喷泉实验技术来进行。

通过将实验室中的喷泉实验与实际喷泉的工程应力进行相互印证,可以有效地进行调试,改善喷泉工程的施工过程和使用稳定性。

生态湿地近年来,生态湿地的修复和建设已成为当今生态环保领域的热点之一。

生态湿地利用喷泉技术,可以形成各种含氧丰富的水流,创造出复杂的水-土-空气界面,为湿地中的生态系统提供生息基础。

常用的湿地喷泉技术包括带氧喷泉和溶氧喷泉等技术,它们可以有效地增加湿地的含氧量,使其生态环境更加稳定和健康。

化学喷泉实验原理及应用

化学喷泉实验原理及应用

《化学喷泉》实验原理及应用一、喷泉原理喷泉是一种宏观的液体喷涌现象,其成因有四个因素:①有待喷的液体;②有喷起的液体接纳空间;③待喷的液体与喷起的液体之间有顺畅的通道;④待喷的液体与喷起液体的接纳空间之间有足够的压强差(前者压强大于后者压强)。

喷泉现象既有天然的,又有人为的。

就实验室里的喷泉现象而言,喷起的液体的接纳空间压强变小的主要而又明显的原因有:第一,气体物质的量一定,温度降低;第二,气体温度一定,物质的量因气体溶解而减小;第三,气体的温度降低的同时又有气体物质的量减小。

在实验室里,气体与能溶解这些气体的液体就可以形成喷泉实验,如NH3、H F、HBr、HC l、H I、SO2和H2O;CO2、H2S、Cl2和NaOH溶液,而且NaOH浓度越大效果越好;V(NO2):V(O2)= 4:1的混合气体、V(NO):V(O2)= 4:3的混合气体和水都形成喷泉实验。

喷泉现象与化学实验中的倒吸现象是相同实质的两种现象。

即喷泉的成功等于倒吸的发生;喷泉的失败等于倒吸的避免。

例1:如图所示:(1)图1为中学化学教材上的喷泉实验装置,在烧杯中充满干燥气体,胶头滴管及烧杯中分别盛有液体,下列各组合中不能形成这样的喷泉的是()A. HCl和H2OB. O2和H2OC. NH3和H2OD.CO2和NaOH溶液(2)某实验爱好者积极思考产生喷泉的其他办法,并设计了如图2所示装置,在图2中的锥形瓶中,分别加入足量的下列物质,反应后可能产生喷泉的是()A. Cu与稀盐酸B. NaHCO3与NaOH溶液C. CaCO3与稀H2SO4D. NH4HCO3与稀盐酸(3)比较图1和图2两套装置,从产生喷泉的原理来分析,图1是上部烧瓶内压强,图2是下部维形瓶内的气体的压强(填“增大”或“减小”),城市中常见的人造喷泉及自然景观中的火山爆发的原理与上述(填图1或图2)装置的原理相似。

例2:如图所示为喷泉实验装置,假设实验时所用烧瓶容积为250mL,玻璃导管长35mL,胶头滴管内能挤出约0.5mL水,则在0.5mL水中至少溶解多少体积的气体,水才会从尖嘴导管中喷出?(答案:8.5mL)二、喷泉实验后溶液里溶质物质的量浓度的计算1、标况下NH3与H2O组成的喷泉2、标况下HCl与H2O组成的喷泉3、标况下NO2与H2O组成的喷泉4、标况下V(NO2):V(O2)= 4:1的混合气体与H2O组成的喷泉5、标况下V(NO):V(O2)= 4:3的混合气体与H2O组成的喷泉。

喷泉实验原理及其应用

喷泉实验原理及其应用

喷泉实验原理及其应用喷泉实验是用水泵将水经过管道输送到高处并喷射成喷泉的实验。

它的原理可以简单地描述为:水泵通过输送液体的工作,使水在管道内受到压力驱动,从喷头或喷孔中喷出,形成喷射流体的现象。

喷泉实验的应用广泛,如艺术景观设计、水池水泵安装、农田灌溉等方面。

喷泉实验的原理主要涉及液体力学和流体力学的基本原理。

当水泵不断输入水时,水流经过管道,由于内部压力的作用,水的速度增加,并通过喷头或喷孔喷射出来。

喷出的水柱高度与喷嘴的形状、出水速度以及内部压力等因素有关。

喷泉实验一般遵循底喷、侧喷和喷头三种不同方式。

底喷是指将水泵通过管道输送到喷泉下部的一个容器或水池中,通过一定的装置使水喷射到上方。

底喷方式主要通过控制液体的出水量和泵的运行时间来调节喷泉的高度和形状,从而实现不同效果。

侧喷是指将水泵输送的水流通过一组出水口喷射出来,喷头通常位于水池或喷泉的侧面。

侧喷方式主要利用液体压力使水流喷射出来,形成侧面喷流,通过调整喷水口的位置和角度来控制喷射水柱的高度和形状。

喷头喷射是指将水泵输送的水通过单一的喷头喷射出来。

喷头通常位于喷泉的顶部,水在喷头内部形成高速旋转的流体,通过喷头的设计和结构来控制喷射水柱的高度、形状和方向。

对于喷泉实验的应用,艺术景观设计是其中最常见的领域之一、喷泉可以作为公园、广场、城市绿地等景观元素之一,通过变化的喷射高度、形状和颜色等效果,营造出动感、活力和美感,增添了场所的魅力和吸引力,同时也为人们提供了一个休闲娱乐的空间。

