初一数学绝对值的化简和有理数的计算
七上有理数运算+绝对值性质及化简--上传
教育学科教师辅导教案学员编号:年级:七年级课时数:3学员姓名: 辅导科目:数学学科教师:黄琳课程主题:有理数运算和绝对值专题授课时间:2017-9-13学习目标掌握有理数的混合运算技巧和绝对值经典题型教学内容内容回顾有理数的运算及绝对值专题一、有理数基本加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.二、有理数基本乘法、除法Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba=(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc=(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. ()a b c ab ac+=+(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.三:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b ab÷=⋅,(0b≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.四、有理数的混合运算顺序(1)“先乘方,再乘除,最后加减”的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
七年级数学下-专题 含有绝对值的式子的化简(解析版)
(人教版)七年级上册数学《第二章整式的加减》专题含有绝对值的式子的化简一、选择题(共10小题)1.有理数a、b在如图所示数轴的对应位置上,则|b﹣a|﹣|b|化简后结果为()A.a B.﹣a C.a﹣2b D.b﹣2a【分析】代入化简后的算式,求出算式的值是多少即可.【解答】解:|b﹣a|﹣|b|=a﹣b+b=a,故选:A.【点评】此题主要考查了整式的加减﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.2.(2022秋•罗湖区校级期末)有理数a,b在数轴上如图所示,则化简|2a|﹣|b|+|2a﹣5|的结果是()A.4a+b﹣5B.4a﹣b﹣5C.b+5D.﹣b﹣5【分析】先结合数轴确定a,b的范围,再运用绝对值知识进行化简.【解答】解:由题意可得,﹣2<b<﹣1<1<a<2,∴|2a|﹣|b|+|2a﹣5|=2a﹣(﹣b)+[﹣(2a﹣5)]=2a+b﹣2a+5=b+5,故选:C.【点评】此题考查了运用数轴表示有理数及绝对值求解的能力,关键是能准确理解并运用以上知识.3.(2022秋•天山区校级期末)已知a,b,c在数轴上位置如图所示,则|a﹣b|﹣|b﹣c|+|c﹣a|可化简为()A.0B.2b﹣2a C.2a﹣2b D.﹣2a【分析】先由数轴确定a,b,c的符号和大小,再分别确定a﹣b,b﹣c,c﹣a的符号,最后化简绝对值并计算求解.【解答】解:由题意得,a<b<0<c且|a|>|b|>|c|,∴a﹣b<0,b﹣c<0,c﹣a>0,∴|a﹣b|﹣|b﹣c|+|c﹣a|=b﹣a+b﹣c+c﹣a=2b﹣2a,故选:B.【点评】此题考查了运用数轴进行绝对值的化简、计算能力,关键是能准确理解并运用以上知识.4.(2022秋•永兴县期末)有理数a,b,c在数轴上的位置如图所示,式子|a|+|b|+|a+b|+|b﹣c|化简为()A.2a+3b﹣c B.3b﹣c C.b+c D.c﹣b【分析】根据正数的绝对值等于它本身,负数的绝对值等于它的相反数可得结果.【解答】解:由数轴得,﹣1<a<0,b>1,c>b,∴a+b>0,b﹣c>0,∴|a|+|b|+|a+b|+|b﹣c|=﹣a+b+a+b﹣b+c=b+c.故选:C.【点评】本题考查了绝对值与数轴,用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.5.(2022秋•黄埔区期末)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.【点评】本题考查的是整式的加减、数轴和绝对值,熟知数轴上右边的数总比左边的大是解答此题的关键.6.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|c﹣b|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】根据数轴的意义可知:c<a<0<b,结合绝对值的性质化简给出的式子.【解答】解:根据数轴图可知:c<a<0<b,∴a+b>0,a+c<0,c﹣b<0,∴|a+b|+|a+c|﹣|c﹣b|=a+b﹣a﹣c+c﹣b=0.故选:A.【点评】此题考查了数轴、绝对值的有关内容,能够正确判断绝对值内的式子的符号,再根据绝对值的性质正确化简.7.已知有理数a,b在数轴上的位置如图所示,则化简|b+1|﹣|b﹣a|的结果为()A.a﹣2b﹣1B.a+1C.﹣a﹣1D.﹣a+2b+1【分析】先根据数轴判断a、b的大小,再判断所求式子中绝对值内部的符号,再化简求值.【解答】解:由数轴可知,﹣1<b<0,1<a<2,∴b+1>0,|b+1|=b+1,b﹣a<0,|b﹣a|=a﹣b,∴原式=b+1﹣(a﹣b)=1+2b﹣a,故选:D.【点评】本题考查绝对值和数轴.关键在于根据数轴判断b+1、b﹣a的符号,进而取绝对值化简求值.8.有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a﹣2c+2b B.0C.﹣2c D.2a【分析】根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,即可求解.【解答】解:根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,原式=﹣(c﹣a)+(a+b)+(b﹣c)=2a﹣2c+2b,故选:A.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.9.已知有理数a,b,c在数轴上的位置如图,且|c|>|a|>|b|,则|a+b|﹣2|c﹣b|+|a+c|=()A.c﹣b B.0C.3b﹣3c D.2a+3b﹣c【分析】由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,再按照绝对值的化简法则和有理数的加减运算法则计算即可.【解答】解:由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,∴|a+b|﹣2|c﹣b|+|a+c|=a+b﹣2(b﹣c)﹣a﹣c=b﹣2b+2c﹣c=c﹣b.故选:A.【点评】本题考查了借助数轴进行的绝对值化简及有理数的加减运算,数形结合并熟练掌握相关运算法则是解题的关键.10.(2022秋•辉县市校级期末)有理数a,b,c在数轴上所对应的点的位置如图所示,试化简|a﹣b|﹣2|b﹣c|+|a+b|﹣|c+b|的结果是()A.﹣3b+3c B.3b﹣3c C.﹣2a+3b+c D.2a﹣b+3c【分析】根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|,然后化简绝对值即可.【解答】解:∵c<b<0<a,|a|<|b|<|c|,∴a﹣b>0,|b﹣c|>0,|a+b|<0,|c+b|<0,∴|a﹣b|﹣2|b﹣c|+|a+b|﹣|c+b|=a﹣b﹣2(b﹣c)+[﹣(a+b)]﹣[﹣(c+b)]=a﹣b﹣2b+2c﹣(a+b)+(c+b)=a﹣b﹣2b+2c﹣a﹣b+c+b=﹣3b+3c,故选:A.【点评】本题主要考查了绝对值的意义,有理数加法、减法运算,合并同类项,解题的关键是根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|.二、填空题(共10小题)11.(2022秋•莱阳市期末)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|=.【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b与c ﹣b的正负,利用绝对值的代数意义化简所求式子,合并同类项即可得到结果.【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.12.(2022秋•温江区校级期中)有理数a,b,c数轴上的位置如图所示,请化简:|﹣c+b|+|a﹣c|﹣|b+a|=.【分析】结合数轴判断﹣c+b<0,a﹣c>0,b+a<0,再根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”可将原式化简,即得答案.【解答】解:由数轴可知:﹣c+b<0,a﹣c>0,b+a<0,∴原式=﹣(﹣c+b)+(a﹣c)+(b+a)=c﹣b+a﹣c+b+a=2a,故答案为:2a.【点评】本题考查了数轴,绝对值,关键是根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”将原式化简.13.有理数a、b、c在数轴上的位置如图,则|a+c|+|c﹣b|﹣|a+b|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴得:a<b<0<c,且|a|>|b|>|c|,∴a+c<0,c﹣b>0,a+b<0,则原式=﹣a﹣c+c﹣b+a+b=0.故答案为:0.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.有理数a,b,c在数轴上的对应点如图所示,化简|a﹣b|﹣|a+c|+|b﹣c|=.【分析】根据绝对值的性质,可化简绝对值,根据整式的加减,可得答案.【解答】解:|a﹣b|﹣|a+c|+|b﹣c|=﹣(a﹣b)+(a+c)+(b﹣c)=﹣a+b+a+c+b﹣c=2b.故答案为:2b.【点评】本题考查了数轴,利用绝对值的性质化简是解题关键.15.有理数a,b,c在数轴上的位置如图所示,化简|a+b﹣c|﹣|c﹣b|+2|a+c|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴a+b﹣c<0,c﹣b>0,a+c<0,则原式=﹣a﹣b+c﹣c+b﹣2a﹣2c=﹣3a﹣2c,故答案为:﹣3a﹣2c.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.a,b,c三个数在数轴上的位置如图所示,化简|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|=.【分析】根据数轴点的位置得出a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,再去掉绝对值符号,合并同类项即可.【解答】解:∵从数轴可知:a<b<0<c,|b|<|c|,∴a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,∴|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|==﹣(a+b)﹣(c﹣b)+(c﹣a)﹣(b﹣a)=﹣a﹣b﹣c+b+c﹣a﹣b+a=﹣a﹣b,故答案为:﹣a﹣b.