第1章 热交换器热计算的基本原理
1 热交换器的热基本计算
![1 热交换器的热基本计算](https://img.taocdn.com/s3/m/4134acf7aef8941ea76e0545.png)
Q-热负荷,W; M1,M2- 分别为热流体与冷流体的质量流量,kg/s; h1,h2-分别为冷热流体的焓,J/kg; 1代表热流体,2代表冷流体;
代表流体的进口状态, 代表流体的出口状态。
热计算基本方程式
热平衡方程式
Q M1 h1 h1 M 2 h2 h2
当流体无相变时,热负荷也可用下式表示:
为修正系数
其它流动方式时的平均温差
tm tlm,c
若令
t2 t2 冷流体的加热度 P t2 两流体的进口温差 t1 t1 热流体的冷却度 t1 R t2 冷流体的加热度 t2
P的数值代表了冷流体的实际吸热量与最大可能的 吸热量的比率,称为温度效率,恒小于1。 R是冷流体的热容量与热流体的热容量之比, 可以大于1、等于1或小于1。
t t e
μkA
t x t e
-μ kAx
t ln μ kA t
t t t t tm ( 1) t t t ln ln t t
由于式中出现了对数,故常把tm称为对数平均温差。
d dt1 qm1c1 d dt2 qm 2c2
由于qm1c1和qm2c2 不变,则d↓ , dt1、dt2↓
故沿着流体流动方向,冷热流体温度变化渐趋平缓,温 度分布曲线形状的凹向不可能反向。
逆流情况下的平均温差
逆流换热器中冷、热流体温度的沿程变化如下图。
d k[t1 ( x) t2 ( x)]dA kt ( x)dA
d[t ( x)] k t ( x)dAx
顺流情况下的平均温差
1 1 d[t ( x)] dt1 ( x) dt2 ( x) qm1c1 qm2c2 d d
换热器原理介绍
![换热器原理介绍](https://img.taocdn.com/s3/m/fbe6254959eef8c75fbfb3df.png)
换热器基础知识简单计算板式换热器板片面积选用板式换热器就是要选择板片的面积的简单方法:Q=K×F×Δt,Q——热负荷K——传热系数F——换热面积Δt——传热对数温差传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。
最后算出的板换的面积要乘以一定的系数如1.2。
换热器的分类与结构形式换热器作为传热设备被广泛用于耗能用量大的领域。
随着节能技术的飞速发展,换热器的种类越来越多。
适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理可分为:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器按用途分为:1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2、预热器预热器预先加热流体,为工序操作提供标准的工艺参数。
3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4、蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
三、按换热器的结构可分为:可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。
热交换器计算及设计
![热交换器计算及设计](https://img.taocdn.com/s3/m/0a454c0b770bf78a64295454.png)
针对现成的热交换器,目的在于确定流体的出 口温度,并了解该换热器在各种工况下的性能 变化,判断能否完成非设计工况下的换热任务
热交换器热力计算核心参数
传热面积 &传热量
热流体出 冷流体入 口温度 口温度
热流体入 口温度
冷流体出 口温度
热力计算的核心在于寻找上面五个物理量之间的关系
换热器设计基本关系式
制糖造纸工业中的蒸发器等等 化工、航天、机械制造、食品、医药行业中。。
凝汽式燃煤电厂生产过程
凝汽部分换热过程
低压加热器
除氧器换热过程
高压加热器
省煤器
过热器
空预器
对换热器的基本要求
满足工艺要求,热交换强度高,热损失小 工艺结构在工作温度压力下不易遭到破坏,
制造简单,维修方便,运行可靠 设备紧凑(对于航天、余热利用、大型设
按照传送热量的方法:间壁式、混合 式、蓄热式(回热式)、流体耦合间 接式等
按照流动方向的分类
a. 顺流 b. 逆流 c. 交叉流(错流) d. 总趋势为逆流的四次