另外,喷泉实验在水池水泵安装方面也具有重要意义。

通过喷泉实验可以测试水泵的性能和工作状态,确定喷泉的喷射高度和效果,从而对水池的水泵进行调整和优化。

同时,喷泉实验还可以检测水池系统的压力和流量等参数,为水池的正常运行提供参考依据。

此外,喷泉实验还可以应用于农田灌溉中。

通过喷泉实验可以测试灌溉管道的压力和流量等参数,从而确定喷头的灌溉面积和效果。

喷泉实验可以帮助农民合理安排灌溉时间和水量,提高灌溉效率和水资源利用率,减少灌溉成本和环境影响。

制作喷泉的实验报告(3篇)

制作喷泉的实验报告(3篇)

第1篇一、实验目的1. 了解喷泉的原理和制作方法。

2. 通过实践,提高动手能力和创新思维。

3. 体验物理知识在生活中的应用。

二、实验原理喷泉是一种利用水压、重力等物理原理将水喷出地面的装置。

其原理如下:1. 水泵:将水从低处抽到高处,增加水的势能。

2. 水管:连接水泵和喷泉,使水流动。

3. 喷嘴:将水流喷出地面,形成喷泉。

三、实验材料1. 水泵:1台2. 水管:1米3. 喷嘴:1个4. 玻璃瓶:1个5. 电源:1个6. 电池:1节7. 螺丝:若干8. 胶带:1卷四、实验步骤1. 将水泵、水管、喷嘴连接在一起,确保连接牢固。

2. 将玻璃瓶放在喷嘴下方,作为喷泉的水源。

3. 将电池插入水泵,接通电源。

4. 观察喷泉工作情况,调整水泵和喷嘴的位置,使喷泉效果最佳。

5. 在实验过程中,注意观察喷泉的喷水高度、水流速度等参数,并做好记录。

五、实验结果与分析1. 实验结果显示,通过调整水泵和喷嘴的位置,可以改变喷泉的喷水高度和水流速度。

2. 当水泵位于较低位置时,喷泉的喷水高度较高,水流速度较快;当水泵位于较高位置时,喷泉的喷水高度较低,水流速度较慢。

3. 实验过程中,发现喷泉的水流方向与喷嘴的方向一致,且水流在喷出地面后呈扇形分布。

六、实验结论1. 本实验成功制作了一个喷泉,验证了喷泉的原理和制作方法。

2. 通过实践,提高了动手能力和创新思维,体验了物理知识在生活中的应用。

3. 在实验过程中,学会了如何调整喷泉的喷水高度和水流速度,为以后制作更复杂的喷泉提供了经验。

七、实验拓展1. 尝试使用不同材质、不同形状的喷嘴,观察喷泉效果的变化。

2. 改变水泵的功率,比较不同功率下喷泉的喷水高度和水流速度。

3. 制作一个可调节喷水高度和水流速度的智能喷泉。

第2篇一、实验目的1. 了解喷泉的工作原理和制作方法。

2. 培养学生的动手实践能力。

3. 提高学生对物理学科的兴趣。

二、实验原理喷泉是一种利用水压差产生水流喷射的装置。

全面解析喷泉实验的原理及其应用

全面解析喷泉实验的原理及其应用

全面解析喷泉实验的原理及其应用喷泉实验在高中化学教学中具有相当重要的地位。

其实验的要求是:①装置气密性良好;②所用气体能大量溶于所用液体或气体与液体快速反应。

实验的基本原理是使烧瓶内外在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压入烧瓶内,在尖嘴导管口形成喷泉。

喷泉实验的物理推导原理如下:如右图1所示,在干燥的圆底烧瓶里充满氨气,用带有玻璃管和滴管(滴管里预先吸入水)的塞子塞紧瓶口,立即倒置烧瓶,使玻璃管插入盛有水的烧杯里(水里事先加入少量的酚酞试液),如图安装好装置。

打开橡皮管的滴头,使少量水进入烧瓶,氨气溶于水使瓶内压强迅速下降,当瓶内压强下降到一定程度时,外界大气压就将烧杯内的水压入烧瓶,形成喷泉。

假设烧瓶的容积为250 mL,玻璃管长35 cm,胶头滴管中可挤出0.5 mL水,那么气体在水中的溶解度多大时才能形成喷泉呢?要使水通过玻璃管喷入烧瓶形成喷泉,瓶内外压强差必须超过一个特定的值。

设大气压为P0,35 cm水柱产生的压强为P1,形成喷泉时烧瓶内压强为P,要使水柱喷入瓶内,要求P<P0-P1.一个标准大气压相当于10.34 m水柱产生的压强,则P<P0-P1=10.34 m水柱-0.35 m水柱=9.99 m水柱。

根据波意尔定律,当压强由10.34 m水柱变为9.99 m水柱时,气体的体积由250 mL变为V,=,V=241.5 mL,即烧瓶内气体体积至少减少250 mL-241.5 mL=8.5 mL.故当滴管内0.5 mL水挤入烧瓶后如能溶解8.5 mL 1标准大气压的气体,即1 mL水溶解多于17 mL气体时,就能形成喷泉。

