2019年北京市朝阳区初三数学二模试题及详细解析
2019年北京市中考二模数学试题(附答案)

2019北京市中考二模数学试题学校 姓名 准考证号考 生 须 知1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上。
在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
下面各题均有四个选项,其中只有一个..是符合题意的. 1.据有关部门数据统计,2015年中国新能源汽车销量超过33万辆,创历史 新高.数据“33万”用科学记数法表示为 A .43310⨯ B .43.310⨯ C .53.310⨯ D .60.3310⨯2.下列计算正确的是A .632a a a =⋅B .()222b a ab = C .()532a a =D .42232a a a =+3.如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则 图中表示绝对值最大的数对应的点是 A .点M B .点N C .点P D .点Q 4.若312--x x 在实数范围内有意义,则x 的取值范围是 A .3≠x B .21>x 且3≠x C .2≥x D .21≥x 且3≠x 5.从长度分别是2,3,4的三条线段中随机抽出一条,与长为1,3的两条线段首尾顺次相接,能构成三角形的概率是 A .1 B .32 C .31D .0 6.将代数式2105x x -+配方后,发现它的最小值为A .30-B .20-C .5-D .07.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为A .⎩⎨⎧=+=-y x y x 4738B .⎩⎨⎧=-=+y x y x 4738C .⎩⎨⎧=-=-4738x y x yD .⎩⎨⎧=-=-4738y x y x PMNQ8.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为A .32°B .58°C .64°D .116° 9.如图,为了估计河的宽度,在河的对岸选定一个目标 点A ,在近岸取点B ,C ,D ,E ,使点A ,B ,D 在一 条直线上,且AD ⊥DE ,点A ,C ,E 也在一条直线上 且DE ∥BC .如果BC=24m ,BD=12m ,DE=40m ,则 河的宽度AB 约为 A .20mB .18mC .28mD .30m10.如图1,在等边△ABC 中,点D 是BC 边的中点,点P 为AB 边上的一个动点,设AP =x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图 2所示,则等边△ABC 的面积为 A .4 B . C .12 D .二、填空题(本题共18分,每小题3分) 11.分解因式:2484x x -+= .12.某班学生分组做抛掷瓶盖实验,各组实验结果如下表:根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为 . (精确到0.01)13.写出一个函数,满足当x>0时,y 随x 的增大而减小且图象过(1,3),则这个函数的表达式为 .14.甲、乙两名队员在5次射击测试中,成绩如下表所示:若需要你根据两名队员的5次成绩,选择一名队员参加比赛,你会选择队员 ,选择的理由是 .ECDB A PCDBA图1 图2第14题图 第15题图15.如图为44⨯的正方形网格,图中的线段均为格点线段(线段的端点为格点),则12345∠+∠+∠+∠+∠的度数为 .16.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y (mg)与时间x (分钟)的函数关系如图所示.已知,药物燃 烧阶段,y 与x 成正比例,燃完后y 与x 成 反比例.现测得药物10分钟燃完,此时教 室内每立方米空气含药量为8mg .当每立方 米空气中含药量低于1.6mg 时,对人体才能 无毒害作用.那么从消毒开始,经过 分钟后教室内的空气才能达到安全要求.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:131833tan 303-⎛⎫--+-︒ ⎪⎝⎭.18.已知0142=++x x ,求代数式()()71212++--x x x 的值.19.解方程:221111x x x x --=--. 20.如图,在Rt △ABC 中,∠ABC=90°,点D 在边AB 上,且DB =BC ,过点D 作EF ⊥AC于E ,交CB 的延长线于点F .求证:AB=BF .21.在平面直角坐标系xOy 中,一次函数12y x b =+的图象与y 轴交于点A ,与反比例函数8y x=的图象交于点P (2,m ). (1)求m 与b 的值; 成绩/环 五次射击测试成绩DEFCB A 54321x /8O10y /mg(2)取OP 的中点B ,若△MPO 与△AOP 关于点B 中心对称,求点M 的坐标.22.为了促进旅游业的发展,某市新建一座景观桥.桥的拱肋ADB 可视为抛物线的一部分,桥面AB 可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD 为16米(不考虑灯杆和拱肋的粗细),求与CD 的距离为5米的景观灯杆MN 的高度.23.如图,CD 垂直平分AB 于点D ,连接CA ,CB ,将BC 沿BA 的方向平移,得到线段DE ,交AC 于点O ,连接EA ,EC . (1)求证:四边形ADCE 是矩形; (2)若CD =1,AD =2,求sin ∠COD 的值.24.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012 2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形 统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布 如右图所示,请你补全扇形统计图,并估年份年增长率/%年份市场规模/亿元 NDOECDBA学习用户分布图截至2015年底互联网36-55岁9%其他7-17岁18-35岁56%7-17岁 %GHEFB C DA计7-17岁年龄段有 亿网民通过互联 网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).25.