错流 e. 总趋势为顺流的四次
错流 f. 混流式:先顺后逆平
行流 g. 混流式:先逆后顺的
串联混和流
按照热量传输方式划分
间壁式换热器 冷流体和热流体之
该类型热交换器的管子常用直管(蛇管)或螺旋弯管(盘 管)组成传热面,将管子沉浸在液体的容器或池内
多用于液体预热器、蒸发器或气体冷却、冷凝 管外液体中的传热以自然对流方式进行,传热系数低,体
积大,但是结构简单、制造、修理、清洗方便。
沉浸蛇管换热
管式热交换器类型
-喷淋式热交换器
该类型热交换器将冷却水 直接喷淋到管子外表面使 管内的热流体冷却或冷凝
第1章 热交换器热计算的基本原理
![第1章 热交换器热计算的基本原理](https://img.taocdn.com/s3/m/47200299f242336c1eb95ef7.png)
§1.2 平均温差
dt1dt2 M 1 1c1M 1 2c2 d d
dkdAxt
d tx d k d A x t
dt t
kdAx
tx t
dt t
k0AxdAx
lntx t
kAx
tx te x p ( k A x ) te - k A x 当地温差随换热
tm 1 A 0 A tx d A x 1 A 0 A te x p (k A x )d A x面积呈指数变化
流体温度分布
§1.2 平均温差
定义和分类
QKF tm
定义 指整个热交换器各处温差的平均值。用 tm 表示。
分类
算术平均温差 对数平均温差 积分平均温差
1 tm2(tma xtmi)n
tmln tm tam xax/tm tm inin
流体比热变化时一种分 段计算平均温差的方法
§1.2 平均温差
§1.1 热交换器的热计算基本方程式
热计算的类型: 设计性热计算:设计一个新的换热器 目的:确定换热器传热面积
校核性热计算:校核设计出的换热器是否达标 目的:确定流体出口温度,考察非设计工况下性能
得到传热量、流体进出口 温度、传热系数、传热面 积及其相互之间关联性。
传热方程 热平衡方程
§1.1 热交换器的热计算基本方程式
t
h dth t h
tc dtc t c
t c
§1.2 平均温差
简单顺流换热器的对数平均温差
已知冷热流体的进出口温度,在图中换 热器传热面任一位置 x 处,取微元换热 面dAx,考虑其换热量
微元面dAx内,两种流体换热量为:
dkdAxt
对于热流体和冷流体
d M 1 c 1 d t1 d t 1 d /M 1 c 1 d M 2 c 2 d t2 d t2 d /M 2 c 2
冷却塔逆流闭式热交换器热力计算
![冷却塔逆流闭式热交换器热力计算](https://img.taocdn.com/s3/m/7dc2f14ef56527d3240c844769eae009581ba23b.png)
冷却塔逆流闭式热交换器热力计算冷却塔逆流闭式热交换器是一种常用的设备,用于在不同介质之间进行热量传递。
本文将介绍如何进行冷却塔逆流闭式热交换器的热力计算。
1. 热力计算的基本原理在冷却塔逆流闭式热交换器中,热量的传递是通过传热面积、传热系数和温度差来实现的。
传热面积是指两种介质接触的面积,传热系数是介质之间传热的效率,温度差是指介质之间的温度差异。
2. 热力计算的步骤进行冷却塔逆流闭式热交换器的热力计算,需要以下步骤:步骤1:计算传热面积传热面积可以通过以下公式计算:\[A = \frac{Q}{U \cdot \Delta T_{lm}}\]其中,A为传热面积,Q为传热量,U为传热系数,\(\Delta T_{lm}\)为对数平均温差。
步骤2:确定传热系数传热系数是介质之间传热效率的一个参数,可以通过实验或者参考相关文献来确定。
步骤3:计算对数平均温差对数平均温差可以通过以下公式计算:\[\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\ln(\frac{\Delta T_1}{\Delta T_2})}\]其中,\(\Delta T_1\)和\(\Delta T_2\)分别为两种介质的温度差。
步骤4:计算传热量传热量可以通过以下公式计算:\[Q = U \cdot A \cdot \Delta T_{lm}\]其中,Q为传热量。
3. 示例举个例子来说明热力计算的过程。
假设冷却塔逆流闭式热交换器的传热系数为10 W/ (m2·°C),传热面积为50 m2,两种介质的温度差为20°C。