【点评】本题考查了整式的加减和数轴的应用,解此题的关键是能根据数轴去掉绝对值符号,题目比较好,难度不是很大.17.已知数a、b、c在数轴上的位置如图所示,则|a﹣c|﹣|a+b+c|﹣|b﹣a|=.【分析】先根据a、b、c在数轴上的位置进行绝对值的化简,然后去括号,合并同类项求解.【解答】解:由图可得,c<b<0<a,则原式=a﹣c+(a+b+c)+(b﹣a)=a﹣c+a+b+c+b﹣a=a+2b.故答案为:a+2b.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.18.已知有理数a,b,c在数轴上的位置如图所示,化简:|b﹣c|﹣2|b﹣a|+|c+a|=.【分析】根据数轴上右边的数总比左边的数法,判断大小;原式各项利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:c<b<0<a,|c|>|a|,∴﹣c>a,∴b﹣c>0,b﹣a<0,a+c<0,∴原式=b﹣c﹣2(a﹣b)+(﹣c﹣a)=b﹣c﹣2a+2b﹣c﹣a=﹣3a+3b﹣2c;故答案为﹣3a+3b﹣2c.【点评】此题考查了整式的加减,绝对值,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.19.表示有理数a,b,c的点在数轴上的位置如图所示,请化简|a+b|﹣2|a﹣c|+|c﹣a+b|=.【分析】根据数轴先判断a、b、c的符号和大小关系,再判断a+b、a﹣c、c﹣a+b的符号,进而去绝对值化简.【解答】解:根据数轴可知,a<b<0<c,故a+b<0,a﹣c<0,c﹣a+b>b﹣a>0,∴原式=﹣(a+b)﹣2(c﹣a)+(c﹣a+b)=﹣a﹣b﹣2c+2a+c﹣a+b=﹣c.故答案为:﹣c.【点评】本题考查了绝对值的的化简.通过数轴判断a、b、c的符号,再判断绝对值中的式子符号,是解题的关键.有的时候还需要注意有理数与原点距离的远近.20.数a,b,c在数轴上的位置如图所示.化简:2|b﹣a|﹣|c﹣b|+|a+b|=.【分析】根据数轴即可将绝对值去掉,然后合并即可.【解答】解:由数轴可知:c<b<a,b﹣a<0,c﹣b<0,a+b>0,则原式=﹣2(b﹣a)+(c﹣b)+(a+b)=﹣2b+2a+c﹣b+a+b=3a﹣2b+c.故答案为:3a﹣2b+c.【点评】本题考查整式化简运算,涉及数轴,绝对值的性质,整式加减运算等知识.三、解答题(共20小题)21.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|【分析】由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,根据绝对值的性质化简即可.【解答】解:由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,原式=a﹣b+a+c+c﹣a﹣a﹣b﹣c+b﹣c=﹣b【点评】本题考查数轴、绝对值等知识,解题的关键是记住绝对值的性质:数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.22.已知有理数a、b、c在数轴上对应点的位置如图所示.化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.【分析】由数轴得出﹣1<c<0<b<1<a,|b|<|c|<|a|,去掉绝对值符号,再合并即可.【解答】解:∵由数轴可知:﹣1<c<0<b<1<a,|b|<|c|<|a|,∴a﹣b>0,b﹣c>0,c﹣a<0,b+c<0,∴原式=a﹣b+b﹣c+c﹣a﹣(b+c)=﹣b﹣c.【点评】本题考查了数轴和绝对值,能正确去掉绝对值符号是解此题的关键.23.有理数a、b、c在数轴上的位置如图所示.化简:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|.【分析】根据数轴,先确定a、b、c的正负,再判断a﹣b,a+b,c﹣a,b﹣c,b﹣a+c的正负,最后根据绝对值的意义,对代数式化简.【解答】解:由数轴知:a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,b﹣a+c>0所以3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|=3(b﹣a)﹣(a+b)﹣(c﹣a)+2(c﹣b)﹣(b﹣a+c)=3b﹣3a﹣a﹣b﹣c+a+2c﹣2b﹣b+a﹣c=﹣b﹣2a.【点评】本题考查了数轴上点的特点、有理数的加减法法则及绝对值的化简.根据绝对值的意义化简代数式是关键.注意:大的数﹣小的数>0,小的数﹣大的数<0.24.有理数a,b,c在数轴上的位置如图:试化简:|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|【分析】根据绝对值的性质化简即可.【解答】解:由题意:a﹣b>0,c﹣a<0,b﹣c>0,c<0,∴|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|=a﹣b+c﹣a+b﹣c+c=c.【点评】本题考查绝对值的性质、数轴等知识,熟练掌握绝对值的性质是解决问题的关键.25.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|.【分析】首先判断出a<0,a+b<0,c﹣a>0,再根据绝对值的性质化简即可.【解答】解:观察数轴可知:a<0,a+b<0,c﹣a>0∴原式=﹣a+a+b+c﹣a=b+c﹣a.【点评】本题考查数轴、绝对值的性质等知识,解题的关键是熟练掌握绝对值的性质,记住如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.26.已知a,b在数轴上对应的点如图示化简:|a|+|a+b|﹣|a﹣b|﹣|b﹣a|.【分析】首先根据图示,可得a<0,a+b<0,b﹣a>0,a﹣b<0,然后根据整数的加减的运算方法,求出算式的值是多少即可.【解答】解:根据图示,可得a<﹣b<0<b<﹣a;∴a<0,a+b<0,a﹣b<0,b﹣a>0,∴|a|=﹣a,|a+b|=﹣(a+b),|a﹣b|=﹣(a﹣b,|b﹣a|=b﹣a,∴|a|+|a+b|﹣|a﹣b|﹣|b﹣a|=﹣a﹣a﹣b+a﹣b﹣b+a=﹣3b.【点评】此题考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大.还考查了整式的加减运算,解答此类问题的关键是要明确整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.27.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|+|a﹣b|﹣|b﹣c|+|2a|.【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值的性质去掉绝对值号,再合并同类项即可.【解答】解:由图可知,a<0,b>0,c<0且|c|>|a|>|b|,所以,a﹣b<0,b﹣c>0,a﹣c>0,所以原式=a﹣c+b﹣a﹣b+c﹣2a=﹣2a.【点评】本题考查了数轴,绝对值的性质,准确识图并判断出各数正负情况是解题的关键.28.已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|﹣|a+c|+2|c﹣b|.【分析】解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.【解答】解:由数轴可知:a>b>0>c,|a|>|c|,则b﹣a<0,a+c>0,c﹣b<0.∴|b﹣a|﹣|a+c|+2|c﹣b|=﹣(b﹣a)﹣(a+c)﹣2(c﹣b)=﹣b+a﹣a﹣c﹣2c+2b=b﹣3c.【点评】在去绝对值符号时要注意:大于0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.29.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.【点评】本题主要考查了数轴和绝对值,理解绝对值的意义是解答此题的关键.30.如图,数a,b,c在数轴上的位置如图.(1)判断符号:a+b0,b﹣c0,a﹣c0;(填“>”、“<”)(2)化简:|b﹣c|﹣|a+b|﹣|a﹣c|.【分析】(1)根据数轴、有理数的加法可判断a+b,b﹣c,a﹣c的符号;(2)根据绝对值和a+b,b﹣c,a﹣c的符号化简式子|b﹣c|﹣|a+b|﹣|a﹣c|即可.【解答】解:(1)由数轴得,a>c>0<b,|b|>a>c,∴a+b<0,b﹣c<0,a﹣c>0;故答案为:<,<,>;(2)∵a+b<0,b﹣c<0,a﹣c>0,∴|b﹣c|﹣|a+b|﹣|a﹣c|=﹣b+c﹣(﹣a﹣b)﹣(a﹣c)=﹣b+c+a+b﹣a+c=2c.【点评】本题考查了数轴,有理数的加减运算法则,绝对值的性质,整式的加减,掌握正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0是解题的关键.31.(2022秋•綦江区期中)有理数a、b、c在数轴上的对应点的位置如图所示:(1)用“>”“<”或“=”填空:a+b0,c﹣a0,b﹣c0;(2)化简:|a+b|﹣|c﹣a|﹣|b|+|b﹣c|.【分析】(1)根据各点在数轴上的位置判断出a,b,c的符号,进而可得出结论;(2)根据(1)中a,b,c的符号去绝对值符号即可.【解答】解:(1)由各点在数轴上的位置可知,a<0<b<c,|a|>b,∴a+b<0,c﹣a>0,b﹣c<0.故答案为:<,>,<.(2)∵由(1)可知,a+b<0,c﹣a>0,b﹣c<0,∴|a+b|﹣|c﹣a|﹣|b|+|b﹣c|=﹣(a+b)﹣(c﹣a)﹣b+(c﹣b)=﹣a﹣b﹣c+a﹣b+c﹣b=﹣3b.【点评】本题考查的是有理数的大小比较,熟知数轴的特点和绝对值的性质是解题关键.32.(2022春•杜尔伯特县期中)有理数a、b、c在数轴上的位置如图所示.(1)用“<”连接:0,a、b、c.(2)化简:|c﹣a|+2|b﹣c|﹣|a+b|【分析】根据有理数a、b、c在数轴上的位置即可得到结论.【解答】解:(1)a<b<0<c;(2)原式=(c﹣a)+2(﹣b+c)﹣(﹣a﹣b),=c﹣a﹣2b+2c+a+b,=3c﹣b.【点评】本题考查了数轴和有理数的大小比较法则,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.33.有理数a、b、c在数轴上的位置如图所示.(1)判断a﹣b0,a﹣c0,b﹣c0;(2)化简|a﹣b|+|a﹣c|﹣|b﹣c|.【分析】(1)由图可得:c<a<0<b,得a﹣c>0,a﹣b<0,b﹣c>0,从而解决此题.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0.根据绝对值的定义,得|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b ﹣c|=b﹣c,从而解决此题.【解答】解:(1)由图可得:c<a<0<b.∴a﹣c>0,a﹣b<0,b﹣c>0.