如图,在Rt △ACB 中,∠C =90°,D 是AB 上一点,以BD 为直径的⊙O 切AC于点E ,交BC 于点F ,连接DF . (1)求证:DF=2CE ; (2)若BC =3,sin B =54,求线段BF 的长.26.阅读下面材料:小骏遇到这样一个问题:画一个和已知矩形ABCD 面积相等的正方形.小骏发现:延长AD 到E ,使得DE =CD , 以AE 为直径作半圆,过点D 作AE 的垂线, 交半圆于点F ,以DF 为边作正方形DFGH , 则正方形DFGH 即为所求.请回答:AD ,CD 和DF 的数量关系为 . 参考小骏思考问题的方法,解决问题:画一个和已知□ABCD 面积相等的正方形,并写出画图的简要步骤.FOE DC BA B CDA27.已知关于x 的方程()021222=-+-+m m x m x .(1) 求证:无论m 取何值时,方程总有两个不相等的实数根;(2) 抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3) 在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值.28.如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形;②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.29.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是90°.E GD C BAMAB C DGE yDCB A12345(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为90°,则满足条件的点为 ;(2)将函数2ax y =)31(≤≤a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的坐标角度︒≤≤︒9060m .直接写出满足条件的r 的取值范围.答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共30分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案CBDDCBAABD二、填空题(本题共18分,每小题3分) 11.()241x -;12.0.53;13.如3y x=,答案不唯一; 14.选择队员甲,理由:甲乙成绩的平均数相同,甲的成绩比乙的成绩稳定; 15.225︒;16.50.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式=323333-+-⨯………………………………………………4分 =523-.…………………………………………………………5分18.解:原式=2221227x x x x -+--+ ………………………………………2分 =248x x --+.……………………………………………………3分2410x x ++=∴241x x +=- .……………………………………………………… 4分∴原式=()248x x -++189.=+= ………………………………………………………5分 19. 解:去分母得:2(1)(21)1x x x x +--=-…………………………………1分 解得:2x =………………………………………………………………4分 经检验,2x =是原方程的解……………………………………………5分 ∴原方程的解为2x =20.证明:∵EF ⊥AC ,∴∠A +∠ADE =90°.∵∠ABC =90°,∴∠F +∠FDB =90°,∠DBF =90°∴∠A =∠F ………………………………1分在△ABC 和△FBD 中A FABC FBD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩D E A∴△ABC ≌△FBD ………………………………4分∴AB =BF .………………………………………5分 21.解:(1)∵12y x b =+与8y x =交于点P (2,m ),∴4m =,3b =.………………………………………………………2分(2)法一:由中心对称可知,四边形OA PM 是平行四边形 ∴OM ∥AP 且OM =AP∵一次函数12y x b =+的图象与y 轴交于点A (0,3)(2,4),(0,0)A P O ∴∴由平移规律可得点A 关于点B 对称点M 的坐标为(2,1).………5分 法二:∵一次函数12y x b =+的图象与y 轴交于点A ∴(0,3)A . ∵B 为OP 的中点∴(1,2)B .∴点A 关于点B 对称点M 的坐标为(2,1).………………5分22.解:如图建立坐标系………………………………………………………………1分设抛物线表达式为216y ax =+ …………………………………………………2分 由题意可知,B 的坐标为(20,0) ∴400160a += ∴125a =-∴211625y x =-+…………………………………………………………………4分 ∴当5x =时,15y =答:与CD 距离为5米的景观灯杆MN 的高度为15米.………………………5分23.(1)证明:由已知得BD //CE ,BD =CE . ∵CD 垂直平分AB ,∴AD =BD ,∠CDA =90°.∴AD //CE ,AD =CE .∴四边形ADCE 是平行四边形.…………………………………1分 ∴平行四边形ADCE 是矩形. …………………………………2分(2) 解:过D 作DF ⊥AC 于F ,xyNM DCB AOEC D BA在Rt △ADC 中,∠CDA =90°,∵CD =1,AD =2, 由勾股定理可得:AC =5.∵O 为AC 中点,∴OD =52. …………………………………3分 ∵AC DF AD DC ⋅=⋅,∴DF =255. ………………………4分 在Rt △ODF 中,∠OFD =90°,∴sin ∠COD =DF OD =45………5分 24.