首先,我们可以通过步骤1计算出对数平均温差:\[\Delta T_{lm} = \frac{20 - 0}{\ln(\frac{20}{0})} =\frac{20}{\ln(\infty)} = 20\]然后,根据步骤4计算传热量:\[Q = 10 \cdot 50 \cdot 20 = \]所以,该冷却塔逆流闭式热交换器的传热量为 W。
换热器原理与设计课后题答案史美中国
![换热器原理与设计课后题答案史美中国](https://img.taocdn.com/s3/m/045390cf3086bceb19e8b8f67c1cfad6195fe9fe.png)
换热器原理与设计课后题答案史美中国热交换器原理与设计热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。
(2013-2014学年第二学期考题[名词解释])热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式按照传热量的方法来分间壁式、混合式、蓄热式。
(2013-2014学年第二学期考题[填空])1热交换器计算的基本原理(计算题)热容量(W=Mc):表示流体的温度每改变1C时所需的热量温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释])传热有效度(e):实际传热量Q与最大可能传热量Q之比2管壳式热交换器管程:流体从管内空间流过的流径。
壳程:流体从管外空间流过的流径。
<1-2>型换热器:壳程数为1,管程数为2卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释])记:前端管箱型式:A-平盖管箱B一--封头管箱壳体型式:一一单程壳体F一一具有纵向隔板的双程壳体H一双分流后盖结构型式:P一一填料函式浮头S一一钩圈式浮头U一一U形管束一-管子在管板上的固定:胀管法和焊接法管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。
(2013-2014学年第二学期考题[填空])管壳式热交换器的基本构造: (1)管板(2)分程隔板(3)纵向隔板、折流板、支持板(4)挡板和旁路挡板(5)防冲板产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。
热交换器中的流动阻力:摩擦阻力和局部阻力管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力管程、壳程内流体的选择的基本原则: (P74)管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。
热交换的计算
![热交换的计算](https://img.taocdn.com/s3/m/61473893a48da0116c175f0e7cd184254b351be0.png)
热效率
01
表示热交换设备的有效能量转换比例,即设备输出的有用能量
与输入的总能量之比。
热效率的数值范围
02
通常在0到1之间,表示设备能量转换效率的高低。
影响因素
03
设备的设计、制造质量、运行工况以及操作条件等都会影响热
效率。
热效率的计算公式
公式
热效率 = (有效能量/总能量)× 100%
应用场景
用于评估热交换设备的性能,指导设备选型、优化和节能改造。
热交换器的设计原则
高效换热
选择合适的换热器类型和材料,优化换热面 积和流道设计,提高换热效率。
经济合理
在满足换热要求的前提下,尽量降低制造成 本和维护成本。
稳定可靠
保证换热器的稳定性和可靠性,确保长期运 行无故障。
环保节能
采用环保材料和节能技术,减少能源消耗和 排放。
热交换器的优化设计
数值模拟
利用数值模拟软件对换热器进行模拟 分析,优化流道和换热元件的设计。
实验研究
通过实验研究验证换热器的性能,并 根据实验结果对设计进行优化。
强化传热
采用强化传热技术,如振动、超声波 、电场等,提高换热效率。
多目标优化
综合考虑多个目标函数,如换热效率 、成本、体积等,进行多目标优化设 计。
05
CATALOGUE
热交换的实验研究
实验目的
01
02
03
验证热交换理论
通过实验研究,验证热交 换理论的正确性和实用性 。
02
03
04
空调系统
通过冷热交换实现室内温度的 调节。
工业制程
在化工、制药、食品加工等领 域,利用热交换进行物料加热
热交换器传热计算的基本方法
![热交换器传热计算的基本方法](https://img.taocdn.com/s3/m/c80802b743323968001c9280.png)
i1 i2
C1 C2