故答案为:<,>,>.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0,∴|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b﹣c|=b﹣c,∴|a﹣b|+|a﹣c|﹣|b﹣c|=b﹣a+a﹣c+c﹣b=0.【点评】本题主要考查数轴,绝对值、整式的加减运算,熟练掌握实数的大小关系、绝对值的定义、整式的加减运算法则是解决本题的关键.34.有理数a,b,c在数轴上的位置如图所示,(1)用“<”连接0,a,b,c;(2)化简代数式:|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|.【分析】(1)数轴上右边的数总比左边的数大,从而连接即可;(2)根据数轴得出a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,去掉绝对值后合并即可得出答案.【解答】解:(1)结合数轴可得:c<b<0<a;(2)由题意得:a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,故|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|=a﹣b﹣a﹣b﹣a+c+b﹣c=﹣a﹣b.【点评】本题考查了整式的加减、数轴及绝对值的知识,掌握数轴上右边的数总比左边的数大是解答本题的关键.35.若有理数a、b、c在数轴上测的点A、B、C位置如图所示:(1)判断代数式c﹣b、a+c的符号;(2)化简:|﹣c|﹣|c﹣b|+|a+b|+|b|.【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.【解答】解:(1)因为a<b<0<c,|a|>|c|.所以c﹣b>0,a+c<0;(2)因为a<b<0<c,|a|>|c|.所以﹣c<0,c﹣b>0,a+b<0,原式=c﹣(c﹣b)﹣(a+b)﹣b=c﹣c+b﹣a﹣b﹣b=﹣a﹣b.【点评】本题考查了合并同类项,解题的关键是利用绝对值的性质化简绝对值,利用合并同类项得出答案.36.有理数a,b,c在数轴上的位置如图所示,(1)c0;a+c0;b﹣a0(用“>、<、=”填空)(2)试化简:|b﹣a|﹣|a+c|+|c|.【分析】(1)根据在数轴上原点左边的数小于0,得出c<0;a<0<b,再根据有理数的加减法法则判断a+c与b﹣a的符号;(2)先根据绝对值的意义去掉绝对值的符号,再合并同类项即可.【解答】解:(1)由题意,得c<a<0<b,则c<0;a+c<0;b﹣a>0;故答案为<;<;>;(2)原式=b﹣a+a+c﹣c=b.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了数轴与整式的加减.37.已知a>b>0,且|a|>|b|.(1)在数轴上画出a,b,﹣a,﹣b对应的点的大致位置;(2)化简|﹣a|﹣2|a﹣b|+|a+b|.【分析】(1)根据a,b的大小关系在数轴上画出对应点即可.(2)根据绝对值的性质化简即可.【解答】解:(1)如图所示.(2)∵a>b>0,∴a﹣b>0,a+b>0,∴|﹣a|﹣2|a﹣b|+|a+b|=a﹣2(a﹣b)+(a+b)=a﹣2a+2b+a+b=3b.【点评】本题考查作图﹣复杂作图、数轴、绝对值的性质,熟练掌握数轴和绝对值的性质是解答本题的关键.38.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,c,﹣c大小;(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【分析】(1)根据数轴即可比较大小;(2)根据绝对值的性质对整式进行化简求解.【解答】解:(1)由数轴可知:b<c<0<a,∵|a|=|c|,∴a=﹣c>﹣a=c>b.(2)∵a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴原式=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣2a﹣b+c.【点评】本题考查数轴,涉及比较大小,整式化简,绝对值的性质.39.有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:0,a,b,c;(2)化简代数式:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.【分析】(1)根据数轴上的数,右边的总大于左边的进行判断即可;(2)根据绝对值的性质去绝对值进行计算.【解答】解:(1)如图可得,a<b<0<c;(2)由(1)得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)+[﹣(a+b)]﹣(c﹣a)+2[﹣(b﹣c)]=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.【点评】本题考查了整式的加减,解题的关键是比较a,b,c的大小以及绝对值的性质.40.(2022秋•锦江区校级期中)知有理数a、b、c在数轴上所对应的点的位单如图所示,原点为O.(1)试化简|a+2b|﹣|a+c|﹣|c﹣2b|;(2)若数轴上有一点所表示的数为x,且|x﹣5|=3,求﹣3x﹣4|1﹣x|的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(2)根据|x﹣5|=3,得x=8或x=2,再依次代入所求式子即可解答.【解答】解:(1)根据数轴上点的位置得:a<b<0<c,∴a+2b<0,a+c<0,c﹣2b>0,则原式=﹣a﹣2b+a+c﹣c+2b=0;(2)∵|x﹣5|=3,∴x﹣5=3或x﹣5=﹣3,∴x=8或x=2,当x=8时,﹣3x﹣4|1﹣x|=﹣3×8﹣4|1﹣8|=﹣52,当x=2时,﹣3x﹣4|1﹣x|=﹣3×2﹣4|1﹣2|=﹣10,综上,﹣3x﹣4|1﹣x|的值为﹣10或﹣52.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.。
人教版七年级数学上册《有理数绝对值化简运算》强化训练(含答案)
牢记方法规则:1.判断绝对值里面量的正负2. 去掉绝对值产生括号3. 去掉括号合并同类项第 1 天1.在数轴上有示a、b、c 三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.2.己知有理数a,b,c 在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.4.有理数a,b,c 在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.5.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣c|﹣|c ﹣2b|+|a+c|﹣|a+b|.第 2 天6.若有理数a,b,c 在数轴上的位置如图所示,化简|a+c |+|2a+b|﹣|c﹣b|.7.有理数a、b、c 的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c 在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.9.有理数a、b、c 在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.10.己知有理数a,b,c 在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.第 3 天11.有理数a、b、c 在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c 在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.13.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b |.14.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.15.己知有理数a,b,c 在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.第 4 天16.有理数a、b、c 在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.17.己知有理数a、b、c 在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|18.己知有理数a,b,c 在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.19.有理数a、b、c 在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.20.有理数a,b,c 在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.参考答案1.在数轴上有示a、b、c 三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.己知有理数a,b,c 在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c 在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c |,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣c|﹣|c ﹣2b|+|a+c|﹣|a+b|.解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c 在数轴上的位置如图所示,化简|a+c |+|2a+b|﹣|c﹣b|.解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.7.有理数a、b、c 的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)=b.8.有理数a、b、c 在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴ |b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c 在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.己知有理数a,b,c 在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c 在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c 的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.12.数a,b,c 在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b |.解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.己知有理数a,b,c 在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.解:∵由数轴上a、b、c 的位置可知,a<b<0<c,∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)] +(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c 在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.己知有理数a、b、c 在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.己知有理数a,b,c 在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c 在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c |,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c 在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。