(1)1610,并补全图形; ……………………………………………………2分 (2)1.6; ………………………………………………………………………4分 (3)略.…………………………………………………………………………5分 25.(1)证明:连接OE 交DF 于G ,∵AC 切⊙O 于E ,∴∠CEO =90°. 又∵BD 为⊙O 的直径,∴∠DFC =∠DFB =90°.∵∠C =90°,∴四边形CEGF 为矩形.∴CE =GF ,∠EGF =90°…………………1分 ∴DF =2CE .………………………………2分(2)解:在Rt △ABC 中,∠C =90°,∵BC =3,4sin 5B =,∴AB =5.…………………………………3分设OE =x ,∵OE //BC ,∴△AOE ∽△ABC . ∴OE AO BC AB =,∴535x x -=,∴158x =.………………………4分 ∴BD =154. 在Rt △BDF 中,∠DFB =90°,∴BF =94…………………………5分 26.解:2DF AD CD =⋅………………………………………………………………1分解决问题:法一:过点A 作AM ⊥BC 于点M ,延长AD 到E ,使得DE =AM ,以AE 为直径作半圆,过点 D 作AE 垂线,交半圆于点F ,以DF 为边 作正方形DFGH ,正方形DFGH 即为所求.……………………………………………………………………………………5分GFO ED C A GHEF CDA法二:如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥BC 交BC 延长线于点N ,将平行四边形转化为等面积矩形,后同小骏的画法. ……………………………………………………………………………………5分 说明:画图2分,步骤2分.27.解:(1)∵1=a ,()12-=m b ,m m c 22-=∴()()0424144222>=---=-=∆m m m ac b ∴无论m 取任何实数时,方程总有两个不相等的实数根. ……2分(2)令,则()021222=-+-+m m x m x ()()02=-++m x m x∴m x -=或2+-=m x∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3) 0=b 或3-=b . …………………………………………………….. 7分28.(1)①补全图形,如图所示.…………………………………..1分②法一:证明:过F 作FH ⊥BG 于H ,连接EH ……..2分F EG D C B A DAG H E F D A由已知得AE ⊥EF ,AE =EF .在正方形ABCD 中,∵∠B =∠AEF =∠EHF =90°,∴∠AEB +∠FEC =90°∠AEB +∠BAE =90°∴∠BAE =∠HEF∴△ABE ≌△EHF .…………………………………………………..3分∴BE =FH ,AB =EH ,∵E 为BC 中点,∴BE =CE =CH =FH .∴∠DCF =∠HCF=45°. …………………………………………..4分法二证明:取线段AB 的中点H ,连接EH . …………………………………..2分由已知得AE ⊥EF ,AE =EF .∴∠AEB +∠FEC =90°.在正方形ABCD 中,∵∠B =90°,∴∠AEB +∠BAE =90°.∴∠FEC =∠BAE . ∵AB =BC ,E ,H 分别为AB ,BC 中点,∴AH=EC ,∴△ECF ≌△AHE .…………………………………………………..3分∴∠ECF =∠AHE =135°,∴∠DCF =∠ECF ∠ECD =45°.∴∠DCF =∠HCF .…………………………………………………..4分(2)证明:在BA 延长线上取一点H ,使BH =BE ,连接EH . …………..5分在正方形ABCD 中,∵AB =BC ,∴HA =CE . ∵∠B =90°,∴∠H =45°. ∵CM 平分∠DCG ,∠DCG =∠BCD =90°,∴∠MCE =∠H=45°.∵AD //BG ,∴∠DAE =∠AEC .∵∠AEM =∠HAD =90°, ∴∠HAE =∠CEM .∴△HAE ≌△CEM .………………………………………………. 6分∴AE =EM . ………………………………………………………. 7分H F E G D CB A HMA B C D GE9. (1)满足条件的点为)0,1(-D ,)2,2(-E ……………………………… 3分(2)当1=a 时,角的两边分别过点)(1,1-,)(1,1,此时坐标角度︒=90m ; 当3a =时,角的两边分别过点)(1,33-,)(1,33,此时坐标角度︒=60m ,所以︒≤≤︒9060m ;……………………………………………………… 6分(3)3233≤≤-r .…………………………………………………….8分。
北京市北京市朝阳区2019年中考数学二模考试试卷及参考答案

人工
8.6
10
1.868
得出结论
(1) 如果生产出一个产品,需要完成同样的操作200次,估计机器人生产这个产品达到操作技能优秀的次数为;
(2) 请结合数据分析机器人和人工在操作技能方面各自的优势:.
26. 在平面直角坐标系xOy中,抛物线y=ax2﹣2a2x(a≠0)的对称轴与x轴交于点P.
(1) 求点P的坐标(用含a的代数式表示);
的经验,可以推断出小明输入的a,b的值满足( )
A . a>0,b>0 B . a>0,b<0 C . a<0,b>0 D . a<0,b<0
二 、 填 空 题 ( 共 8小 题 )
9. 函数y=
中,自变量x的取值范围是________.
10. 颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是 正八边形,如下图所示,则∠1=________°.
(2) 记函数
(﹣1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a
的取值范围.
27. ∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心 ,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).
