激光表面熔凝处理
激光熔覆
原理
激光熔覆技术的原理是,在需处理的零部件表
面预置一层能满足使用要求的特制粉末材料,然 后用高能激光束对涂层进行快速扫描处理,预置
粉末在瞬间熔化并凝固,涂层下基体金属随之
熔化一薄层,二者之间的界面在很窄的区域内
迅速产生分子或原子级的交互扩散,同时形成牢 固的冶金结合。在快速热作用下,基体受热影响 极小,无变形。熔层合金自成体系,其组织致密, 晶粒细化,硬度和强韧性提高,表面性能大大改 善。
质量优势
举例
不锈钢辊颈·激光熔覆
大型曲轴·激光熔覆
汽轮机叶片及转子·激光 熔覆
展望
综上所述,在过去十几年间,激光熔覆 耐磨、耐蚀、抗氧化、热障涂层等研究 取得了巨大进展,某些方面已进人实际 工业应用阶段,但仍然存在许多挑战性 的困难,随着激光熔覆技术的日趋成熟 和完善,因技术的先进性,高效率和经 济性,其工业应用领域将不断扩大,在 表面改性领域具有强大的生命力.
谢谢
激光熔覆技术
主要内容
概述 特点 涂层体系 原理 应用
概述
激光表面涂层技术主要包括激光表面合 金化、激光气相沉积与激光熔覆三个分 支。
激光熔覆技术是指以不同的添加方法在 被熔覆的基体上放置选择的涂层材料经 激光辐照后使之和基体表面熔化,经快 速凝固形成低稀释度的与基体呈冶金结 合的表面涂层。
抗氧化涂层抗高温氧化涂层在火箭发动机的高 温部件上等高科技领域有着广泛的应用前景.激 光熔覆中研究较多的是MCrALY系合金涂层,其 中M代表Ni、Co等过渡族元素
涂层体系
生物涂层Ti基HAP(羟基磷灰石)复合材料 以及含Ca、P的生物玻璃陶瓷涂层是激光 熔覆中刚刚起步的研究方向。生物金属 材料如Ti基合金等虽然具有比强度高、韧 性好、无毒等优良性能,但一般都不具 备生物活性和相容性。
激光熔覆技术研究现状及其发展
激光熔覆技术研究现状及其发展一、本文概述激光熔覆技术,作为一种先进的表面处理技术,近年来在材料科学、机械制造、航空航天等领域引起了广泛关注。
本文旨在全面综述激光熔覆技术的研究现状及其发展趋势,以期为相关领域的研究人员和技术人员提供有价值的参考。
文章首先将对激光熔覆技术的基本原理、特点及其应用领域进行简要介绍,然后重点分析当前激光熔覆技术的研究热点和难点,包括材料选择、工艺优化、性能评估等方面。
在此基础上,文章将探讨激光熔覆技术的发展趋势和未来展望,包括新材料、新工艺、新技术的应用以及环境友好型、智能化、高效化的发展趋势。
通过本文的综述,读者可以对激光熔覆技术的最新研究成果和发展动态有一个全面而深入的了解,为相关领域的研究和实践提供有益的借鉴和指导。
二、激光熔覆技术的研究现状激光熔覆技术自问世以来,就凭借其独特的优势在材料科学与工程领域引起了广泛的关注和研究。
该技术以其高精度、高能量密度和快速加热冷却过程等特点,使得在材料表面实现高质量、高性能的熔覆层成为可能。
随着科技的不断发展,激光熔覆技术的研究现状呈现出以下几个主要特点。
在材料选择方面,激光熔覆技术已经不仅仅局限于金属材料的熔覆。
近年来,陶瓷、高分子材料甚至复合材料的激光熔覆也开始得到研究,这极大地扩展了激光熔覆技术的应用范围。
同时,对于金属材料的熔覆,也逐步实现了多元化,涵盖了铁基、镍基、钴基等多种合金材料。
在熔覆过程控制方面,研究者们通过引入数值模拟、智能控制等技术手段,实现了对激光熔覆过程更为精准的控制。
这包括对激光功率、扫描速度、送粉速度等关键参数的优化,以及对熔池温度、形貌的实时监控和调控。
这些技术的发展,使得激光熔覆的质量稳定性和重复性得到了显著提升。
再次,在熔覆层性能提升方面,研究者们通过设计合理的熔覆层结构和成分,实现了对熔覆层硬度、耐磨性、耐腐蚀性等多种性能的提升。
同时,还通过引入纳米颗粒、增强相等手段,进一步优化了熔覆层的显微组织和性能。
DD2单晶合金激光表面熔凝处理的组织特征及微观偏析行为
文章编号: ( )单晶合金激光表面熔凝处理的组织特征及微观偏析行为!杨森 ,黄卫东 苏云鹏 周尧和( 清华大学机械系北京 ; 西北工业大学凝固技术国家重点实验室西安 )提要利用激光快速熔凝技术对 单晶合金在超高温度梯度和快速凝固条件下的组织形态和元素的微观偏析行为进行了研究。
实验结果表明激光重熔后微观组织较铸态组织显著细化,枝晶间析出相被抑制,合金元素的微观偏析行为大为改善。
关键词激光快速凝固,偏析, 单晶中图分类号:文献标识码:,( , , ;, , ’ ),, ,!国家自然科学基金( )资助项目。
收稿日期: ;收到修改稿日期:镍基合金作为一种重要的航空发动机叶片材料,人们对其定向凝固组织及性能进行了广泛研究,发现温度梯度的提高对改善合金的持久强度和寿命有重要作用[ ]。
然而,由于传统的定向凝固技术所能达到的温度梯度有限,导致构件形成粗大的枝晶组织,并伴随严重的枝晶间元素偏析,致使镍基合金的优良性能难以充分发挥。
激光表面熔凝处理作为一种可控性极强的凝固技术在凝固理论研究和材料的表面改性中发挥了重要作用[ ]。
在激光表面快速熔凝时,凝固界面的温度梯度高达 ,凝固速度高达每秒数米。
由于从熔池底部到顶部有很高的温度梯度存在,使得凝固组织从底部向上定向生长。
本文利用激光快速熔凝技术研究 单晶合金在超高温度梯度和快速凝固条件下的微观组织特征及元素的微观偏析行为。
实验方法实验用材料为 单晶合金,其成分为( ): , ,其余为 。
用线切割法把试样加工成 的试块。
用 砂纸轻轻打磨试样的表面,并用丙酮清洗,以使试样表面具有相同的状况。
利用展宽的激光束( )对试样表面进行重熔,激光器为 型 激光器。
实验过程中吹入氦气进行保护,以免试样表面氧化。
工艺参数为:激光器输出功率 ,扫描速度 。
利用 定量金相显微镜, 扫描电镜对 合金激光定向凝固前后第 卷第 期 年 月中国激光, ,的组织形态及尺度特征进行分析研究。
用型电子探针测试微区成分,测试区域如图所示,偏析比由下式计算枝(胞)晶间最大(最小)溶质含量枝(胞)晶干最小(最大)溶质含量()图微区成分测试区域示意图()铸态枝晶组织;()激光重熔后胞晶组织();()图单晶的铸态组织图枝晶间!!共晶!!实验结果与分析!"#微观组织结构特征图是单晶合金的铸态组织照片,它由〈〉方向定向生长的粗大的柱状晶组成,二次臂十分发达,其平均一次间距和二次间距分别为!和!,在枝晶间存在块状的!!共晶以及一定数量的纤维空洞(见图)。