NH3、HBr、HCl、HI、SO2、NO2等气体的溶解度均大于17,在水中都能形成喷泉。

CO2、H2S、Cl2等气体在水中不能形成喷泉,但在NaOH溶液中可以形成喷泉。

根据其原理进行拓展还可以探讨喷泉实验的多种应用。

一、根据实验装置进行的条件拓展例1、制取氨气并完成喷泉实验(图2中夹持装置均已略去)。

喷泉实验知识点总结

喷泉实验知识点总结

喷泉实验知识点总结一、喷泉实验概述喷泉实验是液体物理学的一个重要分支,常用于研究流体运动、表面张力、波动和声学等领域。

喷泉实验通常通过在实验室中的容器中注入液体,然后增加气体或机械装置以产生压力来达成实验目的。

在实验中通常还需要进行一些参数的测量和变化,以便研究流体的运动规律和变化过程。

二、喷泉实验的基本原理1.压力喷泉实验中的液体通常是由容器中的液体通过一定方式的增压来产生的。

增压的方式可以分为机械压力和气体压力两种。

机械压力是通过某种机械装置对液体施加压力,比如泵或者活塞等。

气体压力是通过向容器中注入气体,增加容器内压力来使液体喷出。

2.流体运动液体在喷泉实验中的运动主要遵循连续性方程和动量方程。

喷射液体从喷嘴喷出后,会产生一定的喷射流,而这条喷射流在空气中的压力和速度将会产生变化。

一般来说,流体运动的规律和流体的黏性密切相关。

黏性对流体运动的影响会在实验中加以考虑。

3.表面张力表面张力是指在液体表面形成的一种能量,由于液体分子的结构以及液滴表面张力引发的拉力,液滴形状能够使液滴保持一定的形态。

在喷泉实验中,表面张力是影响液体喷射和液滴形态的重要因素。

4.波动和声学喷泉实验有时也会用于研究各种液体波动和声学现象。

特别是喷射流与空气交汇时会产生一系列的声学效应。

在实验中可以通过调整液滴的尺寸、速度和入射角度等参数来研究波动和声学效应。

三、喷泉实验的常见装置和方法1. 常用的喷泉实验装置喷泉实验常用的设备包括注射泵、喷嘴、压力表、称量天平、图像记录仪等。

注射泵是用来增加液体压力的主要设备,通过调整注射泵的出液速度和压力可以控制液体的喷射形式,比如连续射流、喷射雾化等。

喷嘴是液体喷射的出口,其大小和形状对液体喷射的效果有较大影响。

压力表用来检测液体增压程度,称量天平用来检测液体的质量变化,图像记录仪则用来记录流体的运动轨迹。

2. 喷泉实验的常见方法常见的喷泉实验方法包括测量流速,研究喷射弧线,观察空气对液体喷射的影响等。

喷泉实验的原理及拓展应用

喷泉实验的原理及拓展应用

喷泉实验的原理及拓展应用喷泉实验的原理喷泉实验是一种模拟自然界中水流动态的实验装置,通过控制水流的压力和喷嘴的形状,实现流水的喷涌和流动效果。

喷泉实验的原理主要包括以下几个方面:1.液体的流体力学:液体在管道内流动时会产生各种压力和速度的变化。

喷泉实验通过控制液体的流速和流量,使水从喷嘴中喷射出来,形成喷泉。

2.浮力与压力平衡:喷泉实验中,液体通过喷嘴喷出后,形成高速的小水柱。

由于喷射速度越快,产生的液体流动越大,所以喷泉水柱能够保持直立。

3.喷嘴设计:喷泉实验中的喷嘴形状对喷泉效果起到重要的影响。

不同形状的喷嘴可以产生不同的喷泉效果,比如喷射方向、喷射范围和喷射高度等。

4.水泵和水压控制:喷泉实验需要使用水泵来提供液体的流动力。

通过控制水泵的运行状态和水压大小,可以调节喷泉的流量和高度。

喷泉实验的拓展应用喷泉实验不仅仅是一个科学实验,还有许多拓展应用,包括以下几个方面:1.教育与科普:喷泉实验可以作为科学教育和科普活动的一种形式,通过实际观察和操作,生动形象地展示液体力学原理,激发学生对科学的兴趣。

2.景观设计:喷泉作为一种美化城市环境的景观设计元素,已经被广泛应用于公园、广场和游乐园等场所。

通过控制喷泉的形状、高度和喷水节奏,可以创建出各种独特的水景效果。

3.环境调节:喷泉能够增加空气中的湿度,降低气温,并且喷泉的水流声可以起到一定的缓解压力和放松身心的作用。

因此,在城市中设置喷泉可以改善气候环境,提供人们的生活质量。

4.游乐设施:喷泉可以用作游乐设施,吸引游客和儿童的注意力。

通过设计不同的喷水效果和喷射高度,可以创建出各种有趣的游戏和娱乐项目,增加人们的游玩乐趣。

喷泉实验的操作步骤喷泉实验的操作步骤如下:1.准备实验器材:包括喷嘴、水泵、管道和控制装置等。

2.确定喷泉的形状和高度:根据实验的需要和设计目的,选择合适的喷嘴形状和喷射高度。

3.接通水泵电源:将水泵连接到电源,并打开水泵开关,开始供水。

喷泉实验原理及扩展应用的浅探喷泉实验原理

喷泉实验原理及扩展应用的浅探喷泉实验原理

喷泉实验原理及扩展应用的浅探喷泉实验原理喷泉实验在高中化学中是一个很重要的实验,也是一个富有探究意义的实验。

喷泉实验的基本原理是:使烧瓶内外在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压入烧瓶内,在尖嘴导管口形成喷泉。

哪些因素能够造成烧瓶内外气体有压强差呢?由理想气体状态方程:PV=nRT,可知影响气体压强的因素有温度、气体的物质的量、气体的体积。

产生压强差的措施有以下几种。

(1)使温度改变。

其他条件不变时,温度升高,压强增大;温度降低,压强减小。

(2)使气体的物质的量改变。

使气体物质的量减小,要求气体的溶解度很大,气体与液体反应;使气体物质的量增加,可利用液体易汽化为气体的特点。

(3)使气体体积发生改变。

1根据实验原理扩展1.1增大压强差检查气密性例如:如何检查图1中装置的气密性?解析:装置A采用微热法:把导管放入水槽中,用双手握住或用酒精灯微热圆底烧瓶,若导管口出现气泡,停止加热导管口有一段水柱,则气密性良好。