小超根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小超的探究过程,请补充完整:
(1) 按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;
x/cm
0
1
2
3
4
5
6
y/cm
4.2
2.9
2.6
2.0
【含五套中考卷】北京朝阳区名校2019年中考数学全真模拟试卷(二)及答案解析

北京朝阳区名校2019年中考数学全真模拟试卷(二)及答案解析注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
1234567892018年广西南宁市中考数学全真模拟试卷(二)一.选择题(共12小题,满分36分,每小题3分)1.(3分)已知△ABC的三个内角为A,B,C且α=A+B,β=C+A,γ=C+B,则α,β,γ中,锐角的个数最多为()A.1 B.2 C.3 D.02.(3分)如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①② B.①③ C.②③ D.③3.(3分)我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×1064.(3分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③ C.②③ D.①②5.(3分)一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)为了分析某班在四月调考中的数学成绩,对该班所有学生的成绩分数换算成等级统计结果如图所示,下列说法:①该班B等及B等以上占全班60%;②D等有4人,没有得满分的(按120分制);③成绩分数(按120分制)的中位数在第三组;④成绩分数(按120分制)的众数在第三组,其中正确的是()A.①② B.③④ C.①③ D.①③④7.(3分)如图,给出了过直线AB外一点P,作已知直线AB的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行[来源:学科网ZXXK]C.同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行8.(3分)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为P0,P1,P2,P3,则P0,P1,P2,P3中最大的是()A.P0B.P1C.P2D.P39.(3分)已知圆O的半径是3,A,B,C 三点在圆O上,∠ACB=60°,则弧AB的长是()A.2πB.πC.π D.π10.(3分)为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.11.(3分)上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处(如图).从A、B两处分别测得小岛M在北偏东45°和北偏东15°方向,那么在B处船与小岛M的距离为()A.20海里B.海里C.海里D.海里12.(3分)已知函数y=x2﹣2mx+2016(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=﹣+m,x2=+m,x3=m﹣1,则y1、y2、y3的大小关系是()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y3<y1二.填空题(共6小题,满分18分,每小题3分)[来源:]13.(3分)|+12|= ;|0|= ;|﹣2.1|= .[来源:]14.(3分)某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有粒.15.(3分)已知方程组有正整数解,则整数m的值为.16.(3分)如图,在菱形纸片ABCD中,AB=3,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则tan∠EFG的值为.17.(3分)函数y=的图象不经过第象限.18.(3分)在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为.三.解答题(共8小题,满分66分)19.(6分)计算:2cos30°﹣2sin45°+3tan60°+|1﹣|.20.(6分)已知:ax=by=cz=1,求的值.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.22.(8分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.23.(8分)为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛.某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;(2)补全条形统计图;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.24.(10分)手机下载一个APP,缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行…最近的网红非“共享单车”莫属.共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、大卸八块等毁坏单车的行为也层出不穷.某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率达到20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为引起了一场国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.25.