分别为热流体与冷流体的焓,J/Kg 分别为两种流体的定压质量比热,J/(Kg·℃)
Q M1c1 t1 t1t1 M1c1 t1 t2t1 M1c1t1 W1t1
Q
Q
M 2c2
M
t2
1
t
t21
C1dt1 M 2 C2dt2
M 2c2t2t2 W2t2
热交换器传热计算的基本方法
热交换器热计算的基本原理
1.1 热计算基本方程 1.2平均温差法 1.3 效率—传热单元数法(传热有效度) 1.4热交换器热计算方法的比较 1.5流体流动方式的选择
1.1 热计算基本方程式
进口温度t1
热流体1
流量 M1 比热容 c1
冷流体2
热交换器的换热面积F
进口温度 t 2 流量 M 2
(2)传热系数是常数;
t1
(3)换热器无散热损失;
(4)换热面沿流动方向的导热量可
以忽略不计。
要想计算沿整个换热面的平均温差,
t2
首先需要知道当地温差随换热面积的
变化,然后再沿整个换热面积进行平均。
t1 dt1 t1 t2 dt2 t2
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:
讨论:
1 考虑热损失的情况下:Q1 Q2 QL 或 Q1L Q2
L 以放热热量为准的对外热损失系数,通常为0.97-0.98
2
由式③可以知道 W1 W2
t 2 t1
冷流体的加热度 热流体的冷却度
可见 :两种流体在热交换器内的温度变化与他们的热容量成反比
3 由 W1t1= W2t2 =Q,还可以知道,在热交换器内,热容量
第一章+热交换器热计算的基本原理
![第一章+热交换器热计算的基本原理](https://img.taocdn.com/s3/m/6a05cf1bf18583d049645939.png)
t t tm t ln t
对数平均温差 (LMTD) 如果,
tmax 2 tmin
tmax tmin tlm tmax ln tmin
可用算术平均温差代替对数平均温差,误差在+4%以内。 算术平均温差
1 tm tmax tmin 2
• • •
顺流和逆流的比较
• 在同样的传热单元数时,逆流的ε总是大于顺流,且随NTU的 增大而增大;顺流,ε随NTU增大而趋于定值,ε达到一定值 后,NTU的增大对ε没有贡献。 • 在流体进、出口温度相同的条件下,逆流的平均温差最大,顺 流则最小,其他的流动方式介于顺流和逆流之间。逆流时所需 传热面最小或传热量最多。 • 逆流时,冷流体的出口温度t2″可高于热流体的出口温度t1″, 而顺流时,t2″总是低于t1″。所以,逆流时可以有较大的温度 变化δt,可使流体消耗减小。但是片面追求高的温度变化会使 得换热器两端的温差降低,平均温差降低,换热面积增加。 • 从热工角度看,逆流比顺流有利,但流体的最高温度发生在换 热器一端,一端壁温高。而且,逆流时传热面在整个长度方向 上温度差别大,壁面温度不均匀。
其中
KFx
t t e KF
+ 顺流 - 逆流
1 1 W1 W2
W1 W2
沿 热 流 体 方 向
顺流: W1 W2 逆流: W1 W2
W1 W2
0
两流体间温差总是不断减小 两流体间温差不断减小 两流体间温差不断增大
0 0
顺流和逆流的平均温差:
Qi 故,总传热面: F i 1 K i ti
n
tm int
Q F K tm
Q n Qi t i 1 i
换热器计算
![换热器计算](https://img.taocdn.com/s3/m/450d38bdd1f34693daef3eff.png)
三、传热的基本方式
一个物系或一个设备只要存在温度差就会发 生热量传递,当没有外功加入时,热量就总 是会自动地从高温物体传递到低温物体。根 据传热的机理不同,热传递有三种基本方式:
热传导
热对流
热辐射
(一) 热传导(导热)
问题:冬天,为什么触摸铁比木头更冷些?
一些常见物质的导热系数
物质 导热系数 λ[W/m·℃] 碳钢 45~52 不锈钢 铝合金 铜 10~30 203 银 钛
并流
逆流
平均温差计算实例
例2,氨冷器为逆流操作,试分别求氨冷凝段,液氨冷却段水的出 口温度及每一段的平均温差 解:逆流操作温度变化图如下:
t1=85℃ 气氨冷却
氨: 水: T2=21 ℃ T4 ? T3? T1=19 ℃
t2=45℃ 气氨冷凝成液氨 t2=45℃ 液氨冷却
t3=30℃
根据热平衡方程:Q氨放热=Q水吸热
易于堵管或更换。
缺点:不易清洗壳程, 壳体和管束中可能产 生较大的热应力。 适用场合:适用于壳程介质清洁,不易结垢,管程需清洗 以及温差不大或温差虽大但是壳程压力不大的场合。 例:氨冷器(卧冷),变换冷却器
浮头式换热器
