最大公因数与最小公倍数应用题——五年级上册
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大公因数与最小公倍数应用题——五年级上册
几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
最大公因数和最小公倍数的性质
(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。
(2)两个数的最大公因数的因数,都是这两个数的公因数,
(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
例:有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?
解:根据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大公约数。即:(325、175、75)=25(厘米)
因为325÷25=13;175÷25=7;75÷25=3
所以13×7×3=273(个)或(325×175×75)÷(25×25×25)=273
例:有一个两位数,除50余2,除63余3,除73余1。求这个两位数是多少?
解:这个两位数除50余2,则用他除48(52-2)恰好整除。也就是说,这个两位数是48的约数。同理,这个两位数也是60、72的约数。所以,这个两位数只可能是48、60、72的公约数1、2、3、4、6、12,而满足条件的只有公约数12,即(48、60、72)=12。
练习
1.新年联欢会上,张老师把42个打气球和30个小气球平均分给几个小组,正好分完。最多可以分给几个小组?每个小组分的大、小气球各多少个?
2.雨辰小学五年二班有54人,五年三班有63人,两班决定分小组去博物馆参观,两班每组人数相等并且没有剩余每小组最多有多少人?每个班可以分多少个小组?
3.同学们买了24朵百合花的18朵玫瑰花送个老师,两种花混在一起扎成一束,想要扎成每束百合花、玫瑰花朵数相同,最多扎几束?每束几朵百合花,几朵玫瑰花?
4.明明有一张长84厘米,宽60厘米的长方形纸板,剪成边长相等的小正方形,边长最长是多少?可以剪几块?
解答公约数或公倍数问题的关键是:从约数和倍数的意义入手来分析,把原题归结为求几个数的公约数或公倍数问题。
例:有三根铁丝,一根长18米,一根长24米,一根长30米。现在要把它们截成同样长的小段。每段最长可以有几米?一共可以截成多少段?
分析:截成的小段一定是18、24、30的最大公因数。先求这三个数的最大公因数,再求一共可以截成多少段。(18、24、30)=6(18+24+30)÷6=12段
例:一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
(36、60)=12 (60÷12)×(36÷12)=15个
例:用96朵红玫瑰花和72朵白玫瑰花做花束。若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?
分析:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。
(1)最多可以做多少个花束?(96、72)=24
(2)每个花束里有几朵红玫瑰花?96÷24=4朵
(3)每个花束里有几朵白玫瑰花?72÷24=3朵
(4)每个花束里最少有几朵花? 4+3=7朵
练习
1、有一堆西瓜与一堆木瓜,分别为24个与36个,将其各分成若干小堆,各小堆的个数要相等,则每小堆最多几个?这时候西瓜分成多少小堆?木瓜分成多少小堆?
2、甲、乙两队学生,甲队有121人,乙队有143人,各分成若干组,各组人数要相等,则每组最多有几人?这时候甲队可分成多少组?乙队可分成多少组?
3、今有梨320个,糖果240个,饼干200个,将这些东西分成相同的礼品包送给儿童,但包数要最多,则每包有多少个梨?有多少个糖果?有多少个饼干?
4、有一张长6公分,宽4公分的长方形色纸,将它剪成最大的正方形而不浪费纸,此正方形边长为几公分?
例:公共汽车站有三路汽车通往不同的地方。第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。三路汽车在同一时间发车以后,最少过多少分钟再同时发车?
分析:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。[5、10、6]=30
练习
1、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案.问:拼成的正方形的边长可能是多少?
2、王伯伯有三个小孩,老大3天回家一次,老二4天回家一次,老三6天回家一次,这次10月1日一起回家,则下一次是几月几日一起回家?
3、美美客运有A,B两种车,A车每45分发车一次,B车每1小时发车一次,两车同时由上午6
点发车,下一次同时发车是什麼时候?
例:某厂加工一种零件要经过三道工序。第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?
分析:安排每道工序人力时,应使每道工序在相同的时间内完成同样多的零件个数。这个零件个数一定是每道工序每人每小时完成零件个数的公倍数。至少安排的人数,一定是每道工序每人每小时完成零件个数的最小公倍数。
(1)在相同的时间内,每道工序完成相等的零件个数至少是多少?[3、12、5]=60 (2)第一道工序应安排多少人?60÷3=20人
(3)第二道工序应安排多少人?60÷12=5人
(4)第三道工序应安排多少人?60÷5=12人
例:有一批机器零件。每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。这些零件总数在300至400之间。这批零件共有多少个?
分析:每12个放一盒,就多出11个,就是说,这批零件的个数被12除少1个;每18个放一盒,就少1个,就是说,这批零件的个数被18除少1;每15个放一盒,就有7盒各多2个,多了2×7=14个,应是少1个。也就是说,这批零件的个数被15除也少1个。
如果这批零件的个数增加1,恰好是12、18和15的公倍数。