(10分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.26.(10分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.2018年广西南宁市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:∵α,β,γ的度数不能确定,∴α,β,γ可能都是锐角也可能有两个是锐角或一个是锐角,①假设α、β、γ三个角都是锐角,即α<90°,β<90°,γ<90°,∵α=A+B,β=C+A,γ=C+B,∴A+B<90°,B+C<90°,C+A<90°.∴2(A+B+C)<270°,∴A+B+C<135°与A+B+C=180°矛盾.∴α、β、γ不可能都是锐角.②假设α、β、γ中有两个锐角,不妨设α、β是锐角,那么有A+B<90°,C+A<90°,∴A+(A+B+C)<180°,∴A+180°<180°,∵A<0°不可能,∴α、β、γ中至多只有一个锐角,如A=20°,B=30°,C=130°,α=50°,故选:A.2.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.3.【解答】解:423公里=423 000米=4.23×105米.故选:C.4.【解答】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a﹣b)2=(b﹣a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式,ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是③不是故选:D.5.【解答】解:,由①得:x≤2,由②得:x>﹣1,则不等式组的解集为﹣1<x≤2,表示在数轴上,如图所示:故选: C.6.【解答】解:①,正确;②D等有4人,但看不出其具体分数,错误;③该班共60人,在D等、C等的一共24人,所以中位数在第三组,正确;④虽然第三组的人数多,但成绩分数不确定,所以众数不确定.故正确的有①③.故选:C.7.【解答】解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.故选:A.8.【解答】解:根据题意画出树状图如下:一共有36种情况,两个数字之和除以4:和为4、8、12时余数是0,共有9种情况,和是5、9时余数是1,共有8种情况,和是2、6、10时余数是2,共有9种情况,和是3、7、11时余数是3,共有10种情况,所以,余数为0的有9个,P0==;余数为1的有8个,P1==;余数为2的有9个,P2==;余数为3的有10个,P3==.可见,>>;∴P1<P0=P2<P3.故选:D.9.【解答】解:如图,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∴l===2π.故选:A.10.【解答】解:原计划植树用的时间应该表示为,而实际用的时间为.那么方程可表示为.故选:A.11.【解答】解:如图,过点B作BN⊥AM于点N.由题意得,AB=40×=20海里,∠ABM=105°.作BN⊥AM于点N.在直角三角形ABN中,BN=AB•sin45°=10.在直角△BNM中,∠MBN=60°,则∠M=30°,所以BM=2BN=20(海里).故选:B.12.【解答】解:y=x2﹣2mx+2016=(x﹣m)2﹣m2+2016,∴抛物线开口向上,对称轴为:直线x=m,当x>m时,y随x的增大而增大,由对称性得:x1=﹣+m与x=m+的y值相等,x3=m﹣1与x=m+1的y值相等,且,∴+m<m+1<m+,∴y2<y3<y1;故选:D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:各数的绝对值分别为12;0;2.1,故答案为:12;0;2.114.【解答】解:50﹣50=450(粒).15.【解答】解:方程组,∴x+my﹣x﹣3=11﹣2y,解得:(m+2)y=14,y=,∵方程组有正整数解,∴m+2>0,m>﹣2,又x=,故22﹣3m>0,解得:m<,故﹣2<m<,整数m只能取﹣1,0,1,2,3,4,5,6,7.又x,y均为正整数,∴只有m=﹣1或0或5符合题意.故答案为:﹣1或0或5.16.【解答】解:如图,连接AE交GF于O,连接BE,BD,则△BCD为等边三角形,∵E是CD的中点,∴BE⊥CD,∴∠EBF=∠BEC=90°,Rt△BCE中,CE=cos60°×3=1.5,BE=sin60°×3=,∴Rt△ABE中,AE=,由折叠可得,AE⊥GF,EO=AE=,设AF=x=EF,则BF=3﹣x,∵Rt△BEF中,BF2+BE2=EF2,∴(3﹣x)2+()2=x2,解得x=,即EF=,∴Rt△EOF中,OF==,∴tan∠EFG==.故答案为:.17.【解答】解:当x>0时,x+3>0,则y>0,故不可能经过第四象限.故答案为:四.18.【解答】解:由题可得,360°÷45°=8,∴A1,A9,A17,…,A2017都在第一象限,又∵OA1=2OA=2,∠A1OA=45°,∴A1的纵坐标为=,同理可得,A9的纵坐标为,∴A2017的纵坐标为=22016•.故答案为:22016•.三.解答题(共8小题,满分66分)19.【解答】解:原式=2×﹣2×+3+﹣1,=﹣+3+﹣1,=4﹣1.20.【解答】解:根据题意可得x=,y=,z=,∴+=+=+=1,同理可得: +=1; +=1,∴=3.21.【解答】解:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.22.【解答】证明:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,[来源:学。
3.答案-朝阳区2019年初三数学二模