激光表面处理技术
常规淬火硬度高5%~20%, 可获得极细的硬 化层组织。
( 3) 由于激光加热速度快, 因而热影响区小, 淬火应力及变形小。一股认为激光淬火处理几乎不产生变形, 而且相变硬化可以使表面产生大于4 000 MPa 的压应力, 有助 于提高零件的疲劳强度; 但厚度小于5mm 的零件其变形仍不 可忽视。
激光表面熔敷
激光表面熔敷技术是在激光束作用下将合金 粉末或陶瓷粉末与基体表面迅速加热并熔化, 光束移开后自激冷却的一种表面强化方法。
激光表面熔敷特点
( 1) 冷却速度快(高达106 K/s),组织具有快 速
凝固的典型特征; ( 2) 热输入和畸变较小,涂层稀释率低(一
般 小于5%),与基体呈冶金结合;
激光表面处理技术优 点
( 5) 通常只能处理一些薄板金属,不适宜处理 较厚的板材;
( 6) 由于激光对人眼的伤害性影响工作人员的 安全,因此要致力于发展安全设施。
激光表面处理技术
美国正在研究用激光淬火处理飞机的重载 齿轮,以取代渗碳淬火的化学热处理工艺。
----直升飞机辅助动力装置的行星齿轮 ----飞机主传动装置的传动齿轮 用激光硬化的飞机重载齿轮,不需要最后 研磨,大大降低了生产成本,提高生产率。 ----采用激光硬化飞机发动机气缸内壁,比 氮化处理快14倍,且所得到的硬化层比经过 10~20h氮化处理的硬化层还厚,质量优 良,几乎无变形。
下优点:
激光表面处理技术优 点
( 1) 能量传递方便,可以对被处理工件表面有 选择的局部强化;
( 2) 能量作用集中,加工时间短,热影响区小, 激光处理后,工件变形小;
激光表面处理技术优 点
( 3) 处理表面形状复杂的工件,而且容易实 现自动化生产线;
7.2 激光表面改性技术
激光淬火技术的应用
❖ 激光淬火由于以上优点而得到较为广泛的应用。 发动机缸体表面淬火,可使缸体耐磨性提高3倍以 上; 热轧钢板剪切机刃口淬火与同等未处理的 刃口相比寿命提高了一倍左右; 而且激光表面
❖ 淬火还应用在机床导轨淬火、齿轮齿面淬火、发 动机曲轴的曲颈和凸轮部位局部淬火以及各种工 具刃口激光淬火。
1) 材料成分:是通过材料的 淬硬性和淬透性来影响激光 淬硬层深度与硬度的。一般 说来,随着钢中含碳量的增 加,淬火后马氏体的含量也 增加,激光淬硬层的显微硬 度也就越高,如图所示
2) 激光工艺参数:激光淬火 层的宽度主要决定于光斑直径; 淬硬层深度由激光功率、光斑直 径和扫描速度共同决定;描述激 光淬火的另一个重要工艺参数为 功率密度,即单位面积注入工件 表面的激光功率。为了使材料表 面不熔化,激光淬火的功率密度 通常低于104W/cm2,一般为 1000-6000W/cm2。
谢谢观看 请给高分
激光表面熔凝技术特点
优点:比激光淬火层的总硬化层深度要深、 硬度要高、耐磨性也要好。
缺点:基材表面的粗糙度较大,后续加工量 大。
7.2.3 激光熔覆技术
激光熔覆(Laser Cladding)技术亦称激光 包覆、激光涂覆、激光 熔敷,是一种新的表面 改性技术。它通过在基 材表面添加熔覆材料, 利用高功率密度的激光 束使之与基材表面一起 熔凝的方法,在基材表 面形成与其为冶金结合 的添料熔覆层,以改善 其表面性能的工艺。
3)表面预处理状态:一是表 面组织淮备,即通过调质处理等 手段使钢铁材料表面具有较细的 表面组织,以便保证激光淬火时 组织与性能的均匀、稳定。二是 表面“黑化”处理,以便提高钢 铁表面对激光束的吸收率。
优点:
(1)与常规淬火相比,激光淬火 后的硬度要高1-5HRC。 (2)激光加热和冷却速度非常快, 变形小。 (3)可对局部、沟槽、内壁、刃 口等进行激光表面强化,可加工 形状复杂的零件。 (4)相变硬化层组织细密,位错 密度高,耐磨性更好。 (5)几乎不破坏表面粗糙度,采 用防氧化保护薄涂层。 (6)不需要加热和冷却介质,无 污染,清洁环保,效果好。 (7)加工过程采用计算机控制, 质量可靠,效率高。
激光表面强化
激光表面强化技术的应用实例以及特点
4.激光表面熔覆
4.1 简介: 在基体材料表面添加熔覆材料(采用预置法或同步法),利 用高能密度的激光束使之与基体表面薄层一起熔凝,在基材表 面形成与其呈冶金结合的添料熔覆层。
激光表面强化技术的应用实例以及特点
4.2 实例: 4.2.1 矿用108 t自卸车发动机凸轮轴的修复,熔覆材料 Ni基自熔合金。 4.2.2 矿用渣浆泵平衡盘:受矿井水的腐蚀和水中煤粒的 冲蚀磨损的交互作用,一般采用合金钢或合金铸铁,使用寿命 很低,后改为火焰喷焊镍基合金,零件使用寿命有所提高,但 工艺操作复杂,合金粉末消耗多,工件变形大,涂层缺陷多, 零件加工量大。采用45钢激光熔覆Ni60和Ni60涂层,经煤矿 现场使用,使用寿命比火焰喷焊镍基合金涂层提高50%以上, 而且质量好,效益高。 4.3 特点: 熔覆层与基体呈冶金结合;对基材的热影响区小,变形 小;基材的稀释程度低(一般为2% ~8%)。
激光表面强化技术的分类
激光表面强化技术的分类
激光表面强化技术的应用实例以及特点
1.激光表面相变硬化(激光淬火)
1.1 简介: 激光淬火是金属材料在固态下经受激光辐照,表面被迅 速加热到奥氏体化温度以上,并在激光停止辐射后快速自淬火 得到马氏体组织的一种工艺方法。 1.2 实例: 1.2.1邮票打孔器激光淬火:对打孔器孔模周围孔刃进行 激光表面淬火后,硬度由18HRC提高到70HRC 1.2.2汽车转向器壳体:美国通用汽车公司萨基诺 (Saginaw)转向器分厂(1974年)首先将激光淬火应用于工业大 批量生产,在可锻铸铁壳体内表面磨损最严重的部分处理了5 条宽1.5~2.5mln,深0.25~0.35mln的硬化带,硬度64 HRC,使用寿命提高10倍 1.3 特点: 激光淬火试样的耐磨性比淬火+低温回火试样提高50%左 右,比淬火+高温回火试样提高15倍左右。
激光熔凝(淬火)及原理介绍
激光熔凝(淬火)及原理介绍激光熔凝原理激光熔凝也称激光熔化淬火。