装置B气密性检查可利用喷泉原理来检验,即:增大压强差检查气密性。

具体操作为:关闭活塞,向长颈漏斗中注入一定量的水,使锥形瓶中的液面比长颈漏斗中液面低(增大压强差)。

静置一段时间,如果静置一段时间后,长颈漏斗中的液面不下降。

该装置的气密性良好。

1.2平衡压强差防倒吸实验室制取NH3,并用水吸收时,极易发生喷泉现象。

其原理是:当易溶性气体被吸收液吸收时,导管内压强减少,吸收液上升到漏斗中,由于漏斗容积较大,导致烧杯中液面下降,使漏斗口脱离液面,漏斗中的吸收液受自身重力的作用又流回烧瓶内,从而防止吸收液的倒吸。

分析气体压强在整个过程中的变化:刚开始时,水进入到漏斗中,表明漏斗内外压强差大;漏斗中的水又回流到烧杯中,表明漏斗内外气压差减小。

压强差发生的变化都是通过倒扣的漏斗来实现的,平衡了压强差,防止了倒吸。

根据标准装置的防倒吸的原理,可衍生很多功能相同防倒吸的其它装置,如图2所示。

喷泉实验的观察结果与结论

喷泉实验的观察结果与结论

喷泉实验的观察结果与结论喷泉实验是一项经典的物理实验,通过观察喷泉水柱的形态变化和喷射高度的变化,可以揭示液体受到重力和表面张力的共同作用下的特性和规律。

我将通过对喷泉实验的观察结果和结论进行深入探讨,以帮助你更全面、深刻地理解这一实验现象。

观察结果:1. 喷泉高度与液体注入速度的关系:实验中我们可以观察到,当注入液体的速度逐渐增大时,喷泉的高度也随之增大。

这是因为注入液体的速度增加会增大液体的动能,使其克服重力作用而达到更高的喷射高度。

2. 喷泉高度与液体种类的关系:实验中我们可以使用不同种类的液体进行喷泉实验,观察到不同液体的喷泉高度可能不同。

这是因为不同种类的液体具有不同的表面张力和粘度,因此受到不同的力学性质限制,导致喷泉高度的差异。

3. 喷泉水柱的形态变化:实验中可以观察到,当注入液体的速度不断增大时,喷泉水柱的形态也发生相应的变化。

初始阶段,喷泉水柱较为细长,随着注入速度的增大,喷泉水柱逐渐变粗,并呈现出一定的弯曲形状。

这是因为注入速度增大会使得液体的喷射更加猛烈,受到的阻力增加,导致喷泉水柱弯曲。

观察结果背后的物理原理和结论:1. 表面张力与喷泉高度的关系:喷泉实验中,液体受到重力和表面张力共同作用。

表面张力是液体分子间作用力造成的,它使液体表面趋向于收缩,形成形状稳定的液体表面。

当注入速度逐渐增大时,液体表面受到的拉力也增大,从而克服重力的作用,使喷泉高度增加。

2. 液体种类与喷泉高度的关系:不同种类的液体具有不同的表面张力和粘度,因此受到不同的力学性质限制,导致喷泉高度的差异。

表面张力是决定液体形态的重要因素,而粘度则与液体的黏稠程度有关。

较高的表面张力和较低的粘度会使液体克服重力的作用更容易,从而实现较高的喷泉高度。

3. 喷泉水柱形态变化的解释:当注入速度逐渐增大时,喷泉水柱受到的阻力也逐渐增大,阻力对喷泉水柱的运动产生了一定的影响。

较小的注入速度下,液体相对稳定,喷泉水柱相对细长;而当注入速度增大时,液体受到的阻力增大,使得喷泉水柱变粗并呈现出一定的弯曲形状。

小喷泉小实验报告(3篇)

小喷泉小实验报告(3篇)

第1篇一、实验目的1. 了解喷泉实验的原理和操作步骤。

2. 通过实验观察喷泉的形成过程,加深对物理现象的理解。

3. 培养实验操作能力和观察能力。

二、实验原理喷泉实验是利用大气压强和液体压强的原理,使水从喷泉口喷出。

实验中,通过在喷泉装置中注入适量的水,使喷泉口与水面保持一定的高度差,从而形成喷泉。

三、实验器材1. 喷泉装置(包括喷泉瓶、喷泉管、喷泉口等)2. 水盆3. 胶带4. 透明胶管5. 铅笔四、实验步骤1. 将喷泉装置的喷泉瓶装满水,确保喷泉瓶口与喷泉管口相连接。