初一数学压轴题:绝对值化简求值
初一数学压轴题:绝对值化简求值一、【考点】绝对值的代数意义、绝对值化简【北大附中期中】设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【解析】|a|+a=0,即|a|=-a,a≤0;|ab|=ab,ab≥0,b≤0;|c|-c=0,即|c|=c,c≥0原式=-b+a+b-c+b-a+c=b【答案】b二、【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
【解析&答案】(1)原式=3(2)原式=4/3(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令b=7/9,c=8/9时 a#b#c的最大值为b+c=5/3②4(提示,将1/9,2/9……8/9分别赋予b、c同时赋予a 四个负数;最后一组,a=0,b、c赋予两个负数即可)三、【考点】绝对值与平方的非负性、二元一次方程组【北京四中期中】已知:(a+b)²+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。
初一数学绝对值化简与零点分段法(含详细解答)
初一数学绝对值与零点分段【例1】数a 、b 在数轴上对应的点如图所示,试化简a b b a b a a ++-+--.【例2】a 、b 为有理数,且a b a b +=-,试求ab 的值.【例3】若0.239x =-,求131********x x x x x x -+-++------- 的值.【例4】化简:3x-【例5】化简:3121x x ++-.【例6】求21++-x x 的最小值。
【例7】求代数式111213x x x ++-++的最小值.【例8】如果m 为有理数,求代数式1356m m m m -+-++++的最小值.设a b c d <<<,求x a x b x c x d -+-+-+-的最小值.【例9】若a 、b 、c 为整数,且19991a b c a -+-=,试计算c a a b b c -+-+-的值.【例10】将1,2,…,100这100个正整数任意分成50组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式()12a b a b -++中进行计算,求出其结果,50组都代入后可求得50个值,求这50个值的和的最大值.课后练习:【练习1】⑴已知数a 、b 、c 在数轴上的位置如图所示,化简a b a b b c +++--⑵如图,根据数轴上给出的a 、b 、c 的条件,试说明a b b c a c -+---的值与c 无关.【练习2】化简:⑴1x -;⑵5x +;⑶523x x ++-【练习3】若200122002x =,则|||1||2||3||4||5|x x x x x x +-+-+-+-+-=.【练习4】利用绝对值的几何意义完成下题:已知2x =,利用绝对值的几何意义可得2x =±;若21x +=,利用绝对值的几何意义可得1x =-或3-.已知125x x -++=,利用绝对值在数轴上的几何意义得x =.利用绝对值的几何意义求12x x -++的最小值.52x x ++-的最小值为.214x x x ++-+-的最小值.7326x x x x ++++-+-的最小值.归纳:若1221n a a a +<<< ,当x 时,1221n x a x a x a +-+-++- 取得最小值.若122n a a a <<< ,当x 满足时,122n x a x a x a -+-++- 取得最小值.初一绝对值与零点分段(详细解答)【例1】数a 、b 在数轴上对应的点如图所示,试化简a b b a b a a ++-+--.解析由图可知0a <,0b >,而且由于a 点离原点的距离比b 点离原点的距离大,因此0a b +<.我们有a b b a b a a++-+--()()()a b b a b a a =-++-+---()2a b b a b a --+-+--b =.【例2】a 、b 为有理数,且a b a b +=-,试求ab 的值.解析当0a b +≥时,由a b a b a b +=+=-得b b =-,故此时0b =.当0a b +<时,由()a b a b a b a b +=-+=--=-,得a a -=,故此时0a =.所以,不管是0a b +≥还是0a b +<,a 、b 中至少有一个为0,因此,0ab =.【例3】若0.239x =-,求131********x x x x x x -+-++------- 的值.解:原式=)1996()2()()1997()3()1x x x x x x --⋅⋅⋅------+⋅⋅⋅+-+-()1996()2(199731-+⋅⋅⋅+-++-+⋅⋅⋅+-+-=x x x x x x 999)19961997()45()231=-⋅⋅⋅+-+-+=(【例4】化简:3x-解;原式=⎩⎨⎧≥-<-)3(,33,3x x x x )(【例5】化简:3121x x ++-.解析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简31x +,只要考虑31x +的正负,即可去掉绝对值符号.这里我们是分13x -≥是一个分界点.类似地,对于21x -而言,12x =是一个分界点.为同时去掉两个绝对值符号,我们把两个分界点13-和12标在数轴上,把数轴分为三个部分(如图所示),即13x <-,1132x -<≤,12x ≥.这样我们就可以分类讨论化简了.(1)当13x <-时,原式()()31215x x x =-+--=-;(2)当1132x -<≤时,原式()()31212x x x =+--=+;(3)当12x ≥时,原式()()31215x x x =++-=.即15,31131212,3215,2x x x x x x x x ⎧<-⎪⎪⎪++-=+<⎨⎪⎪⎪⎩-当时;当-≤当≥时评注解这类题目,可先求出使各个绝对值等于零的变量字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数成分几个部分,根据变量字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.【例6】求21++-x x 的最小值。
初一绝对值及有理数巧算
第一讲绝对值一. 学习目标理解绝对值的含义,会做绝对值的相关题型。
二. 重点、难点重点:深刻绝对值的意义,会比较有理数的大小.难点:有理数绝对值意义的理解和运用.三. 知识要点1、绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.2、绝对值运算法则:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即:3、绝对值性质:任何一个实数的绝对值是非负数.四、典型例题(一)去绝对值符号例1. (1)a>0时,|2a|=________;当a>1时,|a-1|=________;(2),则;|1-x |=1,则x=_______.练习:(1)若|x-1| =0,则x=____;,则.(2)如果,则,.例2、有理数、、在数轴上的位置如图, (1)判断正负,用“>”或“<”填空—__0, —__0, +__0(2)化简:.练习:1、数、、c 在数轴上的位置如图所示,则| c 一|―|一|=_________;2、已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b(二)绝对值非负性:任何一个实数的绝对值是非负数. 例3 、1、 += 0, 求2-+y x 的值。
2、已知|x|=4,|y|=2,求x +y ,y x -的值.练习: 1、已知|a b -2|与|a -1|互为相互数,求a 、b 的值.2、│a -2│+│b -3│+│c -4│=0,则a+2b+3c=3、已知│x │=2003,│y │=2002,且x >0,y <0,求x+y 的值。
(三)绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离.例4、观察下列每对数在数轴上的对应点间的距离4与2-, 3与5, 2-与6-, 4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ;练习: x 与-2之间的距离表示为: ; X 与3之间的距离表示为: ; a 与b 之间的距离表示为: ;(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 __ .分析:2-x 即x 与2的差的绝对值,它可以表示数轴上x 与2之间的距离。
【人教版七年级数学上册复习】专题(六) 整式与绝对值的化简
(1)判断正负,用“<”或“>”填空:b-c____0 < ,a+b____0 < ,c-a____0. >
(2)化简:|b-c|+|a+b|-|c-a|.
解:原式=-b+c-a-b-c+a=-2b
5.有理数a,b,c在数轴上的位置如图所示,化简代数式:|a-c|-|b|-|b -a|+|b+a|.
解:因为a-c<0,b>0,b-a>0,a+b<0,所以原式=c-a-b-b+a- b-a=-a-3b+c
6.(阿凡题:1069940)已知a,b,c,d为有理数,若a,b,c,d在数轴上的
位置如图所示,且|c|=|d|-7,先化简下式并求其值:|c-a-b|-|a+c-d|
-|c-b|.
解:由数轴知c-a-b>0,a+c-d<0,c-b>0.原式=(c-a-b)-[-(a+ c-d)]-(c-b)=c-a-b+a+c-d-c+b=c-d.因为|c|=|d|-7,所以c=d -7,所以原式=c-d=-7
3.已知a,b,c是不为0的有理数,|-a|+a=0,|ab|=ab,|c|-c=0,化简:
|a+b|-|c-b|+|a-c|.