激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。
激光熔凝原理与激光非晶化基本上相一致。
但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。
激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的组织有较高的硬度、耐磨性和抗蚀性;其表面熔层深度远大于激光非晶化。
激光熔凝是将金属材料表面在激光束照射下成为溶化状态,同时迅速凝固,产生新的表面层。
根据材料表面组织变化情况,可分为合金化、重溶细化、上釉和表面复合化等。
我公司的轧辊激光熔凝产品是用适当的参数的激光辐照材料表面,使其表面快速熔融、快速冷凝,获得较为细化均质的表面改性技术。
它具有以下优点:表面熔化时一般可添加超硬耐磨金属元素或化学元素,熔凝层与材料基体形成冶金结合。
在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的杂质有较高的硬度、耐磨性和抗腐蚀性。
其熔层薄、热作用区小,对表面粗糙度和工件尺寸影响不大,有时可不再进行后续磨光而直接使用。
提高溶质原子在基体中固溶度极限,晶粒及第二相质点超细化,形成亚稳相可获得无扩散的单一晶体结构甚至非晶态,从而使生成的新型合金获得传统方法得不到的优良性能。
激光(相变)淬火和激光熔凝淬火激光(相变)淬火技术是利用聚焦后的激光束入射到钢铁材料表面,使其温度迅速升高到相变点以上,当激光移开后,由于仍处于低温的内层材料的快速导热作用,使受热表层快速冷却到马氏体相变点以下,进而实现工件的表面相变硬化。
激光淬火原理与感应淬火、火焰淬火技术相同。
但是其技术特点是,所使用的能量密度更高,加热速度更快,不需要淬火介质,工件变形小,加热层深度和加热轨迹易于控制,易于实现自动化,因此可以在很多工业领域中逐步取代感应淬火和化学热处理等传统工艺。
激光固溶工艺
激光固溶工艺
激光固溶工艺是一种利用激光能量将金属材料表面快速熔化,并通过快速冷却的方式实现表面强化的一种工艺方法。
以下是激光固溶工艺的主要步骤:
1.预处理:在进行激光固溶处理前,需要对金属材料表面进行清洗、打磨等预处理,确保表面干净、平整。
2.激光扫描:高能激光束对金属表面进行快速扫描,使金属表面迅速熔化。
熔化深度和范围取决于激光功率、扫描速度以及金属材料的种类和状态。
3.快速冷却:通过快速冷却,使熔化的金属表面迅速凝固,形成一种细密的、均匀的、非晶态的固溶体结构,从而提高金属表面的硬度和耐腐蚀性。
4.后处理:对处理后的表面进行清洗和烘干等后处理,以去除表面的残渣和污染物,确保其表面质量。
这种工艺具有很多优点,如高效率、高精度、环保等。
此外,它还能显著提高金属表面的耐磨性、耐腐蚀性和抗疲劳性能,延长产品的使用寿命。
激光表面热处理技术的特点
激光表面热处理技术的特点激光表面热处理技术是利用聚焦后高能量的激光束由激光加工系统在数控控制下,对金属表面指定部位以106℃/s的加热速度作用于材料表面,使激光作用区温度急剧上升形成奥氏体,或表面熔化形成熔凝状态。
并利用材料自身的自冷作用使其迅速发生相变,形成马氏体淬硬层的过程。
激光表面热处理技术包含激光熔凝和激光淬火。
激光表面热处理的特点:1.激光表面处理后硬度层的深度依照零件材料成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~1.5mm范围之间。
激光熔凝处理时硬度层深度可达1.5-2mm。
2.对表面粗糙度要求高的齿轮、大型轴类零件、模具、刀片、轴承座、阀门进行激光表面处理,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。
3.激光表面热处理通过数控精确控制激光加工轨迹,可以对任意尺寸的工件局部表面处理。
4.由于激光处理后组织位错密度高,淬火层为细针状马氏体,激光加热区与基体的过渡层很窄,不影响处理部位以外的基体组织和性能。
淬火层具有很高硬度的同时又具有一定的韧性,这是其它表面热处理方式很难实现的,得到了耐磨性与韧性的完美结合。
5.由于激光表面处理的加热和冷却速度比较快,热影响区很小,所以激光热处理前后工件的变形几乎可以忽略,适合高精度要求的零件表面处理。
6.激光相变硬化的硬度一般要比常规淬火方法得到的高15%左右。
江苏中科四象激光科技有限公司地处于江苏省丹阳市高新技术园区,是国内第一家专业从事高功率全固态激光器研发、生产和销售的高新技术企业。
公司由中科院半导体研究所和江苏天坤集团有限公司共同注资一亿元人民币于2010年9月组建成立,主要产品有高功率全固态激光器、激光焊接、激光熔覆等成套激光加工设备。
公司致力于争创国际一流品牌,生产一流产品,提供一流服务,产品主要应用于汽车、船舶以及航空航天等领域零部件的焊接和大型风机轴承等重型零部件的表面热处理(激光淬火)以及修复(熔覆)表面强化等工艺中。
镁合金的激光表面处理技术_赵磊
182012,Vol.40,ɴ1收稿日期:2011-11-29第一作者简介:赵磊(1984-),男,山西省太原人,硕士研究生。
镁合金的激光表面处理技术赵磊1,钟辉1,2,龚国辉1(1.成都理工大学材料与化学化工学院,四川成都610059;2.海相沉积深层卤水开发和综合利用四川省重点实验室,四川邛崃611530)摘要:评述了激光表面熔凝、激光表面合金化和激光表面熔覆技术用于镁合金表面处理中提高其耐蚀性和耐磨性的机制,以及这些表面处理技术的研究现状。
并探讨了激光表面处理技术在镁合金应用中存在的问题和该技术的发展前景。