优点:管内和管 间清洗方便,不 会产生热应力。 缺点:结构复杂, 设备笨重,造价 高,浮头端小盖 在 操作中无法检查。 适用场合: 壳体和管束之间壁温相差较大,或介质易结垢的场合。 例如:813低甲冷
Q1=WCpg (t1-t2)= 20000×2.112×(85-45)=1.69×106kJ/h
Q2=Wr= 20000×1336.97=2.67×107kJ/h Q3=WCpl(t2-t3)=20000×4.708×(45-30)=1.41×106kJ/h Q=Q1+Q2+Q3=2.98×107kJ/h=8.3MW
换热器的工作原理
![换热器的工作原理](https://img.taocdn.com/s3/m/1c2c59b1951ea76e58fafab069dc5022abea464e.png)
换热器的工作原理引言:换热器是一种重要的热交换设备,广泛应用于工业生产和能源系统中。
它可以将热能从一个流体传递到另一个流体,实现热量的有效利用。
本文将详细介绍换热器的工作原理及其五个关键部份。
一、热交换原理1.1 热传导换热器通过热传导实现热量的传递。
当两个温度不同的流体通过换热器的热传导面接触时,热量会从高温流体传递到低温流体。
这种热传导过程是通过份子之间的碰撞和传递能量实现的。
1.2 对流换热对流换热是指通过流体的对流传热来实现热量的传递。
当两个流体在换热器内部流动时,它们之间会形成对流层,热量会通过对流层的传递实现从一个流体到另一个流体的传热。
1.3 辐射换热辐射换热是指通过辐射传热来实现热量的传递。
换热器内部的高温表面会辐射出热量,低温表面则会吸收这些热量。
辐射换热不需要介质,可以在真空中传热。
二、换热器的五个关键部份2.1 热交换管道热交换管道是换热器中的核心部份,用于容纳流体并实现热量的传递。
它通常由金属材料制成,具有良好的导热性和耐腐蚀性。
2.2 管束管束是将多个热交换管道固定在一起的部件,通常由支撑板和固定件组成。
管束的设计和创造对换热器的性能和效率有重要影响。
2.3 壳体壳体是换热器的外壳,用于容纳热交换管道和管束。
它通常由金属材料制成,具有足够的强度和密封性,以承受高压和高温环境。
2.4 冷却介质冷却介质是指通过换热器来吸收热量的流体。
它可以是空气、水、油等不同的介质,根据具体应用需求选择合适的冷却介质。
2.5 加热介质加热介质是指通过换热器来释放热量的流体。
它可以是蒸汽、热水、燃气等不同的介质,根据具体应用需求选择合适的加热介质。
三、换热器的工作过程3.1 冷却过程在冷却过程中,冷却介质从外部环境吸收热量,通过换热器的热交换管道和壳体,将热量传递给加热介质,使其温度升高。
3.2 加热过程在加热过程中,加热介质通过换热器的热交换管道和壳体,释放热量给冷却介质,使其温度降低。
3.3 温差调节换热器可以通过调节冷却介质和加热介质的流量和温度来实现温差的调节,以满足不同的工艺需求。
第1章_热交换器基本原理【《热交换器原理与设计》课件】
![第1章_热交换器基本原理【《热交换器原理与设计》课件】](https://img.taocdn.com/s3/m/9c15854df5335a8102d22060.png)
逆流
1.2 平均温差
对顺、逆流的传热温差分析,作如下假设:
1. 冷热流体的质量流量和比热保持定值; 2. 传热系数是常数; 3. 热交换器没有热损失; 4. 沿流动方向的导热量可以忽略不计; 5. 同一种流体从进口到出口,不能既有相变又
有单相对流换热。
要计算整个换热的平均温差,首先需要知道 温差随换热面的变化,即 Δtx= f(Fx),然后再沿 整个换热面积进行平均。
过冷
t1″ t2′
t1′ t2″
放热
过热 沸腾
t1′
部分冷凝
t1″
吸热
t2″
吸热
t1″ t2′
t2′
g :一种流体有相变
h:可凝蒸气和非凝结性 气体混合物的冷凝
1.2.2 顺流、逆流下的平均温差
以顺流为例:已知冷热流体的进出口温度, 针对微元换热面dF一段的传热,温差为:
Δt=t1 – t2
→
dΔt=dt1 – dt2
Fx dΔt μk dF 0 Δt
dΔt μkdF Δt
Δtx ln μkFx Δt
Δtx
Δt
Δtx Δt e
μkFx
Δtx Δt e
Δt Δt e
"
μkFx
当 Fx = F 时,Δtx =Δt"
μkF
1 1 μ W1 W2
' 2
热容量:
W = M· C
(W/℃)
Q = W1 · Δt1 =W2 · Δt2
W1 Δt2 W2 Δt1
平行流:顺流和逆流
Hot fluid Cold fluid