解:因为a<0,b<0,c>0,所以a+b<0,c-b>0,a-c<0.原式=-a -b-c+b-a+c=-2a
二、借用数轴确定字母的取值范围 源自.有理数a,b,c在数轴上的位置如图所示:
七年级数学上册(人教版)
第二章 整式的加减
专题(六)
整式与绝对值的化简
1.已知有理数a<0,b>0,化简:|2a-b|+|b-a|. 解:因为a<0,b>0,所以2a-b<0,b-a>0,原式=-(2a-b)+(b-a) =-2a+b+b-a=-3a+2b 2.若x,y为非零有理数,且x=|y|,y<0,化简:|y|+|-2y|-|3y-2x|. 解:因为x=|y|且y<0,所以x>0,-2y>0,3y-2x<0,原式=-y+(- 2y)-(-3y+2x)=-2x或2y
人教版七年级上册数学专题01 绝对值的三种化简方法(原卷版)(人教版)
专题01 绝对值的三种化简方法绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。
并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本专题就这两块难点详细做出分析。
【知识点梳理】1.绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |2.绝对值的意义①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
3.绝对值的化简: 类型一、利用数轴化简绝对值例1.有理数a 、b 、c 在数轴上位置如图,则a c a b b c --++-的值为( ).A .2aB .222a b c +-C .0D .2c -例2.有理数a ,b 在数轴上对应的位置如图所示,那么代数式11a b a b a b a b -++--+的值是( )A .-1B .1C .3D .-3【变式训练1】已知,数a 、b 、c 的大小关系如图所示:化简||||2||3||a c b a a c b c +----+-=____.【变式训练2】有理数a 、b 、c 在数轴上的位置如图.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,a c -+ 0.(2)化简:||||c|b c a b a -+++-+∣【变式训练3】有理数a ,b 在数轴上的对应点如图所示:(1)填空:b a -______0;1b -______0;1a +______0;(填“<”、“>”或“=”)(2)化简:11b a b a ---++【变式训练4】有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空a _____0,b _____0,c ﹣b ______0,ab_____0.(2)化简:|a |+|b +c |﹣|c ﹣a |.类型二、利用几何意义化简绝对值例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索(1)求|5-(-2)|=________;(2)同样道理|x +1008|=|x -1005|表示数轴上有理数x 所对点到-1008和1005所对的两点距离相等,则x =________;(3)类似的|x +5|+|x -2|表示数轴上有理数x 所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x ,使得|x +5|+|x -2|=7,这样的整数是__________.(4)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【变式训练1】阅读下面的材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,∣AB ∣=∣OB ∣=∣b ∣=∣a -b ∣;当A 、B 两点都不在原点时:①如图2,点A 、B 都在原点的右边:∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b -a =∣a -b ∣;②如图3,点A 、B 都在原点的左边:∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=-b -(-a )=∣a -b ∣;③如图4,点A 、B 在原点的两边:∣AB ∣=∣OA ∣+∣OB ∣=∣a ∣+∣b ∣=a +(-b )=∣a -b ∣,综上,数轴上A 、B 两点之间的距离∣AB ∣=∣a -b ∣.回答下列问题:(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;(2)数轴上表示x 和-1的两点A 和B 之间的距离是________,如果∣AB ∣=2, 那么x 为__________.(3)当代数式∣x +1∣+∣x -2∣取最小值时,相应的x 的取值范围是__________.【变式训练2】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离可以表示为|m ﹣n |.那么,数轴上表示数x 与5两点之间的距离可以表示为 ,表示数y 与﹣1两点之间的距离可以表示为 .(2)如果表示数a 和﹣2的两点之间的距离是3,那么a = ;若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a = 时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是 .【变式训练3】(问题提出)1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少?(阅读理解)为了解决这个问题,我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离,那么1a -可以看作a 这个数在数轴上对应的点到1的距离;12-+-a a 就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12-+-a a 的最小值. 我们先看a 表示的点可能的3种情况,如图所示:(1)如图①,a 在1的左边,从图中很明显可以看出a 到1和2的距离之和大于1.(2)如图②,a 在1,2之间(包括在1,2上),看出a 到1和2的距离之和等于1.(3)如图③,a 在2的右边,从图中很明显可以看出a 到1和2的距离之和大于1.因此,我们可以得出结论:当a 在1,2之间(包括在1,2上)时,12-+-a a 有最小值1.(问题解决)(1)47a a -+-的几何意义是 ,请你结合数轴探究:47a a -+-的最小值是 . (2)请你结合图④探究123a a a -+-+-的最小值是 ,由此可以得出a 为 .(3)12345a a a a a -+-+-+-+-的最小值为 .(4)1232021a a a a -+-+-+⋅⋅⋅+-的最小值为 .(拓展应用)如图,已知a 使到-1,2的距离之和小于4,请直接写出a 的取值范围是 .类型三、分类讨论法化简绝对值例1.化简:214x x x --++-.【变式训练1】若0,0a b c abc ++<>,则23a ab abc a ab abc ++的值为_________.【变式训练2】(1)数学小组遇到这样一个问题:若a ,b 均不为零,求a b x a b =+的值. 请补充以下解答过程(直接填空)①当两个字母a ,b 中有2个正,0个负时,x= ;②当两个字母a ,b 中有1个正,1个负时,x= ;③当两个字母a ,b 中有0个正,2个负时,x= ;综上,当a ,b 均不为零,求x 的值为 . (2)请仿照解答过程完成下列问题:①若a ,b ,c 均不为零,求a b c x a b c=+-的值. ②若a ,b ,c 均不为零,且a+b+c=0,直接写出代数式b c a c a b a b c +++++的值.。
绝对值的性质及化简(教案)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值是一个数在数轴上与原点的距离,它是非负的。绝对值在数学运算中非常重要,它可以帮助我们简化问题,避免考虑正负号。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何运用绝对值的性质来化简表达式,以及它如何帮助我们解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“绝对值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.丰富教学手段,除了数轴演示,还可以利用多媒体、实物等教学资源,增强学生对绝对值的感知。
3.注重培养学生的逻辑思维能力,通过问题驱动,引导学生自主发现和总结绝对值的性质。
4.在课堂练习环节,增加一些综合性的题目,帮助学生巩固所学知识,提高解题能力。
五、教学反思
在本次《绝对值的性质及化简》的教学过程中,我发现学生们对绝对值的概念和性质的理解程度参差不齐。有些同学能够迅速抓住绝对值的本质,但也有一些同学在理解上存在困难。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,因材施教。
在导入新课环节,通过提问日常生活中的实例,我发现大多数同学能够积极参与,这表明实例导入法对于激发学生的学习兴趣和好奇心是有效的。但在新课讲授环节,我发现在解释绝对值性质时,部分同学显得有些迷茫。为此,我及时调整了教学方法,通过数轴的直观演示,帮助他们更好地理解绝对值的性质。
在总结回顾环节,我发现大部分同学能够掌握绝对值的基本概念和化简方法,但仍有部分同学在应用上存在困难。这说明我在教学中需要更多地关注学生的实际运用能力,通过设置更多具有挑战性的问题,促使他们学以致用。
七年级绝对值化简的解题技巧
绝对值化简的解题技巧
绝对值化简是初中数学中的一个重要知识点,主要涉及到有理数的绝对值、相反数等概念。
以下是一些七年级绝对值化简的解题技巧:
1. 理解绝对值的定义:一个数的绝对值等于它到0的距离。
例如,|3| = 3,|-3| = 3,|0| = 0。
2. 利用绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
3. 利用绝对值的性质进行化简:当一个数与另一个数相加或相减时,如果它们的符号相同,那么它们的绝对值也相同;如果它们的符号不同,那么它们的绝对值之和或之差就是它们的绝对值。
4. 利用绝对值的性质进行比较:当两个数的绝对值相等时,这两个数可能相等,也可能互为相反数。
例如,|3| = |-3|,但3 ≠-3。
5. 利用绝对值的性质进行化简加减法:当一个数与另一个数相加或相减时,可以先去掉绝对值符号,然后按照有理数的加减法法则进行计算。
6. 利用绝对值的性质进行化简乘除法:当一个数与另一个数相乘或相除时,可以先去掉绝对值符号,然后按照有理数的乘除法法则进行计算。
7. 利用绝对值的性质进行化简混合运算:当一个算式中既有加减法又有乘除法时,可以先去掉绝对值符号,然后按照有理数的混合运算法则进行计算。