关键词:镁合金;激光表面熔凝;激光表面合金化;激光表面熔敷中图分类号:TG174.4文献标识码:A文章编号:1007-7235(2012)01-0018-04Laser Surface Treatment Technology of magnesium alloyZHAO Lei 1,ZHONG Hui 1,2,GONG Guo-hui 1(1.College of Materials and Chemistry-Chemical Engineering ,Chengdu University of Technology ,Chengdu 610059,China ;2.Sichuan Provincial Key Laboratory ,the Department and Comprehensive Utilization of Marine Sedimentary Brine ,Qionglai 611530,China )Abstract :The situation and technology of laser surface treatment for increasing surfacecorrosion resistence and wear resistence of magnesium alloy have been introduced.Themechanism of corrosion resistence and wear resistence has been investigated.The laser sureface remelting ,laser surface alloying and laser surface cladding of magesium alloy have been analyzed.The problems and the development prospects of laser surface treatment tech-nology for magnesium alloy have been discussed .Key words :magnesium alloy ;laser surface remelting ;laser surface alloying ;laser surfacecladding镁是已知最轻的金属结构材料,密度仅是铝的2/3,钢的1/4。
激光熔覆课件
稀释效应是指由于基体材料的熔化,使得熔覆层的成分和组织发生变化的现象。稀释效应对熔覆层的性能有重要 影响。
熔覆层组织与性能
组织
激光熔覆层的组织主要由熔化的基体材料和熔覆材料组成,其组织结构取决于熔覆工艺 参数和熔覆材料成分。
性能
激光熔覆层的性能主要取决于其成分、组织和热处理状态。常见的性能指标包括硬度、 耐磨性、耐腐蚀性和高温性能等。
激光熔覆技术用于修复受损的模具钢,通过 熔覆高熔点合金粉末,使模具表面获得优良 的耐磨、耐热和耐腐蚀性能,显著提高了模 具的使用寿命。
案例二:激光熔覆制备耐磨涂层
总结词
高耐磨性,延长设备寿命
详细描述
利用激光熔覆技术在设备表面制备耐磨涂层,如合金 钢、不锈钢等材料表面熔覆硬质合金粉末,显著提高 了设备的耐磨性能,延长了设备使用寿命。
熔覆层与基体结合强度
影响因素
影响熔覆层与基体结合强度的因素主要 包括基体表面的处理状态、熔覆材料的 成分和熔覆工艺参数等。
VS
结合强度
结合强度是指熔覆层与基体材料之间的粘 附力,是评价激光熔覆层质量的重要指标 之一。
06
激光熔覆案例分析
案例一:激光熔覆修复模具钢
总结词
修复效果好,提高使用寿命
详细描述
粉末或丝材的粒度和纯度对熔覆层的组织和性能有重要影响,需要 选用合适粒度和纯度的粉末或丝材。
粉末或丝材的流量与稳定性
粉末或丝材的流量和稳定性对熔覆层的厚度和均匀性有重要影响, 需要保证粉末或丝材的稳定供给。
加工头与光路系统
加工头的结构与功能
加工头的冷却与保护
加工头是实现激光熔覆加工的核心部 件,其结构与功能对熔覆层的表面质 量和加工效率有重要影响。
激光表面强化技术
激光是20世纪60年代初发现的一种新光源,它的发现是20世纪科学技术的最大成就之一。
激光技术自问世以来发展非常迅速,70年代开始用于材料表面强化处理,现巳成为高能密束表面强化技术的一种主要手段。
1.激光表面强化的原理当激光束照射到材料表面时,激光被材料吸收变为热能,表层材料受热升温。
由于功率集中在一个很小的表面上,在很短时间(10~~10 S)内即把材料加热到高温(加热速度高达lO5~lO9~C/s),使材料发生固体相变、熔化甚至蒸发。
当激光束被切断或移开后,材料表面冷速很快(冷速高达lO4~C/s),自然冷却就能实现表面强化。
根据激光束与材料表面作用的功率密度,作用时间及作用方式的不同,可实现不同类型的激光表面强化。
2 激光表面强化技术的分类激光表面强化技术的分类见图1、图2。
图2表示出激光表面强化方法在激光功率密度和作用时间坐标系中所处的位置,这些过程在很大程度上取决于功率密度和幅照时间。
3 激光束表面强化的特点(1)激光功率密度大,加热速度快(105~lO9℃/s),加热温度高,基体自然冷却速度高(>lO4oC/s),生产效率高。
(2)表面强化层组织细,硬度高,质量好,表面光洁无氧化,具有高的强度、韧性、耐磨性、耐蚀性。
(3)热影响区小,工件变形小。
(4)可以局部加热,对形状复杂,非对称几何形状的零件及特殊部位均可进行表面强化处理,如盲孔底部、深孔内壁等。
(5)整个过程易实现自动控制。
(6)无污染,劳动条件好。
激光表面强化技术也存在一些问题,如对反射率高的材料要进行防反射处理,不适宜一次进行大面积处理,激光本身是转换效率较低的能源,激光设备价格较高等等。
因此,采用激光表面强化技术时,要选择适当的零件、材料和工艺,充分利用其优点,使之成为高效率、高经济效益的方法。
4 激光表面相变硬化(激光淬火)激光淬火是金属材料在固态下经受激光辐照,表面被迅速加热到奥氏体化温度以上,并在激光停止辐射后快速自淬火得到马氏体组织的一种工艺方法。
激光熔凝(淬火)及原理介绍
激光熔凝(淬火)及原理介绍激光熔凝原理激光熔凝也称激光熔化淬火。
激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。
激光熔凝原理与激光非晶化基本上相一致。
但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。
激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的组织有较高的硬度、耐磨性和抗蚀性;其表面熔层深度远大于激光非晶化。