Hot fluid Cold fluid
换热器的设计1-基本原理
![换热器的设计1-基本原理](https://img.taocdn.com/s3/m/8ae6e149be1e650e52ea99eb.png)
Dept. of Thermal Power Engineering - NCEPU
主讲:魏高升
混合式(直接接触式) :换热器内冷、热流体直 接接触、互相混合来实现热量交换。
典型应用:
电厂中的水冷塔
海勒式间接空冷凝汽器
Dept. of Thermal Power Engineering - NCEPU
Dept. of Thermal Power Engineering - NCEPU
主讲:魏高升
2.1 换热器的传热计算的基本参数
一、基本参数和方程
流体1的放热热流量
qm1c1 t1' t1" W1 t1' 9; " ' " qm 2c2 t2 t2 W2 t2 t2
Dept. of Thermal Power Engineering - NCEPU
主讲:魏高升
几种常见扩展表面的肋片效率:
实际散热量 f 假想整个肋表面的温度处于肋根温度下的散热量
•对于等截面直肋: = tanh(mH )
0
m
mH
hP 2h Ac
肋片效率的影响因素:
f
热管式换热器具有较高的传热性能,但热管的制 造工艺较复杂,热管的密封性、寿命问题需重点考虑。
Dept. of Thermal Power Engineering - NCEPU
主讲:魏高升
间壁式换热器中冷、热流体的相对流动方向
在冷、热流体进口温度相同、流量相同、换热面 面积相同的情况下,流动型式影响冷、热流体的出口 温度、换热温差、换热量以及换热器内的温度分布。
顺排(矩形肋片):
第一章换热器热计算的基本原理
![第一章换热器热计算的基本原理](https://img.taocdn.com/s3/m/764bc124bcd126fff7050bcf.png)
可将P、R归纳为:
P
=
无混合流体的温度变化值 两流体进口温度差值
;R= 无混混合合流流体体的的温温度度变变化化值值
工程上为计算方便,将ψ值绘成线图,如图1.8 ~ 1.14所示 ψ ≤ 1,从其值可以看出某种流动形式在给定工况下接近逆流的 程度,ψ一般应 > 0.9
1-2、1-4等多流程管壳式换热器的修正系数
其中Mc称为热容量,它代表流体每升高1度所需 热量用W表示,可得
Q = W1Δt1
= W2Δt2
⇒ W2 W1
=
t1′ − t1′′ t2′′ − t2′
=
Δt1 Δt2
以上为不考虑散热损失的情况,若考虑散热损失QL
热平衡方程式为:
Q1 = Q2 + QL或Q1ηL=Q2 ηL − −以放热热量为准的对外热损失系数,0.97~0.98
若假定各段的K值相等 ⇒ 积分平均温差
( ) Δtm int = n Q
∑ ΔQi / Δti
i =1
也可按每段传热量相同的方法分段;
设有n段,则每段传热量为ΔQi
=
Q n
=
KΔFΔt i
⇒ F = ∑ ΔF,
∑ F
=
Q Kn
n i =1
1 Δti
;
此时积分平均温差(Δtm
)
int
=
n n1
∑i=1 Δti
dΦ
=
qm2c2dt 2
⇒
dt2
=
1 qm2c2
dΦ
不论顺流还是逆流,对数平均温差可
统一用以下计算式表示:
Δt m
=
Δtmax − Δtmin ln Δtmax
换热器及其基本计算
![换热器及其基本计算](https://img.taocdn.com/s3/m/2d2efdfa910ef12d2af9e7b4.png)
姓名:杜鑫鑫学号:0903032038合肥学院材料工程基础姓名:班级:09无机非二班学号:\课题名称:换热器及其基本计算指导教师:胡坤宏换热器及其基本计算一、换热器基础知识(1)换热器的定义:换热器是指在两种温度不同的流体中进行换热的设备。
(2)换热器的分类:由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。
二、几个不同的换热器(1)管壳式换热器管壳式换热器又称列管式换热器,是一种通用的标准换热设备。
它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。
管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。
一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。