8. 利用绝对值的性质进行化简方程:当一个方程中含有绝对值时,可以先去掉绝对值符号,然后按照一元一次方程的解法求解。
9. 利用绝对值的性质进行化简不等式:当一个不等式中含有绝对值时,可以先去掉绝对值符号,然后按照一元一次不等式的解法求解。
初一数学有理数的加减运算及绝对值
初一数学有理数的加减运算及绝对值一、代数式的取值、去绝对值① a 代表任何数,同样像 -a, a+1,a-b ,2a 都代表任何数 ,它们可以是.....正数、负数、......0.② |a |,|a+1|,|a-b |在去绝对值时,一定要分三类情况讨论它们的范围。
要分 >0 ; <0 ;=0 三种情况;③ 一个正数的绝对值是它本身,所以若a >0 ,|a |=a ; 若 - a >0 , |- a |= - a一个负数的绝对值是它的相反数,所以若 a <0 , |a |= - a ;若a+1 <0 ,|a+1|=-(a+1)【任一个有理数a 的绝值】用式子表示就是:(1)当a 是正数(即a >0)时,∣a ∣= ; (2)当a 是负数(即a <0)时,∣a ∣= ; (3)当a =0时,∣a ∣= .经典例题讲解1.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数2、若a ,b 互为相反数,则下面四个等式中一定成立的是 ( )A.a +b =1 B.a +b =0 C.0a b += D.0a b += 3、下列判断正确的是 ( )A.两个负有理数,大的离原点远 B.a 是正数 C.两个有理数,绝对值大的离原点远 D.-a 是负数4、下列关于0的结论错误的是 ( )A 、 0不是正数也不是负数B 、 0的相反数是0C 、 0的绝对值是0D 、 0的倒数是05. 若0<a <1,则a ,2a ,1a的大小关系是 6.若a a =-那么2a 07. 如图,点A B ,在数轴上对应的实数分别为m n ,, 则A B ,间的距离是 .(用含m n ,的式子表示)二、有理数混合运算中的运算规则有理数的运算最简单的规则:奇负偶正 ,负号的个数为奇数,则为负;负号的个数为偶数,则为正。
“奇负偶正”的应用·1、如下符号的化简(指负号的个数与结果符号的关系),如: -{+[-(-2)]}= -2在算式中,把也是如此,如:5 + (-2)-(-3)+ (+5)-(+3) = 5 – 2+3+5-3 = 8 2、连乘式的积(指负因数的个数与结果符号的关系),如: (-1)×(-2)×(-3)×(+4)=-24 (-1)×(-2)×(-3)×(-4)=243、负数的乘方(指乘方的指数与结果符号的关系),如: (-2)3=-8, (-3)2=94、分数的符号法则(指的是分子、分母及分数本身三个符号中,同时改变两个,值不变,但改变一个或三个都改变时,分数的值就变相反了),如:212121-=-=-;b a b a b a -=-=-经典例题讲解 1、计算:5 +(-6)-(-3)-(+4)解:+(-6)中 – 为1个,单数,所以 +(-6)= - 6 -(-3)中– 为2个,双数,所以 -(-3)= + 3 -(+4)中– 为1个,单数,所以 -(+4)= - 4 所以原式 = 5-6+3-4 = -2 2、 (-3)-(-5)解:-(-5)中 – 为2个,双数,所以 -(-5)= + 5 所以原式= -3+5 =2课堂练习 1、解答题:(-5)×6+(-125) ÷(-5) 312 +(-12 )-(-13 )+223(23 -14 -38 +524 )×48 )115(3)511(13)511(5-÷--⨯+-⨯-2、计算题⑴、312 +(-12 )-(- 13 )+223⑵、2531(1)1(7)768-÷-⨯⨯-⑶、(-5)×6+(-125) ÷(-5)⑷、111212()342--⨯-+⑸、5311520654⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―(―3)―2.⑹、335(12)(2)5⎡⎤---+-⨯÷-⎢⎥⎣⎦三、有理数混合运算中的简便计算 1、应用加法交换律 80+(-17)+(-53)=80+〔(-17)+(-53)〕 =80+(-70) =102、应用乘法结合律 4×(-85)×(-25)=〔4×(-25)〕×(-85) =(-100)×(-85) =85003、应用乘法分配律计算:601)315141(÷+-解法一:2360602360)602060126015(601)315141(=⨯=⨯+-=÷+- 解法二:601)315141(÷+-2360316051604160)315141(=⨯+⨯-⨯=⨯+-= (显然,解法二中运用了乘法分配律后计算方法很简单。
有理数、数轴动点、绝对值、求值化简问题(解析版)-初中数学
有理数、数轴动点、绝对值、求值化简问题【题型归纳】题型一:正数与负数1.(2024七年级上·浙江)小戴同学的微信钱包账单如图所示, 5.20+表示收入5.20元,下列说法正确的是( )A . 1.00-表示收入1.00元B . 1.00-表示支出1.00元C . 1.00-表示支出 1.00-元D .收支总和为6.20元【答案】B 【分析】根据 5.20+表示收入5.20元,可以得出“收入”用正数表示,从而“支出”就用负数表示,得出答案.【详解】解:∵ 5.20+表示收入5.20元,“收入”用正数表示,∴“支出”就用负数表示,∴ 1.00-表示支出1.00元,故选:B .2.(2024七年级上·江苏·专题练习)在下列选项中,具有相反意义的量是( )A .上升了6米和后退了7米B .卖出10斤米和盈利10元C .收入20元与支出30元D .向东行30米和向北行30米【答案】C【分析】本题考查了对正负数概念的理解,关键明确正负数是表示一对意义相反的量.根据相反意义的量的概念,逐项判断分析即可解题.【详解】解:A.不是一对具有相反意义的量,不符合题意;B.不是一对具有相反意义的量,不符合题意;C.是一对具有相反意义的量,符合题意;D.不是一对具有相反意义的量,不符合题意.故本题选:C .3.(2024七年级上·江苏·专题练习)机床厂工人加工一种直径为30mm 的机器零件,要求误差不大于0.05mm ,质检员现抽取10个进行检测(超出部分记为正,不足部分记为负,单位:mm )得到数据如下:0.050.040.020.070.030.040.010.010.030.06+--+-+--+-,,,,,,,,,.其中不合格的零件有( )A .1个B .2个C .3个D .4个【答案】B 【分析】本题主要考查了正负数的实际应用,首先审清题意,明确“正”和“负”所表示的意义,找到数值大于0.05的零件数即可得到答案.【详解】解:∵要求误差不大于0.05mm ,∴只有0.07+和0.06-误差大于0.05,∴不合格的零件有2个,故选:B .题型二:有理数的分类4.(2024七年级上·全国·专题练习)下列说法正确的是( )A .正整数、负整数、正分数和负分数统称为有理数B .整数和分数统称有理数C .正数和负数统称有理数D .正整数和负整数统称整数5.(2024七年级上·江苏·专题练习)关于4-,227,0.41,116-,0,3.14这六个数,下列说法错误的是( )A .4-,0是整数B .227,0.41,0,3.14是正数C .4-,227,0.41,116-,0,3.14是有理数D .4-,116-是负数6.(23-24七年级上·贵州黔东南·阶段练习)对于有理数,有下列说法:(1)正整数和负整数的总和就是整数;(2)分数包括了正分数和负分数和0;(3)有理数是整数和分数的统称;(4)0是整数;(5)分数包含有限小数、循环小数,其中说法全正确的有( )A .(1)(2)(3)B .(2)(3)(4)C .(3)(4)(5)D .(1)(4)(5)题型三:利用数轴比较有理数大小7.(23-24七年级上·河南郑州·期末)已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0a b->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④【答案】C 【分析】本题考查根据点在数轴上的位置比较代数式大小,熟练掌握利用数轴比较数的大小是解决问题的关键.\故①0a b <<正确;a b >,②错误;由8.(23-24七年级上·四川达州·期末)如图,若A 是有理数a 在数轴上对应的点,则关于a ,a -,1的大小关系表示正确的是( )A .1a a <<-B .1a a <-<C .1a a <-<D .1a a -<<9.(2024·广东广州·二模)有理数a ,b 在数轴上的对应点的位置如图所示,把a ,a -,b 按照从小到大的顺序排列,正确的是( )A .a a b<-<B .a b a -<<C .a a b -<<D .b a a<-<【答案】A 【分析】本题考查了数轴与有理数大小的比较,正确理解数轴与有理数大小的比较的方法是解题的关键.在数轴上标出有理数a 的相反数a -所表示的点,再根据“在数轴上表示的两个数,右边的数总比左边的数大”,即可判断答案.【详解】在数轴上标出有理数a 的相反数a -所表示的点,则a ,a -,b 按照从小到大的顺序排列为a a b <-<.故选:A .题型四:数轴的距离问题10.(2024·福建福州·三模)如图是单位长度为1的数轴,点A,B是数轴上的点,若点A表示的数是3-,则点B 表示的数是()A.1-B.0C.1D.2【答案】C【分析】本题考查了数轴,熟练掌握数轴上两点之间的距离公式是解题的关键.根据数轴上两点之间的距离公式计算即可.【详解】解:Q点A表示的数是3-,点B距离点A有4个单位,\点B表示的数是341-+=,故选:C.11.(2024·北京·二模)在数轴上,点A,B在原点O的两侧,分别表示数a,3,将点A向左平移1个单位长度,=,则a的值为()得到点C.若CO BOA.2-B.1-C.1D.212.(23-24七年级上·河南新乡·期末)如图,在数轴上点A在原点右侧,距离原点5个单位长度,表示的数是5,点B距离点A是6个单位长度,则点B表示的数是()A.6B.6或6-C.11或6-D.11或1-【答案】D【分析】本题考查了数轴上两点之间的距离,根据题意可列的式子,进而求解,求解数轴上两点之间的距离是解题的关键.【详解】解:∵点B 距离点A 是6个单位长度,则5611+=,或561-=-,∴点B 表示的数是11或1-,故选:D .题型五:数轴的动点问题13.(23-24九年级下·河北保定·期中)如图,一个点在数轴上从原点开始先向右移动1个单位长度,再向左移动a 个单位长度后,该点所表示的数为3-,则a 的值是( )A .4-B .4C .3-D .3【答案】B【分析】本题以数轴为背景考查了两点之间距离公式、解一元一次方程等知识,根据题意,数形结合,由数轴上两点之间距离的表示方法列式求解即可得到答案,熟记数轴上两点之间距离的表示方法是解决问题的关键.【详解】解:根据题意可知,13a -=-,∴4a =,故选:B .14.(23-24七年级上·湖南衡阳·期末)一个动点P 从数轴上的原点出发,沿数轴的正方向以前进4个单位,后退2个单位的程序运动,已知点P 每秒前进或后退1个单位.