激光熔凝是将金属材料表面在激光束照射下成为溶化状态,同时迅速凝固,产生新的表面层。
根据材料表面组织变化情况,可分为合金化、重溶细化、上釉和表面复合化等。
我公司的轧辊激光熔凝产品是用适当的参数的激光辐照材料表面,使其表面快速熔融、快速冷凝,获得较为细化均质的表面改性技术。
它具有以下优点:表面熔化时一般可添加超硬耐磨金属元素或化学元素,熔凝层与材料基体形成冶金结合。
在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的杂质有较高的硬度、耐磨性和抗腐蚀性。
其熔层薄、热作用区小,对表面粗糙度和工件尺寸影响不大,有时可不再进行后续磨光而直接使用。
提高溶质原子在基体中固溶度极限,晶粒及第二相质点超细化,形成亚稳相可获得无扩散的单一晶体结构甚至非晶态,从而使生成的新型合金获得传统方法得不到的优良性能。
激光(相变)淬火和激光熔凝淬火激光(相变)淬火技术是利用聚焦后的激光束入射到钢铁材料表面,使其温度迅速升高到相变点以上,当激光移开后,由于仍处于低温的内层材料的快速导热作用,使受热表层快速冷却到马氏体相变点以下,进而实现工件的表面相变硬化。
激光淬火原理与感应淬火、火焰淬火技术相同。
但是其技术特点是,所使用的能量密度更高,加热速度更快,不需要淬火介质,工件变形小,加热层深度和加热轨迹易于控制,易于实现自动化,因此可以在很多工业领域中逐步取代感应淬火和化学热处理等传统工艺。
激光熔覆标准
激光熔覆标准
激光熔覆标准是指在激光熔覆工艺中遵循的一系列规范和要求,旨在确保熔覆
涂层的质量、性能和可靠性。
激光熔覆是一种先进的表面处理技术,通过激光束瞬间加热工件表面,将粉末材料熔化后快速凝固形成涂层,从而提高工件的硬度、耐磨性和耐腐蚀性。
激光熔覆标准主要包括以下几个方面:
首先是涂层材料的选择和要求。
涂层材料的选择应符合工件的材质和使用环境
的要求,要求材料应具有良好的熔覆性能、耐磨性和耐腐蚀性。
此外,涂层材料的成分和性能应符合相关的标准和规范。
其次是激光熔覆工艺参数的设定。
包括激光功率、扫描速度、激光束直径、激
光焦点位置等参数的设定,这些参数的选择直接影响涂层的质量和性能。
标准应规定合理的工艺参数范围,以确保涂层的均匀性和致密性。
另外,激光熔覆涂层的质量检测和评价也是标准的重要内容。
包括涂层的厚度、硬度、结合强度、气孔率、裂纹率等性能的检测和评价方法。
标准应规定检测方法和标准值,确保涂层符合要求。
此外,激光熔覆涂层的后续处理和热处理也是标准的重要内容。
涂层的后续处
理包括去毛刺、抛光、热处理等工艺,以提高涂层的表面光洁度和性能稳定性。
标准应规定后续处理的方法和要求,确保涂层的最终性能符合要求。
总的来说,激光熔覆标准的制定是为了保证涂层的质量和性能,提高涂层的可
靠性和稳定性。
遵循标准的要求,能够有效地规范激光熔覆工艺,提高涂层的制备效率和质量,推动激光熔覆技术的应用和发展。
激光表面合金化表面熔凝熔覆的区别
激光表面合金化表面熔凝熔覆的区别摘要:激光表面合金化、激光熔凝和激光熔覆都是激光熔融处理技术,这三者之间既有区别,又有一定的相同点。
在使用过程中,我们要区分好它们之间的区别,以便我们正确地使用不同的技术来实现工艺要求。
关键词:表面激光合金化熔凝熔覆激光是由辐射受激发射产生的光,激光表面处理技术是采用激光对材料表面进行改性的一种表面处理技术,是高能密度表面处理技术中的一种最主要的手段,它具有传统表面处理技术或其他高能密度表面处理技术不能或不易达到的特点。
激光表面处理技术工艺注意有激光相变硬化、激光熔融及激光表面冲击三类。
激光熔融又有激光表面合金化、激光表面熔凝和激光表面熔覆等用表面合金化的方法代替整体合金以节约金属资源一直是世界范围内材料工作者的重要研究内容之一。
激光表面合金化是一种既改变表层的物理状态,又改变其化学成分的激光表面处理技术。
它是用激光束将金属表面和外加合金元素一起熔化、混合后,迅速凝固在金属表面获得物理状态、组织结构和化学成分不同的新的合金层,从而提高表面层的耐磨性、耐蚀性和高温抗氧化性等。
激光表面合金化的主要优点是:激光能使难以接近的和局部的区域合金化;在快速处理中能有效地利用能量;利用激光的深聚焦,在不规则的零件上可得到均匀的合金化深度;能准确地控制功率密度和控制加热深度,从而减小形变。
就经济而言,可节约大量昂贵的合金元素,减少对稀有元素的使用。
激光合金化组织结构的主要特征与激光熔凝处理有相似之处,合金化区域具有细密的组织,成分近于均匀。
激光表面合金化所采用的工艺形式有预置法、硬质粒子喷射法和气相合金化法。
预置法是用沉积、电镀、离子注入、刷涂、渗层重熔、氧-乙炔和等离子喷涂、黏结剂涂覆等涂敷方法,将所要求的合金粉末事先涂敷在要合金化的材料表面,然后用激光加热熔化,在表面形成新的合金层。
该法在一些铁基表面进行合金化时普遍采用。
硬质粒子喷射法是在工件表面形成激光熔池的同时,从一喷嘴中吹入碳化物或氮化物等细粒,使粒子进入熔池得到合金化层。
激光熔覆技术
激光熔覆的两大主要作用
国外研究现状
• 国外对激光熔覆加工始于上世纪80年代,比我国早十年左右的时间,国外的研究主要集中在 下面三个地区: 1)欧洲(德国、英国、芬兰、法国、瑞典、葡萄牙) 2)北美(美国) 3)亚洲(日本、澳大利亚、新加坡)
国内研究现状
4.在激光熔覆过程中,添加某种金属元素,对特定合金组织形成的影响。 5.扫描速度对熔覆层硬度和厚度的影响。 6.激光熔覆制备金属基复合涂层以提高机械性能。 7.Mg表面熔覆金属材料涂层的机械性能。 8.激光熔覆设备的研究。
激光熔覆设备
激光熔覆工艺
• 激光熔覆按熔覆材料的供给方式大概可分为两大类,即预置式激光熔覆和同步式激光熔覆。 • 预置式激光熔覆是将熔覆材料事先置于基材表面的熔覆部位,然后采用激光束辐照扫描熔化,
熔覆材料以粉、丝、板的形式加入,其中以粉末的形式最为常用。 • 同步式激光熔覆则是将熔覆材料直接送入激光束中,使供料和熔覆同时完成。熔覆材料主要
参考文献