北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2019.6一、选择题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:原式 242=⨯+-………………………………………………………………4分 4=.………………………………………………………………………………………5分18.解:原不等式组为2(1)41, 2. 2x x x x -≤+⎧⎪⎨+>⎪⎩①②解不等式①得,23-≥x . ……………………………………………………………………2分 解不等式②得,2<x . ……………………………………………………………………3分 ∴原不等式组的解集为223<≤-x .…………………………………………………………4分 ∴原不等式组的所有整数解为-1,0,1.……………………………………………………5分19.(1)图略. …………………………………………………………………………………………2分 (2)BP ,BA ,BQ ,直径所对的圆周角是直角. …………………………………………………5分20.解:(1)∵关于x 的方程220mx mx m n -++=有两个实数根,∴0≠m .…………………………………………………………………………………1分2(2)4()m m m n ∆=--+40.mn =-≥…………………………………………………………………………2分∴0≤mn .∴实数m ,n 需满足的条件为0≤mn 且0≠m .………………………………………3分(2)答案不唯一,如:1=m ,0=n . ……………………………………………………4分此时方程为2210x x -+=.解得121==x x . ………………………………………………………………………5分21.(1)证明:∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB . …………………………………………………………………1分 ∵BE =AB , ∴BE =CD .∴四边形BECD 是平行四边形. ∵∠ABD =90°, ∴∠DBE =90°.∴□BECD 是矩形. ……………………………………………………………………2分(2)解:如图,取BE 中点G ,连接FG .由(1)可知,FB =FC =FE , ∴FG =21CE =1,FG ⊥BE . ……………………………………………………………3分∵在□ABCD 中,AD ∥BC , ∴∠CBE =∠DAB =30°. ∴BG =3. ∴AB =BE =32.∴AG =33.……………………………………………………………………………4分∴在Rt △AGF 中,由勾股定理可求AF = ……………………………………5分22.(1)证明:∵AD 是⊙O 的切线,∴∠DAB =90°. ………………………………………………………………………1分 ∴∠CAD +∠CAB =90°. ∵AB 是⊙O 的直径, ∴∠ACB =90°.∴∠CAB +∠B =90°. ∴∠CAD =∠B . ∵CE =CD , ∴AE =AD .∴∠CAE =∠CAD =∠B . ∵∠B =∠F , ∴∠CAE =∠F .∴AC =CF .………………………………………………………………………………2分(2)解:由(1)可知,sin ∠CAE =sin ∠CAD =sin B=35. ∵AB =4,∴在Rt △ABD 中,AD =3,BD =5.………………………………………………………3分 ∴在Rt △ACD 中,CD =95. ∴DE =185,BE =75. ……………………………………………………………………4分 ∵∠CEF =∠AEB ,∠B =∠F ,∴CEF AEB ∆∆.∴35EF CE EB AE ==. ∴EF =2521. ………………………………………………………………………………5分23.解:(1)∵反比例函数ky x=的图象经过点P (3,4),∴12=k .…………………………………………………………………………………2分 (2)过点P 作PE ⊥x 轴于点E .∵点P (3,4), ∴OE =3,PE =4.∴在Rt △EOP 中,由勾股定理可求OP =5.……………………………………………4分 (3)43m >或304m <<. ……………………………………………………………………6分24.解:(1)2分(2)…………………………4分(3)1.4. ……………………………………………………………………………………………6分25.解:补全表格如下:机器人……………3分(1)110;………………………………………………………………………………………4分(2)机器人的样本数据的平均数和中位数都明显高于人工,方差较小,可以推断其优势在于操作技能水平较高的同时还能保持稳定.人工的样本数据的众数为10,机器人的样本数据的最大值为9.6,可以推断人工的优势在于能完成一些最高水平的操作.……6分26.解:(1)抛物线xaaxy222-=的对称轴是直线aaax=--=222,∴点P的坐标是(a,0).…………………………………………………………………2分(2)由题意可知图形M为线段AB,A(-1,3),B(3,0).当抛物线经过点A时,解得32a=-或a=1;当抛物线经过点B时,解得32a=.……………………………………………………3分如图1,当32a=-时,抛物线与图形M恰有一个公共点.如图2,当a=1时,抛物线与图形M恰有两个公共点.如图3,当32a=时,抛物线与图形M恰有两个公共点.结合函数的图象可知,当32a≤-或01a<<或32a>时,抛物线与图形M恰有一个公共点.………………………………………………………………………………………6分图1 图2 图3图 127.解:(1)补全图形,如图1所示.………………………………………2分(2)如图2,作PE ⊥OM 交ON 于点E ,作EF ⊥ON 交OM 于点F .