而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。
(2) 套管式换热器套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。
两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。
套管式换热器以同心套管中的内管作为传热元件的换热器。
两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。
热量通过内管管壁由一种流体传递给另一种流体。
通常,热流体由上部引入,而冷流体则由下部引入。
套管中外管的两端与内管用焊接或法兰连接。
内管与U形肘管多用法兰连接,便于传热管的清洗和增减。
每程传热管的有效长度取4~7米。
这种换热器传热面积最高达18平方米,故适用于小容量换热。
当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tm int
§1.2 平均温差
变比热时的平均温差
各小段传热面积: 总传热面积: 求和
Qi Fi ki tim
而
Qi F Fi i 1 i 1 ki tim
n n
Q Q F k tm k tm int
tm int
Q n Qi k i 1 ki tim
tlm.c 是按逆流方式计算得到的对数平均温差;
是因考虑流动方式不同于逆流而引入的小于1的修正系数。
§1.2 平均温差
问题的关键变成如何得到各种换热器的修正系数
t tmin tlm max t max ln tmin
t t t t 令: P 2 2 , R 1 1 t2 t2 导对数平均温差时,进行了定比热的假设,实际情况几乎不存 在,需提供变比热时的平均温差计算公式。 已知 c f (t ) ,则根据 Q M t cdt 作出 Q-t 图; 将 Q-t 曲线进行分段,每段近似取为直线关系,并求出出相应于各 段的传热量 Qi ; 按具体情况用对数平均温差或算术平均温差求各段平均温差 ti ; 根据公式计算积分平均温差
tmax 80 10 70℃ tmin 50 30 20℃
tmax 80 30 50℃
tmin 50 10 40℃
tm
70 20 39.9 70 ln 20
tm
50 40 44.8 50 ln 40
逆流布置时平均温差比顺 流时大12.3%,也就是说 在同样的传热量和同样的 传热系数下,只要将顺流 改为逆流,换热器可以减 少12.3%的换热面积。
第一章:热交换器热计算的基本原理
Q k tdF
0
F
理论部分
§1.1 热交换器的热计算基本方程式
热计算的类型: 设计性热计算:设计一个新的换热器 目的:确定换热器传热面积 校核性热计算:校核设计出的换热器是否达标 目的:确定流体出口温度,考察非设计工况下性能 得到传热量、流体进出口 温度、传热系数、传热面 积及其相互之间关联性。
无相变时: Q M1 C1dt1 M 2 C2 dt2
t1 t2
t1
t2
t1 ) M 2c2 (t2 t2 ) 定比热时: Q M1c1 (t1
如果是容 积或摩尔 流量呢?
W2 t1 W1 t2
Q W1 t1 W2 t2
§1.1 热交换器的热计算基本方程式
§1.2 平均温差
流体温度分布
§1.2 平均温差
定义和分类
Q KFtm
定义 指整个热交换器各处温差的平均值。用 t m 表示。 算术平均温差
t m 1 (t max t min ) 2 tmax tmin tm ln tmax / tmin
2000 0.56 kg / s 3600 3000 M2 0.83kg / s 3600 M1
根据热平衡方程式有
M1C1 (t1 ' t1 '') M 2C2 (t2 '' t2 ')
0.56 80 t1 '' 0.83 30 10
t1 '' 50 ℃
定义为热容 量,记作W
§1.1 热交换器的热计算基本方程式
热平衡方程式:
W2 t1 W1 t2
温度变化与热容量成反 比,即热容量越大的流 体其温度变化越小
上述考虑均未考虑换热器的散热损失
考虑换热器 散热损失后
Q1 Q2 QL
Q1L Q2
§1.1 热交换器的热计算基本方程式
流体比热变化时一种分 段计算平均温差的方法
分类
对数平均温差 积分平均温差
§1.2 平均温差
简单顺流换热器的对数平均温差
欲计算沿整个换热面的平均温差,首先 需要知道当地温差随换热面积的函数,
然后再沿整个换热面积进行积分平均。
假设条件: 冷热流体的质量流量M1,M2以及比热容 c1,c2也是常数;
tlm.c