• 杨宁; 杨帆.激光熔覆技术的发展现状及应用 .热加工工艺 .2011-04-25 • 王东生; 田宗军; 沈理达; 黄因慧.激光熔覆技术研究现状及其发展 .应用激光.2012-12-15 • 张坚; 吴文妮; 赵龙志.激光熔覆研究现状及发展趋势 .热加工工艺 .2013-03-25 • 王斌修; 李成彪.激光熔覆技术研究现状及展望 .机床与液压 .2013-04-15 • 贺长林; 陈少克; 周中河; 陈琼雁; 舒俊.激光熔覆金属基碳化钛强化涂层的研究现状及应用前
• 成本的节约 例如:1.如果一个工件需要得到钛的性能,但是用钛合金材料制造整个工件成本又太高,有了 激光熔覆就可以把钢作为工件的材料,然后再工件上熔覆一层钛合金,这样就既节约了成本 又使工件具有钛的性能。 2.在电触头行业,在铜基体上激光熔覆厚度小于0.02mm粉末银涂层代替对人体有害的 电镀工艺,减少对贵重金属的浪费,生产效率大大提高。
激光熔覆_图文讲解
一、激光熔覆的原理激光溶覆是利用高能激光束辐照,通过迅速熔化、扩展和凝固,在基材表面熔覆一层具有特殊物理、化学或力学性能的材料,构成一种新的复合材料,以弥补基体所缺少的高性能。
能充分发挥二者的优势,克服彼此的不足。
可以根据工件的工况要求,熔覆各种(设计)成分的金属或非金属,制备耐热、耐蚀、耐磨、抗氧化、抗疲劳或具有光、电、磁特性的表面覆层。
通过激光熔覆,可在低熔点材料上熔覆一层高熔点的合金,亦可使非相变材料(AI 、Cu 、Ni 等)和非金属材料的表面得到强化。
在工件表面制备覆层以改善表面性能的方法很多,在工业中应用较多的是堆焊、热喷涂和等离子喷焊等,与上述表面强化技术相比,激光熔覆具有下述优点:(1 )熔覆层晶粒细小,结构致密,因而硬度一般较高,耐磨、耐蚀等性能亦更为优异。
(2 )熔覆层稀释率低,由于激光作用时间短,基材的熔化量小,对熔覆层的冲淡率低(一般仅为 5%-8%),因此可在熔覆层较薄的情况下,获得所要求的成分与性能,节约昂贵的覆层材料。
(3 )激光熔覆热影响区小,工件变形小,熔覆成品率高。
(4 )激光熔覆过程易实现自动化生产,覆层质量稳定,如在熔覆过程中熔覆厚度可实现连续调节,这在其他工艺中是难以实现的。
由于激光熔覆的上述优点,它在航空、航天乃至民用产品工业领域中都有较广阔的应用前景,已成为当今材料领域研究和开发的热点。
激光熔覆技术应用过程中的关键问题之一是熔覆层的开裂问题,尤其是大工件的熔覆层,裂缝几乎难以避免,为此,研究者们除了改进设备,探索合适工艺,还在研制适合激光熔覆工艺特点的熔覆用合金粉末和其他熔覆材料。
二、激光熔覆工艺方法激光熔覆工艺方法有两种类型:1、二步法(预置法)该法是在激光熔覆处理前,先将熔覆材料置于工作表面,然后采用激光将其熔化,冷凝后形成熔覆层。
预置熔覆材料的方式包括:(1 )预置涂覆层:通常是应用手工涂敷,最为经济、方便、它是用粘结剂将熔覆用粉末调成糊状置于工件表面,干燥后再进行激光熔覆处理。
激光熔覆技术
激光熔覆技术特点
• 激光熔覆复合层由底层、中间层 以及面层各具特点的梯度功能材 料组成(图 3),底层具有与基 体浸润性好、结合强度高等特点; 中间层具有一定强度和硬度、抗 裂性好等优点;面层具有抗冲刷、 耐磨损和耐腐蚀等性能,使修复 后的设备在安全和使用性能上更 加有保障。
• 激光熔覆技术可以任意仿形修复 和制造零件,熔覆层厚度可以按 需要达到预定的几何尺寸要求。
• 影响变形的一个主要因素为基材自身的应力状态,基材存在内应力 会引起材料的变形。
激光熔覆工艺
• 激光熔覆按熔覆材料的供给方式大概可分为两大类,即预置式激光熔 覆和同步式激光熔覆。
• 预置式激光熔覆是将熔覆材料事先置于基材表面的熔覆部位,然后采 用激光束辐照扫式最为常用。
激光熔覆技术特点
• 激光熔覆层与基体为冶金结合, 结合强度不低于原基体材料的 90%,因此可以用于一些重载条 件下零件的表面强化与修复, 如大型轧辊、大型齿轮、大型 曲轴等零件的表面强化与修复。
• 基体材料在激光加工过程中表 面微熔,微熔层仅0.05~0.1 mm。 基体热影响区极小,一般为 0.1~0.2 mm。 如图 1。
激光熔覆技术特点
• 激光加工过程中基体温升不超过 80℃,激光加工后热变形小。因此 适合强化或者修复一些高精度零件 或者对变形要求严格的零件。
• 激光熔覆技术可控性好,易实现自 动化控制,可以对几何形状复杂的 产品零部件进行修复,如涡轮动力 叶片等。
• 熔覆层与基体均无粗大的铸造组织, 熔覆层及其界面组织致密, 晶体 细小,无孔洞、夹杂、裂纹等缺陷, 金相组织如图 2 所示。
• 对于易变形的材料在工艺上可采用消除基材应力、选择较薄的熔覆层、 预热和后热工艺或者工装夹具固定等方法。
激光熔凝表面强化技术及其数值模拟研究进展
L I U Hu i l i n , L E I Y u x i a , H E J i a j i a n 2 , L I Ha n , L I N G a o y o n g 2
( 1 . H u n a nL i a n y u a n S t e e l E l e c t r o me e h a n i e lE a q u i p m e n t Ma n u f a c t u r e L i m i t e dC o mp a n y , L o u d i 4 1 7 0 0 9 , C h i n a ;
激光熔凝表 面强化技术及其数值模拟研究进展
刘慧林 , 雷玉 霞 , 贺家健 , 李晗 , 林 高用
( 1 . 湖 南涟 钢机 电设备制造有 限公 司 , 湖南 娄底 4 1 7 0 0 9 ; 2 . 中南大学 材料科 学与工程学 院 , 湖南 长沙 4 1 0 0 8 3 )
摘 要 综述 了激光熔凝 表面强化技术 机理及工艺参数影 响的研究现状 , 结合实 际分析 目前该技术存在 的技 术瓶颈 , 并 探究了其数值模拟方面的研究进展 。认为研制高效 的激光表面处理涂层和采用数值模拟 的方式进行激光表面处理技术 的机理研究是该领域 的主要发展方 向。另外 , 笔者认 为可采用多种表面硬化处理方式共同作用 , 使材料在多种 因素交互 作用下发挥最大 的硬化潜能 , 如在激光熔凝 表面处理后加 渗氮 等表 面化学处理方法 。 关键词 激 光熔凝 ; 表面强化 ; 数值模拟