设n x 表示第n 秒点P 在数轴上的位置所对应的数,如22x =,44x =,53x =,则2023x 为( )A .673B .674C .675D .676【答案】C 【分析】本题主要考查了数轴上的动点问题,数字类的规律探索,根据题意可知每6秒点P 完成一次前进和一次后退运动,且每6秒内点P 向数轴正方形运动2个单位,再由202363371¸=K 即可得到答案.【详解】解:∵动点P 从数轴上的原点出发,沿数轴的正方向以前进4个单位,后退2个单位的程序运动,∴每6秒点P 完成一次前进和一次后退运动,且每6秒内点P 向数轴正方形运动2个单位,∵202363371¸=K ,∴2023x 为33721675´+=,故选:C .15.(23-24七年级上·江苏苏州·阶段练习)如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数1-的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示数2124-的点与圆周上表示数字( )的点重合.A .0B .1C .2D .3【答案】B 【分析】本题主要考查数轴,熟练掌握数轴的特点和围绕圆周对应的数之间的关系的相互关系是解题的关键.根据题意发现规律,即可解得答案.【详解】解:依题意,4次为一个周期,依次为0,3,2,1,21244531¸=,故数轴上表示数2124-的点与圆周上表示数字1的点重合.故选B .题型六:绝对值非负数的应用16.(23-24七年级下·山东潍坊·阶段练习)若5x -与7y +互为相反数,则3x y -的值是( )A .22B .8C .8-D .22-17.(23-24七年级上·河南新乡·阶段练习)若230a b -++=,则a b +的值是( )A .0B .1C .1-D .202118.(23-24七年级上·广东韶关·期末)若320x y -++=,则x y +的值是( ).A .5B .1C .2D .0题型七:化简绝对值问题19.(2024七年级上·全国·专题练习)若0ab ¹,那么a ab b +的取值不可能是( )A .2-B .0C .1D .220.(23-24七年级下·海南省直辖县级单位·期末)实数m 、n 在数轴上的位置如图所示,化简||n m n -+的结果为( )A .mB .m -C .2m n -D .2n m-21.(2024七年级上·江苏·专题练习)若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为( )A .1B .2C .3D .4题型八:有理数的综合问题22.(2024七年级上·浙江·专题练习)把下列各数分别填在表示它所属的横线上:① 3.14-;②(9)++;③425-;④0;⑤(7)+-;⑥13.14;⑦2000;⑧80%-.(填写序号)(1)正数:___________;(2)负数:___________;(3)整数:___________;(4)分数___________.【答案】(1)②⑥⑦(2)①③⑤⑧(3)②④⑤⑦(4)①③⑥⑧【分析】本题考查有理数的分类及定义,掌握有理数的分类及相关定义是解题的关键;(1)根据正数定义进行分类即可;(2)根据负数定义进行分类即可;(3)根据整数定义进行分类即可(4)根据分数定义进行分类即可.【详解】(1)正数:②⑥⑦;故答案为:②⑥⑦;(2)负数:①③⑤⑧;故答案为:①③⑤⑧;(3)整数:②④⑤⑦;故答案为:②④⑤⑦;(4)分数:①③⑥⑧.故答案为:①③⑥⑧.23.(23-24七年级上·广东·单元测试)如图,数轴上的三点A 、B 、C 分别表示有理数a ,b ,c .(1)填空:a b -______0,a c +______0,b c -______0.(用<或>或=号填空)(2)化简:a b a c b c ---+-.24.(23-24七年级下·甘肃陇南·阶段练习)阅读材料:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离可表示为AB a b =-.例如:7与1-两数在数轴上所对应的两点之间的距离表示为()718--=,6x -的几何意义是数轴上表示有理数x 的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数轴上两点A 、B 对应的数分别为1-和2,数轴上另有一个点P 对应的数为有理数x .(1)请根据阅读材料填空:点P 、A 之间的距离PA =________(用含x 的式子表示);若该距离为4,则x =________.(2)根据几何意义,解决下列问题:①若点P 在线段AB 上,则12x x ++-=________.②若125x x ++-=,求点P 表示的有理数x .值等知识.熟练掌握在数轴上表示有理数是,数轴上两点之间的距离,绝对值的几何意义,绝对值方程,化简绝对值是解题的关键.【专题训练】一、单选题25.(23-24七年级上·四川南充)在π223.141500.333 2.010********--¼-¼,,,中,非负数的个数( )A .2个B .3个C .4个D .5个【答案】B【分析】本题考查了非负数的定义,解题的关键是掌握非负数的定义.根据“零和正数统称为非负数”,即可求解.【详解】解:非负数有:3.141502.010010001¼,,,共3个,故选:B .26.(2024七年级上·全国·专题练习)下列各对数中,互为相反数的有( )()1-与1+;()2--与()2+-;12æö--ç÷èø与12æö++ç÷èø;()1-+与()1+-;()2-+与()2--A .1对B .2对C .3对D .4对即互为相反数的有3对.故选:C .27.(2024七年级上·山东青岛·专题练习)下列关于零的说法中,正确的是( )A .零是正数B .零是负数C .零既不是正数,也不是负数D .零仅表示没有【答案】C【分析】本题考查了对数的理解与运用,注意:负数都小于零,正数都大于零,零既不是正数也不是负数,整数包括正整数、零、负整数;零不仅表示没有,还表示一个介于负数与正数之间的一个数.依据题意,零大于负数,小于正数,零既不是正数也不是负数,整数包括正整数、零、负整数,从而即可根据以上内容判断求解.【详解】解:A 、零不是正数,说法错误;B 、零不是负数,说法错误;C 、零既不是正数,也不是负数,说法正确;D 、零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故选:C .28.(23-24七年级上·安徽合肥·期末)在()5--,0.8-,0,|6|-四个数中,最小的数是( )A .()5--B .0.8-C .0D .|6|-【答案】B【分析】本题考查了有理数比较大小,正数大于0,0大于负数,两个负数其绝对值大的反而小,负数都小于0是解题关键.根据正数大于0,0大于负数,两个负数其绝对值大的反而小,可得答案.【详解】解:()50.80|6|--<-<<-,故最小的数是5-.故选:B29.(2024七年级上·江苏·专题练习)下列说法正确的是( )A .数轴上的一个点可以表示不同的有理数B .数轴上有两个不同的点可以表示同一个有理数C .任何有理数都可以在数轴上找到与它对应的唯一的点D .有的有理数不能在数轴上表示出来【答案】C【分析】本题考查了数轴的应用,根据数轴上的点与有理数的对应关系进行解答.【详解】解:A .数轴上一个点只能表示一个数,不能表示两个不同的数,故选项错误;B .数轴上两个不同的点表示两个不同的数,故选项错误;C .任何一个有理数都可以在数轴上找到和它对应的唯一的一个点,正确;D .所有的有理数都可以用数轴上的点表示,故选项错误.故本题选:C .30.(23-24七年级上·江苏常州·期末)有理数a ,b 在数轴上的对应点的位置如图所示.把a -,b ,0按照从小到大的顺序排列,正确的是( )A .0a b<-<B .0a b -<<C .0b a <<-D .0b a <-<按照从小到大的顺序排列为0a <-31.(2024七年级上·全国·专题练习)下列有关相反数的说法:①符号相反的数叫相反数;②数轴上原点两旁的数是相反数;③()3--的相反数是3-;④a -一定是负数;⑤若两个数之和为0,则这两个数互为相反数; ⑥若两个数互为相反数,则这两个数一定是一个正数一个负数.其中正确的个数有( )A .2个B .3个C .4个D .5个【答案】A【分析】本题考查相反数的定义,依据相反数的定义进行判断即可.【详解】解:①符号相反的两个数不一定互为相反数,如2-与3,故①错误;②数轴上原点两旁的数不一定互为相反数,如2-和3,故②错误;③()33--=,3的相反数是3-,故③正确;④a -不一定是负数,如0a =时,0a -=,故④错误;⑤若两个数之和为0,则这两个数互为相反数,故⑤正确;⑥0的相反数是0,故⑥错误.故选:A .32.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是( )A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数二、填空题33.(24-25七年级上·河南安阳·开学考试)乒乓球被誉为我国的“国球”,在正规比赛中,乒乓球的标准质量为2.7克.0.15克的乒乓球记作0.15+,那么另一个低于标准质量0.03克的乒乓球记作.【答案】0.03-【分析】本题考查正负数的意义.熟练掌握正负数表示意义相反的量,是解题的关键.【详解】解:把一个超出标准质量0.15克的乒乓球记作0.15+,那么另一个低于标准质量0.03克的乒乓球记作0.03-,故答案为:0.03-.34.(2024七年级上·北京·专题练习)把下列各数填入它所属的集合内3-,30%,215-,0, 5.32-(1)整数集合{____________________……};(2)分数集合{____________________……};(3)非负数集合{____________________……}.【答案】(1)3-,035.(24-25七年级上·河南南阳·开学考试)在56-,2-,0.35,2.4,25%,0,6,1-,97,24,100.2这些数中,( )是自然数,()是整数,( )最大,( )最小.36.(24-25七年级上·全国·随堂练习)已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.【答案】(1)337.(2024七年级上·浙江·专题练习)已知m 是有理数,则|2||4||6||8|m m m m -+-+-+-的最小值是.三、解答题38.(2024七年级上·江苏·专题练习)在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-比较原数的大小为:1443 1.50325-<-<-<<-<.39.(2024七年级上·全国·专题练习)化简下列各式的符号,并回答问题:(1)()2--;(2)15æö+-ç÷èø;(3)()4éù---ëû(4)()3.5éù--+ëû;(5)(){}5éù----ëû(6)(){}5éù---+ëû问:①当5+前面有2012个负号,化简后结果是多少?②当5-前面有2013个负号,化简后结果是多少?你能总结出什么规律?(3)()44éù---=-ëû;(4)()3.5 3.5éù--+=ëû;(5)(){}55éù----=ëû;(6)(){}55éù---+=-ëû;①当5+前面有2012个负号,化简后结果是5+;②当5-前面有2013个负号,化简后结果5-,总结规律:一个数的前面有奇数个负号,化简的结果等于它的相反数,有偶数个负号,化简的结果等于它本身.40.(2024七年级上·全国·专题练习)阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段()101AB ==--;线段220BC ==-;线段()321AC ==--问题:(1)数轴上点M N 、代表的数分别为9-和1,则线段MN =___________;(2)数轴上点E F 、代表的数分别为6-和3-,则线段EF =___________;(2)解:∵点E F 、代表的数分别为6-和3-,∴线段()363EF =---=;故答案为:3;(3)解:由题可得|2|5m -=,则25m -=或25m -=-,解得7m =或3m =-,∴m 值为7或3-.41.(2024七年级上·江苏·专题练习)同学们都知道,()42--表示4与2-的差的绝对值,实际上也可理解为4与2-两数在数轴上所对应的两点之间的距离;同理3x -也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)求()42--= ;(2)若25x -=,则x = ;(3)请你找出所有符合条件的整数x ,使得123x x -++=.。