2. 将喷泉管的一端插入水盆中,另一端与喷泉瓶口连接,并用胶带固定。

3. 在喷泉管的另一端插入透明胶管,胶管长度约为50cm。

4. 将透明胶管的另一端弯曲成U形,用铅笔固定在桌面或实验台上。

5. 观察喷泉的形成过程。

五、实验现象1. 在实验过程中,可以看到水从喷泉瓶口喷出,形成喷泉。

2. 随着喷泉的形成,喷泉口的水面逐渐下降,喷泉高度逐渐减小。

3. 当喷泉高度减小到一定程度时,喷泉停止喷水。

1. 喷泉实验的原理是大气压强和液体压强的相互作用。

当喷泉瓶中的水被抽走时,喷泉管内的空气被压缩,形成一定的压力差。

此时,大气压强推动水从喷泉瓶口喷出,形成喷泉。

2. 喷泉高度的变化与喷泉瓶口与水面的高度差有关。

当高度差增大时,喷泉高度也随之增大;当高度差减小时,喷泉高度减小。

3. 实验过程中,喷泉的形成和停止与大气压强和液体压强的平衡有关。

当喷泉高度减小到一定程度时,液体压强不足以克服大气压强,喷泉停止喷水。

七、实验结论1. 喷泉实验验证了大气压强和液体压强的原理,加深了对物理现象的理解。

2. 通过实验,培养了实验操作能力和观察能力。

3. 实验结果表明,喷泉的形成和停止与大气压强和液体压强的平衡有关。

八、实验心得1. 在实验过程中,要确保喷泉装置的密封性,避免气体泄漏影响实验结果。

2. 实验过程中,要注意观察喷泉的形成和停止过程,分析实验现象。

高中化学重要考点——喷泉实验

高中化学重要考点——喷泉实验

高中化学重要考点——喷泉实验喷泉实验是一种生动、简单、易于观察和理解的化学实验,可以生动地展示各种化学反应中不同物质之间的相互作用与转化。

此实验涉及到氢氧化钠、硫酸铜和离子反应等方面,是中学化学知识中的重要考点之一。

一、实验原理及步骤1.实验原理(1)氢氧化钠(NaOH)与硫酸铜(CuSO4)反应,可以生成状如喷泉的物质。

具体反应式为:NaOH + CuSO4 → Cu(OH)2↓ + Na2SO4这是一个经典的双替换反应。

(2)反应中产生的Cu(OH)2是一种不稳定的化合物,其在水溶液中会迅速分解为Cu(OH)2•H2O,进一步变为深蓝色的Cu(OH)2溶液。

此反应可用以下方程式表示:Cu(OH)2 → Cu(OH)2•H2O → Cu(OH)2(aq)(3)产生大量气泡,物质形成喷泉的原因是,产生的Cu(OH)2•H2O粒子在重力和表面张力的作用下聚集在一起,形成附着在氢氧化钠的顶部的一个泡沫堆。

当气泡越来越多时,它们将形成一个喷泉状结构。

2.实验步骤(1)加入足量的氢氧化钠(NaOH)溶液到硫酸铜(CuSO4)溶液中,注意要缓慢地加入,同时不断地搅拌。

这个过程中,反应先是缓慢的,但是随着氢氧化钠的加入量越来越多,反应则会迅速加剧。

(2)等到氢氧化钠的添加完毕,就会出现一个令人惊讶的现象——喷泉形成了!溶液聚集成一个球形,而气泡在球形的中心逐渐增多,最终形成一个喷泉。

(3)观察喷泉的变化,同时也要注意安全事项。

二、反应数理基础1.化学反应化学反应是指在化学变化中,原子和分子之间发生了各种各样的相互作用,从而导致了物质的性质和状态的变化。

最常见的化学反应类型有:酸碱反应、氧化还原反应、单替换反应、双替换反应等。

2.离子反应当酸、碱或盐溶于水中时,其分子或离子便与水中的离子发生相互作用,形成新的化合物,这就是离子反应。

例如,当氢氧化钠与硫酸铜溶于水中时,氢氧化钠中的氢氧根阴离子(OH^-)和硫酸铜中的铜离子(Cu2+)发生置换反应,生成氢氧化铜和硫酸钠,化学反应式为:NaOH + CuSO4 → Cu(OH)2↓ + Na2SO43.氧化还原反应氧化还原反应中,氧化剂能接受一定量的电子,而还原剂能捐献一定量的电子。