w i t h p r a c t i c e,t h e t e c h n i c a l b o t t l e n e c k a n d t h e n u me ic r a l s i mu l a t i o n o f L S M a r e a l s o a n l y z e d . T h e d e v e l o p me n t o f e f i f c i e n t c o a t i n g s u s e d f o r a b s o r b i n g l a s e r ,a n d t h e a p p l i c a t i o n o f n u me ic r l a s i mu l a t i o n me t h o d i n s t u d y i n g t h e me c h a n i s m o f L S M ,a r e c o n s i d e r e d t o b e t h e ma i n d i r e c t i o n s i n t h e i f e l d . I n a d d i t i o n, a v a i r e t y o f s u r f a c e h a r d e n i n g t r e a t me n t me t h o d s c a n b e a d o p t e d t o
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光淬火技术的应用秦可涵2011年4月【摘要】激光淬火,也称激光热处理、激光硬化,即利用聚焦后的激光束快速加热金属材料表面,使其发生相变,形成马氏体淬硬层的一种高新技术,分为激光相变硬化、激光熔凝硬化和激光冲击硬化三种工艺方法。
【关键词】适合材质,淬火硬度,淬火深度【正文】激光淬火技术及应用激光淬火技术,是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。
激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。
与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹容易控制,易于实现自动化,不需要象感应淬火那样根据不同的零件尺寸设计相应的感应线圈,对大型零件的加工也无须受到渗碳淬火等化学热处理时炉膛尺寸的限制,因此在很多工业领域中正逐步取代感应淬火和化学热处理等传统工艺。
尤其重要的是激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。
激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~2.0mm范围之间。
对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。
激光熔凝淬火技术是利用激光束将基材表面加热到熔化温度以上,由于基材内部导热冷却而使熔化层表面快速冷却并凝固结晶的工艺过程。
获得的熔凝淬火组织非常致密,沿深度方向的组织依次为熔化-凝固层、相变硬化层、热影响区和基材。
激光熔凝层比激光淬火层的硬化深度更深、硬度要高,耐磨性也更好。
该技术的不足之处在于工件表面的粗糙度受到一定程度的破坏,一般需要后续机械加工才能恢复。
为了降低激光熔凝处理后零件表面的粗糙度,减少后续加工量,华中科技大学配制了专门的激光熔凝淬火涂料,可以大幅度降低熔凝层的表面粗糙度。
激光熔凝技术的应用【摘要】:激光表面熔凝处理是一项全新的材料表面改性技术,越来越受到了人们的广泛关注。
由于铸造铝硅合金具有铸造性能好、热膨胀系数小、热稳定性高等特点,它在工业上得到了广泛应用。
共晶ZL108合金是目前国内广泛使用的活塞材料。
【关键词】:激光表面熔凝处理工艺参数微观组织显微硬度疲劳裂纹扩展【正文】过共晶铝硅合金因具有更为优越的耐磨性和高硬度而受到重视,正在成为一种制造发动机活塞的新的理想材料。
本文作者通过对共晶和Al-20%Si过共晶铝硅铸造合金进行激光表面熔凝处理,研究了该表面改性技术对这两种合金的表层组织及疲劳裂纹扩展行为的影响。
主要进行了以下几个方面的研究工作。
选取输出功率、扫描速度和离焦量作为激光表面熔凝处理的工艺参数,通过采用不同的工艺参数对共晶ZL108合金和Al-20%Si过共晶铝硅合金进行激光表面熔凝处理,探讨了三个因素对两种合金显微组织的影响规律。
结果表明,在输出功率和离焦量一定的情况下,对于ZL108合金,当扫描速度不断增大时,熔池的深度先是慢慢增加,而后减小;对于Al-20%Si过共晶合金,随扫描速度的增加,熔池的深度逐渐变小。
保持扫描速度和离焦量不变,熔池的深度随激光功率的增大呈现出增加的趋势。
在相同的输出功率和扫描速度条件下,随着离焦量的增加,熔凝层的深度逐渐减小。
通过对激光表面熔凝处理后合金熔凝层组织的观察分析,发现熔凝层主要由三个具有不同组织特征的区域组成,由表及里分别为:表层熔凝区、过渡区、和基体区。
无论哪种合金,在表层熔凝区内,粗大的块状初晶硅被消除,同时共晶硅和α(Al)也得到明显细化;在过渡区,枝晶的生长方向基本上垂直于熔凝层与基体的交界面,有十分明显的方向性,而且α(Al)枝晶的一次臂很长,二次臂很短。
对于Al-20%Si过共晶合金,部分熔化的初晶硅对α(Al)枝晶的生长具有阻碍作用。
在熔凝过程中,液态金属中存在的过饱和气体使得熔凝层的亚表面产生了少量气孔。
对熔凝层的硬度进行测量分析,结果表明,工艺参数对熔凝层的硬度有一定影响,随扫描速度的增加,样品的硬度逐渐变小。
在扫描速度和离焦量不变时,硬度值随着功率的增加呈现减小的趋势。
在相同的输出功率和扫描速度条件下,随着离焦量的增加,硬度值的提高也呈现减小的趋势。
熔凝层组织的细化和过饱和固溶度的增大等因素导致了硬度的提高。
对比研究了激光表面熔凝处理前后两种合金的疲劳裂纹扩展行为,结果显示,无论应力比R为0.1还是0.5,在相同的名义应力强度因子范围作用下,经激光表面熔凝处理的合金样品,其疲劳裂纹扩展速率明显低于未经处理的样品,而且随着疲劳裂纹扩展速率的加快,二者的差别减小,最终趋于一致。