初一数学第1章有理数知识点总结
20XX年初一数学第1章有理数知识点总结初一数学课本上的第1章就是有理数的知识,关于有理数的知识点总结有哪些呢?下面小编收集整理的初一数学第1章有理数知识点的总结以供大家学习。
初一数学第1章有理数知识点:正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
初一数学第1章有理数知识点:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视) 负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数初一数学第1章有理数知识点:数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
七年级数学上册有理数 绝对值化简知识点讲解归纳及练习
七年级数学上册有理数 绝对值化简知识点讲解归纳及练习一 考点、热点回顾绝对值的几何意义:一个数的绝对值就是数轴上表示数的点与原点的距离.数的绝对值记a a a 作.a 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对0值是.0③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:符号是负号,绝对值是.5-5求字母的绝对值:a ① ② ③(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(0)(0)a a a a a ≥⎧=⎨-<⎩(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,,0a b c ++=0a =0b =0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即,且;a a ≥a a ≥-(2)若,则或;a b =a b =a b =-(3);;ab a b=⋅a a b b =(0)b ≠(4);222||||a a a ==(5),a b a b a b -≤+≤+对于,等号当且仅当、同号或、中至少有一个时,等号成立;a b a b +≤+a b a b 0对于,等号当且仅当、异号或、中至少有一个时,等号成立.a b a b -≤+a b a b 0绝对值几何意义当时,,此时是的零点值.x a =0x a -=a x a -零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.的几何意义:在数轴上,表示这个数的点离开原点的距离.a 的几何意义:在数轴上,表示数、对应数轴上两点间的距离.a b-a b 二、例题及练习化简绝对值的关键是确定绝对值符号内部分的正负,从而去掉绝对值符号,常用的方法大致有五种类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学绝对值的化简和有理数的计算
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第三讲:绝对值化简和有理数的计算
第一部分:化简绝对值
【知识点一】:采用零点分段讨论法
【例1】:化简
【归纳点评】虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:
1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).
2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.
3.在各区段内分别考察问题.
4.将各区段内的情形综合起来,得到问题的答案.
【课堂练习】:
化简|x+2|+|x-3|
第二部分:有理数的计算
一、注意事项:
①有理数的加、减、乘、除四则混合运算,一定要先把减法改成加法,除法改成乘法。
这样可以防止出错。
②应注意灵活运用运算律,使计算简便化,对互为相反数其和为零的要优先解决。
③在进行有理数的加减法运算时,先观察有没有相加后为0的数,若有,先将它们结合起来;然后把同分母的数相加;若是带分数,还可以将其整数和分数部分分别结合相加;若既有小数又有分数,通常将小数化为分数(熟记一些常见的数据:0.125=____,0.25=______,0.375=____,0.75=______等)。
在进行有理数混合运算时,若有公因数,一般先提出,然后运算。
有时可以利用因数之间关系获得公因数。
在运算过程中应注意符号的变化。
二、运算顺序
三、运算技巧
①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。
例:计算:-(0.5)-(-3
41) + 2.75-(72
1)
②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.
例:计算:--+-+-116223445513116
38.
③分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。
例:计算:111125434236
-+-+
④约简:将互为倒数的数或有倍数关系的数约简。
例:计算:()()61112.50.125 1.250.6215284⎛⎫-⨯⨯-⨯÷⨯⨯⨯ ⎪⎝
⎭
⑤倒序相加:利用运算律,改变运算顺序,简化计算。
例:计算12003220033200340052003
++++ 2120034005200322003400420034005200312003
A =++++++()()() 即224005A =⨯,所以A =4005
所以原式=4005
⑥裂项相消法:凡是带有省略号的分数加减运算,可以用这种方法
例:2005112123134120032004120042005⨯⨯+⨯+⨯++⨯+⨯(
)
例:
解:应用关系式
来进行“拆项”。
原式
⑦正逆用运算律:正难则反, 逆用运算定律以简化计算。
例:计算:17.48×37+174.8×1.9+8.74×88.
⑧变序
例:计算:()()()412.5310.15⎛⎫-⨯+⨯-⨯- ⎪⎝⎭
例:计算:[4
125+(-71)]+[(-72)+612
7]
有理数及其运算综合复习
一、选择题
1.一个有理数与它的相反数的积 ( ).
(A) 是正数 (B) 是负数
(C) 一定不大于0 (D) 一定不小于0
2.如果两个有理数的积小于零,和大于零,那么这两个有理数 ( )
(A )符号相反 (B )符号相反且绝对值相等
(C )符号相反且负数的绝对值大 (D )符号相反且正数的绝对值大
3. 在数轴上,一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 ( )
A .7
B .3
C .-3
D .-2
4. 如图,数轴上A B 、两点分别对应实数a b 、,
则下列结论正确的是( )
A .0a b +>
B .0ab >
C .0a b ->
D .||||0a b ->
5.下列结论正确的是 ( )
A. -a 一定是负数
B. -|a|一定是非正数
C. |a|一定是正数 D . |a|一定是负数
6.已知a 、b 是不为0的有理数,且b a b b a a >=-=,,,那么在使用数轴上的点来表示a 、b 时,应是 ( ) .
A B C D 7、一个数的相反数大于它本身,这个数是 ( )
A.正数 B.负数 C.0 D.非负数
8、以下关系一定成立的是 ( )
A.若|a|=|b|,则a=b
B.若|a|=a, 则a>0
C. 若|a|+a=0,则a≤0
D.若 a>b, 则|a|>|b |.
9.绝对值大于2且小于5的所有整数的和是 ( )
A.7
B.-7
C.0
D.5
10.2-的相反数是
( )
A .21-
B .2-
C .21
D .2
二、填空题
1.绝对值大于1而不大于3的整数有 ,它们的和是 。
表示数a 的点到原点的距离为2,则a+|-a|= 。
2.()642=
3.最小的正整数是_____;绝对值最小的有理数是_____。
绝对值等于3的数是______。
绝对值等于本身的数是
4.23-= 。
5.如图,数轴上的点A 所表示的数是a ,则A 点到原点的距离是 。
6.()()2000199911---=_________。
7、如果∣a-4∣=4-a 则a_____0。
如果a a =||,那么a 是_______
8、π-3.14的相反数是________。
a-b 的相反数是________。
a+b 的相反数是________。
三、解答题
1.在数轴上表示下列各数:绝对值是2.5的负数,绝对值是3的正数.
2.有理数x 、y 在数轴上对应点如图所示:
y 0 x
A
(1)在数轴上表示x -、y -;(2)试把x 、y 、0、x -、y -这五个数从大到小用“>”号连接起来.
3、已知-2<x<3,化简|x+2|-|x -3|
4、有数组:(1,2,3)(2,3,5)(3,4,7)(4, 5, 9)……求第100组的三个数之和。
5、某地探空气球地气象观测资料表明,高度每增加1千米、气温就大约降低6℃,若该地区地面温度为21℃,高空某处温度为-39℃,求此处的高度为多少千米?
6、 在有理数集上定义运算“*”,其规则为a*b=
b a b a 22+-,求(3*1)*(2*2)
7、在有理数上定义运算“∆”,其规则为a ∆b=2a+b ,若x ∆ (3∆2)=4,求x 的值。