喷泉实验及拓展应用

喷泉实验及拓展应用

喷泉实验及拓展应用喷泉实验是一种常见的物理实验,通过利用压力把液体喷射到空中,形成一个或多个水柱或水雾的现象。

喷泉实验可以通过几种不同的方法来实现,其中最常见的是利用压力给水箱提供水源,然后通过喷嘴将水喷射出来。

喷泉实验可以用来研究流体力学、空气动力学和流体静力学等相关原理。

通过对喷泉的高度、流速和喷射角度等参数的测量和控制,可以得到一些有趣的结论。

首先,喷泉的高度受到喷射速度和喷嘴角度的影响。

当喷射速度较大且喷嘴角度较小时,喷泉的高度会较高。

这可以通过改变水源的压力或调整喷嘴的角度来实现。

其次,由于压力的影响,喷泉水柱会呈现出一定的弯曲形状。

这是因为在喷射过程中,压力较大的一侧会受到较大的向外推力,从而造成水柱的弯曲。

在喷泉实验的拓展应用中,我们可以进一步研究喷泉中液体和气体的相互作用。

例如,我们可以添加一些颜料或荧光剂到喷泉水中,观察其在喷射过程中的变化。

这将帮助我们理解流体的运动和混合过程。

此外,我们还可以通过控制喷泉的参数,如喷射角度和强度,来模拟一些自然现象,如风、雨或波浪等。

这将有助于我们更好地理解和模拟自然界中的流体运动。

另一种拓展应用是将喷泉与音乐或光线相结合。

通过控制喷泉的喷射节奏和高度,可以使其与音乐的节拍相协调,创造出一种视听的艺术效果。

类似地,我们还可以添加彩灯或激光器到喷泉实验中,通过改变光线的颜色和强度,来创造出各种视觉效果。

这种喷泉艺术在许多公共场所如城市广场、公园或音乐喷泉中得到了广泛应用。

此外,喷泉实验还可以与化学实验相结合,用于展示化学反应的过程。

例如,我们可以在喷泉水中加入化学试剂,观察其产生的气体或颜色变化。

这可以让学生更直观地理解化学反应的原理,并增加他们对科学的兴趣。

总的来说,喷泉实验是一种简单但富有趣味和实用性的物理实验。

通过对喷泉的研究和控制,我们可以深入了解流体力学、空气动力学和流体静力学等原理,并在此基础上进行一系列的拓展应用,包括研究流体的运动、颜色和化学反应等方面。

喷泉实验原理及扩展应用的浅探喷泉实验原理

喷泉实验原理及扩展应用的浅探喷泉实验原理

喷泉实验原理及扩展应用的浅探喷泉实验原理喷泉实验是一种常见的物理实验,通过将水从喷泉射出,观察和研究水流的运动规律以及与其他物质的相互作用。

喷泉实验原理涉及到流体动力学、压力、离心力等物理概念,并可以扩展应用于很多领域,包括建筑景观设计、科学教学等。

1.流体动力学:在喷泉实验中,水的流动过程可以通过流体力学的理论进行分析。

通过喷泉喷出的水柱,可以观察到水流的速度、方向、形状等变化。

2.压力:喷泉实验中,水从喷嘴射出时会形成一个水柱。

而水柱的高度与喷嘴的压力相关,当喷嘴的压力增加时,水柱的高度也会增加。

因此,通过调节喷嘴的压力可以控制喷泉的高度。

3.离心力:喷泉实验中,水柱射出的速度和形状与离心力有关。

离心力使得水柱呈现出上升、下降、散开等不同的运动轨迹。

喷泉实验的扩展应用可以应用于建筑景观设计、科学教学等领域:1.建筑景观设计:喷泉作为一种常见的景观元素,可以通过喷泉实验来研究和设计不同形状、高度的喷泉效果。

通过调节喷嘴的形状、大小和压力等参数,可以创造出不同的水柱形态,增强景观的可视效果。

2.科学教学:喷泉实验可以作为一种教学工具,通过观察和研究喷泉实验可以帮助学生更好地理解流体力学、压力、离心力等物理概念。

喷泉实验可以通过调节实验参数来观察不同的实验现象,从而培养学生的实验观察能力和科学思维能力。

3.环境改善:喷泉实验还可以应用于水处理和水质改善。

通过喷泉实验可以观察和研究水柱中水分子的运动,从而研究水的净化方式和处理方法,改善水质。

总之,喷泉实验通过观察和研究水柱的运动规律,涉及到流体动力学、压力、离心力等物理概念。

除了可以用于建筑景观设计外,喷泉实验还可以应用于科学教学和环境改善等领域。

这些应用进一步扩展了喷泉实验的实用价值。

喷泉实验原理及其应用拓展

喷泉实验原理及其应用拓展

喷泉实验原理及其应用拓展喷泉实验是一种常用的物理实验,其原理是利用液体的流动和压力特性来实现喷射效果。

通过控制液体的流动和喷射速度,可以观察和研究液体的运动规律。

喷泉实验的原理涉及到一些基本的物理概念和原理,包括流体静力学、压力和密度等。

当液体从喷口喷射出来时,会形成一个具有一定高度的水柱。

这是由于液体在喷射过程中受到重力和压力的作用下,具有一定的喷射速度和喷射高度。

根据伯努利定律,液体在流动过程中具有较高的流速,压力就相对较低;反之,流速较低时,压力则相对较高。

在喷泉实验中,当液体从喷口流出时,由于液体的流速相对较高,所以喷口处的压力较低,这使得喷口处的液面降低,形成一个喷射的水柱。

喷泉实验具有许多应用拓展,下面简单介绍几个常见的应用场景:1.喷泉景观设计:喷泉作为一种常见的人工景观,可以根据不同的设计需求来实现不同形状和高度的喷射效果。

通过控制液体的喷射速度和喷射角度,可以创造出多种美观的喷泉景观,增添城市和园林的魅力。

2.水力发电:喷泉实验中液体的喷射速度和喷射高度反映了液体的动能,可以利用这种动能来产生电能。

将喷泉中的水柱导入涡轮机,利用液体的动能驱动涡轮机旋转,从而产生电能。

3.气体分离:喷泉实验的原理可以用于气体分离的过程。

当气体从液体中排出时,会形成气体泡,并带走液体中的溶解气体。

通过控制液体的喷出速度和喷射角度,可以将不同的气体分离出来,用于不同的应用领域。

4.气液混合:喷泉实验中,液体和气体的混合过程体现了气液两相的相互作用。

可以利用这种现象进行气体的传输和混合反应。