脆性硅相的细化、快速凝固时造成的应力场和过饱和度增加引起的晶格畸变等因素可能是合金疲劳裂纹扩展性能提高的原因。
对激光表面熔凝处理前后两种合金的断裂韧性进行了测试,结果显示,激光表面熔凝处理前后两种合金的断裂韧性基本上保持不变,激光表面熔凝处理对合金断裂韧性的影响较小。
激光毛化技术的应用【摘要】由于激光毛化技术的特殊性,其对轧辊、冷轧生产、冷轧成品均产生其他毛化方法无法替代的积极的影响。
【关键词】激光毛化【正文】(1)改善深冲性能激光毛化板由于有较低的摩擦系数和既有良好的润滑能力又易于收集磨粒的理想微坑,因而具有优良的冲压性能。
在相同成型条件下,具有相同表面粗糙度的薄板中,激光毛化板有最好的冲压流动性。
分析认为:激光毛化板面微坑沟槽中晶粒的位错密度很高,原滑移线不能开动,促使其他晶粒开始滑移,正是板面微坑(塑性变形区)对滑移的这种阻塞和弥散作用,延缓了微裂纹的萌生和发展,从而使板材的延伸率提高。
对同种材料的喷丸毛化板和激光毛化板的力学性能测试表明,激光毛化板的屈服强度降低了6~7% ,拉伸强度提高了4~7% ,总延伸率提高了6~10% ,激光毛化板更有利于冲压成形。
对SPCC比较(北京吉普车厂测试),激光毛化钢板屈服强度下降2O~30 MPa,抗拉强度提高2lMPa,延伸率提高1O%以上;近年来,新一代的干电池外壳逐渐改用薄板冲压而成。
这种壳生产率高、使用效果好,但冲压难度大,对钢板性能的要求苛刻。
采用激光毛化技术开发出电池壳专用激光毛面带钢,其冲压效果良好。
鞍山钢铁公司08F激光毛化精密带钢(厚0.24mm)在电池生产中,产品深径比达到了4.8。
(2)提高涂装性能和鲜映度由于激光毛化加工的精确造形作用,激光毛化板表面粗糙度均匀、很少波度,更利于均匀附着涂覆材料,因此其漆面光亮度明显高于喷丸毛化板。
激光毛化的轧辊表面可保留较大的平坦光亮部份(最大可达60%),使轧制出的钢板的板面平坦度高,提高了带钢表面的光洁度和涂漆后的鲜映度。
在相同粗糙度和相同涂漆工艺的情况下,激光毛化板的映像清晰度一般要比喷丸毛化板高3~5个百分点。
天津冷轧薄板厂激光毛化板涂镀性能:磷化膜厚差减小5O%,均匀性好,附着力强;电泳底漆膜厚度提高4O%,偏差下降5O%;面漆光亮度DOI值提高2~4个点值。
(3)改善抗摩擦性能用低碳钢板进行的平面拉拔摩擦试验结果表明:无论是在润滑还是在干摩擦条件下,激光毛面钢板的摩擦系数均低于同材质喷丸毛面钢板。
干摩擦时,喷丸毛面板的摩擦系数随拉拔速度提高而增加,激光毛面板在同样条件下的摩擦系数则略呈下降趋势。
在润滑条件下,两种板的摩擦系数均随拉拔速度升高而降低,但激光板的下降趋势更显著。
这些表明激光板的表面形貌有更好的动态润滑能力。
在相同轮廓高度,激光毛面板比喷丸毛面板有更大的承载截面积。
这表明,激光毛面板表面凸包比较墩厚圆滑,冲压时不易被擦伤产生磨粒,即激光毛面板有更(4)新板型的开发。
激光毛化钢板表面粗糙度均匀、排列规则、形貌可以预控、重复性好、粗糙度调节范围大。
可以根据用户需要做特殊设计,开发新品种,生产出各种汽车用板、家电用板、轻工用板、防伪板、印花板、造币板、异面织构板、特制花纹板、激光乌泽板等。
激光合金化技术的应用【摘要】激光表面合金化是利用高能密度的激光束快速加热熔化特性,使基材表层和添加的合金元素熔化混合,从而形成以原基材为基的新的表面合金层。
【关键词】激光加热,金属表面合金化,化学成分、组织和性能【正文】激光表面会自化,是激光束与材料表面互相作用,使材料表面发生物理冶金和化学变化,达到表面强化的方法。
该技术的特点是:一能在材料表面进行各种合金元素的合金化,改善材料表面的性能;二能在零件需要强化部部位进行局部处理。
所以对节能、节材,提高产品零件的使用寿命具有重大的意义。
近一二十年来,许多国家和地区投入了大量的人力与物力进行了此项目的研究。
在基材方面,除研究了多种黑色金属外,还研究了Al合金、Ti合金、Cu合金、Ni基合金等。
添加的合金元素有Ni、Cr、W、Ti、Co、Mn、Mo、B等。
研究重点有如下四个方面。
1)工艺研究。
包括工艺方法、合金元素和工艺参数(激光光斑形状与尺寸、功率、扫描速度)的选配等研究工作。
2)理论分析。
激光表面合金化的传热、传热数学模型计算。
3)合会层的组织与性能研究。
重点侧重于耐磨性循研究。
有的也进行了耐腐蚀及抗氧化的研究。
4)应用研究。
如在排气阀门、阀座、高速钢刀具及汽车活塞等零件上的应用。
2.激光表面合金化的强化机制1.合金层硬度以WC/Co为添加粉末合金化后,主要获得M6C型碳化物,硬度约为1300HV,由于碳化物量很流,呈细网格分布,基体又为马氏体组织,所以表面硬度达1000HV以上。
Cr3C2合金化以后,组织特征为基体上分布分布着网状碳化物,析出的碳化物为M7C3型,这种碳化物硬度高达2100HV,由于合金碳化物在基体中分布较稀。
故表层硬度也只有1000HV左右。
在WC/Co中加入Ni粉以后,合金层中碳化物类型并不发生变化,但基体中出现奥氏体。
Ni的加入量越多,奥氏体量越高。
硬度也随着下降。
激光表面合金化,可以根据合金化成分构控制,得到高硬度的合金层。
2. 激光表商合金化的磨损性能静载滑动磨损时,在单束斑扫描条件下,以WC/Co合金化时的耐磨性比45钢(淬火态),提高17倍以上,比Cr3C2/Ni-Cr提高12倍。
宽带扫描时,用WC/Co合金化后,耐磨性提高28倍。
在冲击磨损条件下,合金化后材料的耐磨性也有很大的提高。
WC/Co合金层的耐磨性相当于45钢(淬火态)的6倍。
在C/Co中加入Ti20%(质量分数,下同)和TiC30%后,耐磨性也分别提高3仿与5倍。
激光表面合金化的强化机制,是相变硬化、固溶强化和碳化物强化的综合强化结果。
WC/Co 合金化后基体为马氏体,M6C型碳化物的硬度为1300HV左右,在磨损时,将首先选择性磨损马氏体基体,碳化物渐渐露出磨面,由于碳化物网的支撑作用,所以合金化展表现出极高的耐磨性。
在Cr3C2/Ni-Cr的合金化层中,基材含有较多奥氏体;硬度较低(600~800HV)。