(t1 ' t2 '') (t1 '' t2 ') t ' t '' ln 1 2 t1 '' t2 '
tlm.c
R 1 t2 '' t2 ' 1 P ln 1 RP
P 的物理意义:冷流体的实际温升与理论上所能达到 的最大温升之比,称为温度效率。 R的物理意义:两种流体的热容量之比。
dtx d kdAx t
dt kdAx t
t x ln kAx t
当地温差随换热 面积呈指数变化
t x
t
Ax dt k dAx 0 t
- kAx tx t exp( kAx ) t e
传热方程 热平衡方程
§1.1 热交换器的热计算基本方程式
传热方程式:
普遍形式
Q ktdF
0
F
微元传热面传热系数
微元传热面流体温差
微元传热面积
工程形式
Q K tm F
如何求
传热面积
传热面平均传热系数
流体之间的平均温差
§1.1 热交换器的热计算基本方程式
热平衡方程式:
i1 ) M 2 (i2 i2 ) 普遍形式: Q M1 (i1
§1.2 平均温差
算术平均温差
t max t min 2
t m ,算术
t m ,对数
t max t min t max ln t min
算术平均温差相当于温度呈直线变化的情况,因此总是大于
相同进出口温度下的对数平均温差,当 tmax tmin 2 时,两 者差别小于4%;当 t max t min 1.7 时,两者差别小于2.3%。
th
t
h
dth
th
传热系数是常数;
换热器无散热损失; 换热面沿流动方向的导热量可以忽略不计。
tc
dtc t c
tc
§1.2 平均温差
简单顺流换热器的对数平均温差
已知冷热流体的进出口温度,在图中换 热器传热面任一位置 x 处,取微元换热 面dAx,考虑其换热量 微元面dAx内,两种流体换热量为:
t exp( kA) t
(1)+(2)+(3)
(1) (2) (3)
t t t t t t t m - 1 t t t t ln ln ln t t t
热平衡方程式:
t1 ) Q W1 (t1
t1 ) W2 (t2 t2 ) Q W1 (t1
t2 ) Q W2 (t2
t1 ) W2 (t2 t2 ) W1 (t1
已知 Q 和流体进、出口温度,求流体热容 W 已知流体热容 W 和进、出口温度,求热负荷 Q 已知 W 和一种流体的进、出口温度以及另一种流体的进 口(或者出口),可求出口(或者进口)温度。
§1.2 平均温差
其他流动时平均温差
上述对数平均温差只是针对纯顺流和纯逆流情况,而实际换热器 流动一般很复杂,当然也可以采用前面的方法进行分析,但数学 推导过程非常复杂。 实际上,纯逆流的平均温差最大,因此,人们想到对纯逆流的对 数平均温差进行修正以获得其他情况下的平均温差。
即 tm tlm.c
由于蒸汽在换热器中有冷却和冷凝两段,故分两段计算, 如下图:
蒸汽从过热段到饱和蒸汽段放出的热量为Q1
Q1 M1 (i i' ' ) 0.109 (2749 2707 ) 4.58kJ / s
饱和蒸汽变成饱和水放出的热量为Q2
Q2 M 1 (i' 'i' ) 240.35
例题:在一台螺旋板式换热器中,热水流量为 2000kg/h,冷水流量为3000kg/h;热水进口温 度=80℃,冷水进口温度=10℃。如果要将冷水 加热到=30℃,试求顺流和逆流时的平均温差。 (已知水的比热在上述温度范围内为一常数)
请比较两种流 动方式下的计 算结果
解:热水质量流量
冷水质量流量
Qmax = 较小热容量的流体达到最大温度变化时的传热量。
Qmax Wmin (t1 t2 )
根据定义
W1 (t1 t1 ) W2 (t2 t2 ) Wmin (t1 t2 ) Wmin (t1 t2 )
如果 W2 Wmin 即热 流体的热容量为小
d kdAx t
对于热流体和冷流体
d M1c1dt1 dt1 d / M1c1
d M2c2dt 2 dt2 d / M 2c2
§1.2 平均温差
1 1 dt1 dt2 d d M1c1 M 2c2 d kdAx t
冷凝段的对数平均温差
t 2 49.27 10 89.17 0 C 120 10 ln 120 49.27
(t m ) Q Q1 Q2 t1 t 2 89o C
tm.int
Q n Qi i 1 tim
总的平均温差
§1.3 传热有效度
传热有效度定义(换热器效能)
教材P21 例题1.1
ta
解:整个换热器的传热量
21600 Q M 2 C 2 (t 2 ' 't 2 ' ) 1.02 (50 10) 244 .8kJ / s 3600
蒸汽的质量M1
M1 (过热蒸汽的焓 饱和水的焓) Q