由题意可知,当线段AB 在射线ON 上从左向右平移时,线段CD 在射线EF 上从下向上平移,且OA =EC . ……………………………………………………………………3分 如图1,当点D 与点F 重合时,OA 取得最小值,为1. ……………………………4分 如图3,当点C 与点F 重合时,OA 取得最大值,为2. 综上所述,OA 的取值范围是1≤OA ≤2.………………………………………………5分(3)OPOQ7分 28.解:(1)A 1,A 3;……………………………………………………………………………………2分(2)如图,以(0,12-)为圆心,1为半径作圆,以(0,12为半径作圆,两圆在直线MN 上方的部分与直线12y x =+分别交于点E ,F .可求E ,F 两点坐标分别为(0,12)和(1,32). 只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点.∴点B 的横坐标t 的取值范围是01t ≤≤.……………………………………………5分 (3)1522b ≤≤或32b -<≤. …………………………………………………………7分图2 图3。
2019年北京朝阳区初三二模数学试卷(详解)

2019年北京朝阳区初三⼆模数学试卷(详解)⼀、选择题(本⼤题共8⼩题,每题2分,共16分)1.A.B.C. D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】下列轴对称图形中只有⼀条对称轴的是( ).A只有⼀条对称轴,故符合题意;有两条对称轴,故不符合题意;有三条对称轴,故不符合题意;有⽆数条对称轴,故不符合题意;故选 A .2. A.B.C.D.【答案】【解析】年⽉⽇,第⼆届“⼀带⼀路”国际合作⾼峰论坛在北京举⾏,⾃“⼀带⼀路”倡议提出以来,五年之间,北京市对外贸易总额累计约亿美元,年均增速.将⽤科学记数法表示应为( ).C ⽤科学记数法表示应为.3.右图是某个⼏何体的展开图,该⼏何体是( ).A.圆锥B.圆柱C.三棱柱D.四棱柱【答案】【解析】D由展开图可知,该⼏何体为四棱柱.4. A.B. C. D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】实数,,,在数轴上的对应点的位置如图所示,则正确的结论是( ).D∵,,∴.故错误;∵,,∴.故错误;∵,,∴,∴.故错误;∵,,,,∴.故正确.故选 D .5. A.B. C. D.【答案】【解析】如图,直线,,于点,若,则的度数为( ).B ∵直线,,∴,∵,∴.2020/5/9教研云资源页6.A.B.C.D.【答案】【解析】如果,那么代数式的值为( ).B ∵,∴,原式.故选.7. A.B.C.D.【答案】A 选项:B 选项:C 选项:【解析】某公司⽣产的⼀种产品按照质量由⾼到低分为,,,四级,为了增加产量、提⾼质量,该公司改进了⼀次⽣产⼯艺,使得⽣产总量增加了⼀倍.为了解新⽣产⼯艺的效果,对改进⽣产⼯艺前、后的四级产品的占⽐情况进⾏了统计,绘制了如下扇形图:级级级改进生产工艺前级级级级级改进生产工艺后根据以上信息,下列推断合理的是( ).改进⽣产⼯艺后,级产品的数量没有变化改进⽣产⼯艺后,级产品的数量增加了不到⼀倍改进⽣产⼯艺后,级产品的数量减少改进⽣产⼯艺后,级产品的数量减少C改进⼯艺前后,级产品的占⽐不变,⽣产总量增加了⼀倍,所以产品的数量也增加了⼀倍,故推断不合理;改进⼯艺前后,级产品占⽐增⼤,⽣产总量增加⼀倍,所以级产品数量增加⼤于⼀倍,故推断不合理;2020/5/9教研云资源页D 选项:促进⼯艺前后,级产品占⽐减少⼤于⼀倍,⽣产总增加⼀倍,所以级产品数量减少,故推断合理;改进⼯艺前后,级产品占⽐减少不到⼀倍,⽣产总量增加⼀倍,所以级产品数量增加,故推断不合理.故选 C .8. A.,B.,C.,D.,【答案】【解析】⼩明使⽤图形计算器探究函数 的图象,他输⼊了⼀组,的值,得到了下⾯的函数图象,由学习函数的经验,可以推断出⼩明输⼊的,的值满⾜( ).x–4–3–2–112345y –2–1123456OA 当时,,∵,∴,由图象可知,时,图象分段,此时在轴正半轴,∴.⼆、填空题(本⼤题共8⼩题,每题2分,共16分)9.【答案】【解析】在函数中,⾃变量的取值范围是 .,则.10.颐和园坐落在北京⻄郊,是第⼀批全国重点⽂物保护单位之⼀,⼩万去颐和园参加实践活动时发现有的窗户造型是正⼋边形,如下图所示,则.2020/5/9教研云资源页【答案】【解析】多边形内⻆和为,则正⼋边形每个外⻆度数为.11.【答案】【解析】点,在⼆次函数的图象上,若,,则.(填“”,“”或“”)∵,,∴⼆次函数图象的对称轴为,∵⼆次函数图象开⼝向上,如图综合图象可知.12.【答案】【解析】⽔果在物流运输过程中会产⽣⼀定的损耗,下表统计了某种⽔果发货时的重量和收货时的重量.发货时重量()收货时重量()若⼀家⽔果商店以元的价格购买了该种⽔果,不考虑其他因素,要想获得约元的利润,销售此批⽔果时定价应为 元.由表格中数据可知,收货率的平均数,∴该种⽔果,运输后,收货的重量约为(),2020/5/9教研云资源页设该批⽔果定价为了,则,解得,故定价应为元.故答案为:.13.【答案】【解析】如图,是⊙的直径,是⊙上⼀点,将沿直线翻折,若翻折后的图形恰好经过点,则.作,垂⾜为,与圆交于点,由折叠性质可知,∴,⼜∵,∴,⼜∵,∴.14.如图,在正⽅形中,对⻆线,相交于点,是的中点,连接并延⻓交于点,若的⾯积为,则的⾯积为 .2020/5/9教研云资源页【答案】【解析】∵四边形为正⽅形,∴为中点,∵为中点,∴,∵,∴,∴,∴.15.【答案】【解析】世界上⼤部分国家都使⽤摄⽒温度(),但美、英等国的天⽓预报仍然使⽤华⽒温度(),两种计量之间有如下的对应表:摄⽒温度()华⽒温度()由上表可以推断出,华⽒度对应的摄⽒温度是 ,若某⼀温度时华⽒温度的值与对应的摄⽒温度的值相等,则此温度为 .;设华⽒温度为,摄⽒温度为,设华⽒温度和摄⽒温度对应的函数关系式为,将,,,,代⼊解得:,,∴,当时,,则华⽒温度对应的摄⽒温度为.当时,则有,2020/5/9教研云资源页解得,则此温度为.16.