例如,在化工工艺中,可以通过喷泉实验来将气体引入液体反应体系中,促进反应的进行。

总的来说,喷泉实验是一种基于流体力学原理的实验方法,可以用于研究液体的运动特性和实现一些实际应用。

通过控制液体的流速和喷射角度,可以实现不同形状和高度的喷射效果,并且可以应用于景观设计、水力发电、气体分离和气液混合等领域。

喷泉实验探究课件

喷泉实验探究课件
生物体内的气体运输和溶解情况。
在地球科学中,喷泉实验结论可以用于 研究地球大气的组成和变化。通过分析 不同高度和温度条件下气体的溶解情况 ,可以了解地球大气中气体的来源和去
向。
在物理学中,喷泉实验结论可以应用于 其他液-气体系的研究,如液体的蒸发 和冷凝等过程。通过探究不同条件下液 体的蒸发和冷凝情况,可以深入了解相
禁止在实验室内饮食、吸烟或使用明 火,避免产生安全隐患。
实验过程中要保持室内通风良好,防 止有毒气体聚集。
安全意识培养
实验前应认真阅读实 验指导书,了解实验 步骤和注意事项。
实验后应按照要求正 确处理废弃物,确保 实验室环境安全。
实验过程中要保持高 度警惕,时刻关注实 验安全状况。
THANKS
感谢观看
喷泉实验探究课件
contents
目录
• 喷泉实验的原理 • 实验材料和步骤 • 实验结果分析 • 实验结论 • 安全注意事项
01
喷泉实验的原理
喷泉实验的化学原理
氨气极易溶于水
氨气是一种极易溶于水的气体, 当氨气与水接触时,会迅速溶解 在水中,导致水溶液的密度减小 ,产生向上的浮力。
气压差的形成
结果讨论
实验结论
通过喷泉实验,我们验证了气压变化对水柱高度和时间的影响,进一步理解了喷 泉形成的原理。
实验意义
喷泉实验不仅有助于理解物理原理,还可以启发学生思考自然界中其他类似的现 象,如泉水、瀑布等。此外,该实验还可以培养学生的观察、分析和动手能力。
04
实验结论
实验结论总结
喷泉实验表明,气体在液体中的溶解 度与压力和温度有关。随着压力的减 小,溶解度减小;随着温度的升高, 溶解度降低。
04
4. 观察并记录喷泉的颜 色、高度和持续时间等 特征。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全面解析喷泉实验的原理及其应用
喷泉实验在高中化学教学中具有相当重要的地位。

其实验的要求是:①装置气密性良好;②所用气体能大量溶于所用液体或气体与液体快速反应。

实验的基本原理是使烧瓶内外在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压入烧瓶内,在尖嘴导管口形成喷泉。

喷泉实验的物理推导原理如下:如右图1所示,在干燥的圆底烧瓶里充满氨气,用带有玻璃管和滴管(滴管里预先吸入水)的塞子塞紧瓶口,立即倒置烧瓶,使玻璃管插入盛有水的烧杯里(水里事先加入少量的酚酞试液),如图安装好装置。

打开橡皮管的滴头,使少量水进入烧瓶,氨气溶于水使瓶内压强迅速下降,当瓶内压强下降到一定程度时,外界大气压就将烧杯内的水压入烧瓶,形成喷泉。

假设烧瓶的容积为250 mL,玻璃管长35 cm,胶头滴管中可挤出
0.5 mL水,那么气体在水中的溶解度多大时才能形成喷泉呢?
要使水通过玻璃管喷入烧瓶形成喷泉,瓶内外压强差必须超过一个特定的值。

设大气压为P0,35 cm水柱产生的压强为P1,形成喷泉时烧瓶内压强为P,要使水柱喷入瓶内,要求P<P0-P1.一个标准大气压相当于10.34 m水柱产生的压强,则P<P0-P1=10.34 m水柱-0.35 m水柱=9.99 m水柱。

根据波意尔定律,当压强由10.34 m水柱变为9.99 m水柱时,气体的体积由250 mL
变为V,=,V=241.5 mL,即烧瓶内气体体积至少减少
250 mL-241.5 mL=8.5 mL.故当滴管内0.5 mL水挤入烧瓶后如能溶解8.5 mL 1标准大气压的气体,即1 mL水溶解多于17 mL气体时,就能形成喷泉。

NH3、HBr、HCl、HI、SO2、NO2等气体的溶解度均大于17,在水中都能形成喷泉。

CO2、H2S、Cl2等气体在水中不能形成喷泉,但在NaOH溶液中可以形成喷泉。

根据其原理进行拓展还可以探讨喷泉实验的多种应
用。

一、根据实验装置进行的条件拓展
例1、制取氨气并完成喷泉实验(图2中夹持装置均已略去)。

(1) 写出实验室制取氨气的化学方程式: _________。

(2) 收集氨气应使用_____法,要得到干燥的氨气可选用_____做干燥剂。

(3) 用图(a)所示的装置进行喷泉实验,上部烧瓶已装满干燥氨气,引发上述喷泉的操作是
________________。

该实验的原理是________________________。

(4)如果只提供如图(b)的装置,请说明引发喷泉的方法。

答:______________________________________________。

解析:因做喷泉实验的两个关键是:①使气体与溶剂接触。

②是使烧瓶内气体压强迅速减小造成内外压差比较大即可发生喷泉现象。

根据这两点可回答第③④两问的问题。

答案: (1) 2NH4Cl+Ca(OH)22NH3↑+CaCl2+2H2O
(2) 向下排空气碱石灰
(3) 打开止水夹,挤出胶头滴管中的水。

氨气极易溶解于水,致使烧瓶内气体压强迅速
减小。

(4) 方法一、打开夹子,用手(或热毛巾等)将烧瓶捂热,氨气受热膨胀,赶出玻璃导管
内的空气,氨气与水接触,即发生喷泉;方法二、烧瓶上覆盖冷毛巾或淋洒冷水,使烧瓶内温度降低,压强减小,从而引发喷泉;方法三、在烧瓶上涂抹无水乙醇,由于乙醇挥发带走热量使烧瓶内温度降低,压强减小,引发喷泉。

二、根据实验中出现的现象进行的问题拓展
例2、某同学用HCl气体做喷泉实验时,喷入烧瓶内的水不足烧瓶容积的1/3,其原因不可能是()。

(A)烧瓶潮湿(B)装置气密性不好(C)水里没有加石蕊试液(D)烧瓶内未集满HCl
解析:喷泉实验失败的原因很多,要弄清本质进行大胆假设。

很明显(A)(B)(D)都能使喷入烧瓶内的水不足烧瓶容积的1/3,所以答案为(C)。

三、根据实验中发生的现象进行的操作拓展
例3、如图3所示,甲学生在烧瓶中充满O2,并在反匙燃烧匙中加入一种白色固体物质,欲做O2的喷泉实验。

实验开始,用凸透镜将日光聚焦于反匙燃烧匙中的固体,燃烧匙内出现一阵火光和白烟。

等一会儿,打开橡皮管上的止水夹。

看到有美丽的喷泉发生。

请问他在反匙燃烧匙中加入了什么物质?
解析:综合分析上述实验中产生的现象,结合喷泉实验的原理,我们会很容易想到反匙燃烧匙中加入的物质是白磷。

白磷与烧瓶内的O2反应生成P2O5固体,使烧瓶内压强减小。

打开止水夹后烧杯中的水被压入烧瓶内形成喷泉。

四、根据实验中的生成物进行的原理拓展
例4、如图4装置,实验前a、b、c活塞均关闭。

若要在该装置中产生喷烟现象,该怎样操作?若想在该装置中产生双喷泉现象,该怎样操作?
解析:挤压胶头滴管,滴管中的水溶解右瓶中的部分NH3使瓶内压强减小。

打开活塞a、b,左瓶中的HCl进入右瓶生成NH4Cl固体而产生喷烟现象。

若此时打开活塞c,则烧杯内的水会压向左右两个烧瓶,在左瓶中产生红色喷泉,在右瓶中产生蓝色喷泉。

五、根据实验中的反应物进行的操作拓展
例5、把充满乙烯的圆底烧瓶用带有尖嘴导管的橡皮塞塞紧,按图5安装好仪器。

怎样操作会引发喷泉?
解析:松开弹簧夹A,通过导管C向盛溴水的锥形瓶中鼓入空气,使约10 mL溴水压入烧瓶,再把弹簧夹A夹紧。

振荡烧瓶,溴水很快褪色,有油状物生成,烧瓶内形成负压。

松开弹簧夹A,溴水自动喷入。

喷入约10 mL溴水后,再把弹簧夹A夹紧,振荡烧瓶,溴水又
很快褪色。

如此重复操作几次。

当喷入的溴水颜色不能完全褪尽时,说明烧瓶中的气体已经完全反应。

松开弹簧夹B,让蒸馏水喷入烧瓶也可形成喷泉。

只要反应完全,液体几乎可充满整个烧瓶。

六、根据生成物浓度进行的计算拓展
例6、标准状况下两个等体积的干燥烧瓶中分别充满①NH3②NO2,进行喷泉实验,经充分反应后烧瓶内溶液的物质的量浓度为()。

(A)①<②(B)①>②(C)①=②(D)无法确定
解析:①设烧瓶的体积为V L,则充满NH3后气体的物质的量为mol。

发生喷泉现象后,烧瓶将充满溶有NH3的溶液,即溶液的体积为VL,所以烧瓶内溶液的物质的量浓度为
mol/L。

②设烧瓶的体积为VL,则充满NO2后气体的物质的量为mol。

发生如下反应:
3NO2+2H2O=2HNO3+NO,反应后生成HNO3的物质的量为mol。

由于剩余V L NO气体,
所以烧瓶中溶液的体积为V L,因此烧瓶内溶液的物质的量浓度也为mol/L。

所以答案选(C)。

七、根据实验原理进行反向思维拓展
例7、①如图6装置,在锥形瓶中加入足量的下列物质,能产生喷泉现象的是()
(A)碳酸钠和稀盐酸(B)氢氧化钠和稀盐酸
(C)铜和稀硫酸(D)硫酸铜和氢氧化钠溶液
解析:碳酸钠和盐酸反应能产生大量的CO2气体使锥形瓶内的压强增大,从而将反应混合物压入烧瓶。

也能形成喷泉。

所以答案选(A)。

②如图7装置,在锥形瓶外放一个水槽,瓶中加入酒精,水槽中加入冰水后,再加入足量的下列物质,产生了喷泉,问水槽中加入的物质可以是()。

(A)浓硫酸(B)食盐(C)硝酸钾(D)硫酸铜
解析:浓硫酸溶于水放热,可使锥形瓶内的酒精部分气化而使锥形瓶内压强增大,将酒精压入烧瓶形成喷泉。

答案为(A)。

八、根据喷泉原理进行的迁移拓展
例8、如图8所示,锥形瓶内盛有气体X,滴管内盛有液体Y。

若挤压滴管胶头,使液体Y滴入锥形瓶中,振荡,过一会儿,可见小气球a鼓胀起来。

气体X和液体Y不可能是()。

(A)NH3 H2O
(B)SO2 NaOH溶液
(C)CO2 6 mol/L H2SO4溶液
(D)HCl 6 mol/L Na2SO4溶液
解析:当滴入的液体Y将锥形瓶中的气体X溶解或发生反应后,使锥形瓶中的压强减小,大气压通过导管将空气压入小气球a使它鼓胀起来。

因此,不符合条件的只有(C)。

这个实验虽然没有产生喷泉现象,但它的原理跟喷泉实验原理是相同的。

课本上一个简单的演示实验,可以演变出这么多的拓展问题,说明了化学学科的博大精深,同时也说明了发散思维的重要性。

只要我们勤于思考,善于总结,就能做到举一反三。

相关文档
最新文档