【答案】【解析】某公园⻔票的收费标准如下:⻔票类别成⼈票⼉童票团体票(限张及以上)价格(元⼈)有两个家庭分别去该公园游玩,每个家庭都有名成员,且他们都选择了最省钱的⽅案购买⻔票,结果⼀家⽐另⼀家少花元,则花费较少的⼀家花了 元.①当有名⼤⼈时,最省钱的⽅案是(元),②当有名⼤⼈时,名⼉童时,最省钱的⽅案是(元),③当有名⼤⼈时,名⼉童时,最省钱的⽅案是(元),④当有名⼤⼈时,名⼉童时,最省钱的⽅案是(元),⑤当有名⼤⼈时,名⼉童时,最省钱的⽅案是(元),⑥当有名⼉童时,最省钱的⽅案是(元),⼜∵⼀家⽐另⼀家少花元,∴花费较少的⼀家符合第⑤种情况,即花费元.故答案为:.三、解答题(本⼤题共12⼩题,共68分)17.【答案】【解析】计算:..原式.18.【答案】【解析】解不等式组,并写出它的所有整数解..所有整数解为,,.2020/5/9教研云资源页原不等式组为,解不等式①得,.解不等式②得,.∴原不等式组的解集为.∴原不等式组的所有整数解为,,.①②19.(1)(2)(1)(2)【答案】(1)【解析】下⾯是⼩东设计的“过直线上⼀点作这条直线的垂线”的尺规作图过程.已知:直线及直线上⼀点.求作:直线,使得.作法:如图,①在直线上取⼀点(不与点重合),分别以点,为圆⼼,⻓为半径画弧,两弧在直线的上⽅相交于点;②作射线,以点为圆⼼,⻓为半径画弧,交的延⻓线于点;③作直线.所以直线就是所求作的直线.根据⼩东设计的尺规作图过程.使⽤直尺和圆规,补全图形(保留作图痕迹).完成下⾯的证明.证明:连接,∵ ,∴点,,在以点为圆⼼,⻓为半径的圆上,∴( ).(填写推理的依据)即.画图⻅解析.;直径所对的圆周⻆是直⻆.2020/5/9教研云资源页(2)连接,∵,∴点、、在以为圆⼼,⻓为半径的圆上,∴(直径所对的圆周⻆是直⻆),∴.20.(1)(2)(1)(2)【答案】(1)(2)【解析】关于的⽅程有两个实数根.求实数,需满⾜的条件.写出⼀组满⾜条件的,的值,并求此时⽅程的根.且.,,.∵关于的⽅程有两个实数根,∴..∴.∴实数,需满⾜的条件为且.答案不唯⼀,如:,.此时⽅程为.解得.21.如图,在平⾏四边形中,,延⻓⾄点,使,连接.(1)(2)(1)(2)【答案】(1)(2)【解析】求证:四边形是矩形.连接交于点,连接,若,,求的⻓.证明⻅解析..∵四边形是平⾏四边形,∴,,∵,∴,∴四边形是平⾏四边形,∵,∴,∴平⾏四边形是矩形.如图,取中点,连接,由()可知,,∴,,∵在平⾏四边形中,,∴,∴,∴,∴,∴在中,由勾股定理可求.故答案为:.22.如图,内接于以为直径的⊙,过点作⊙的切线,与的延⻓线相交于点,在上截取,连接并延⻓,交⊙于点,连接.(1)(2)(1)(2)【答案】(1)(2)【解析】求证:.若,,求的⻓.证明⻅解析..∵是⊙的切线,∴,∴.∵是⊙的直径,∴,∴.∴.∵,∴,∴.∵,∴.∴.由()可知,,∵,∴在中,,.∴在中,,∴,.∵,,∴,∴,∴.2020/5/9教研云资源页23.(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】在平⾯直⻆坐标系中,反⽐例函数的图象经过点.求的值.求的⻓.直线与反⽐例函数的图象有两个交点,,若,直接写出的取值范围...或.∵反⽐例函数的图象经过点,∴.过点作轴于点,∵点,∴,,∴在中,由勾股定理可求.由()知,反⽐例函数解析式为,其图象经过第⼀、三象限,∴只有经过第⼀、三象限才能与其相交,∴,联⽴解析式,得,解得,,∴点坐标,点坐标,∵,∴,∴,,∴或,∴综上所述,的取值范围是或.24.(1)(2)(3)(1)(2)(3)【答案】(1)【解析】如图,是所对弦上⼀动点,过点作交于点,作射线交于点,使得,连接.已知,设,两点间的距离为,,两点间的距离为.(当点与点重合时,点也与点重合,当点与点重合时,的值为)⼩超根据学习函数的经验,对函数随⾃变量的变化⽽变化的规律进⾏了探究.下⾯是⼩超的探究过程,请补充完整.按照下表中⾃变量的值进⾏取点、画图、测量,得到了与的⼏组对应值.(说明:补全表格时相关数值保留⼀位⼩数)建⽴平⾯直⻆坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.结合画出的函数图象,解决问题:当时,的⻓度约为 .画图⻅解析.(3).25.(1)(2)(3)(4)(1)【答案】某部⻔为新的⽣产线研发了⼀款机器⼈,为了了解它的操作技能情况,在相同条件下与⼈⼯操作进⾏了抽样对⽐.过程如下,请补充完整.收集数据:对同⼀个⽣产动作,机器⼈和⼈⼯各操作次,测试成绩(⼗分制)如下:机器⼈⼈⼯整理、描述数据:按如下分段整理、描述这两组样本数据:成绩人数生产方式机器⼈⼈⼯(说明:成绩在分及以上为操作技能优秀,分为操作技能良好,分为操作技能合格,分以下为操作技能不合格)分析数据:两组样本数据平均数、中位数、众数和⽅差如下表所示:平均数中位数众数⽅差机器⼈ ⼈⼯如果⽣产出⼀个产品,需要完成同样的操作次,估计机器⼈⽣产这个产品达到操作技能优秀的次数为 .请结合数据分析机器⼈和⼈⼯在操作技能⽅⾯各⾃的优势: .成绩人数生产方式机器⼈(2)(3)(4)(1)(2)(3)(4)【解析】 平均数中位数众数⽅差机器⼈⼈⼯机器⼈的样本数据的平均数和中位数都明显⾼于⼈⼯,⽅差较⼩,可以推断其优势在于操作技能⽔平较⾼的同时还能保持稳定.⼈⼯的样本数据的众数为,机器⼈的样本数据的最⼤值为,可以推断⼈⼯的优势在于能完成⼀些最⾼⽔平的操作补全表格如下:成绩人数生产方式机器⼈⼈⼯平均数中位数众数⽅差机器⼈⼈⼯由()知, 此次抽查中,机器⼈技能优秀的占⽤率,∴若完成同样的操作次,机器⼈达到优秀的次数约为.机器⼈的样本数据的平均数和中位数都明显⾼于⼈⼯,⽅差较⼩,可以推断其优势在于操作技能⽔平较⾼的同时还能保持稳定.⼈⼯的样本数据的众数为,机器⼈的样本数据的最⼤值为,可以推断⼈⼯的优势在于能完成⼀些最⾼⽔平的操作.26.(1)(2)(1)(2)【答案】(1)【解析】在平⾯直⻆坐标系中,抛物线的对称轴与轴交于点.求点的坐标(⽤含的代数式表示).记函数的图象为图形,若抛物线与图形恰有⼀个公共点,结合函数的图象,求的取值范围.点的坐标是.当,或或时,抛物线与图形恰有⼀个公共点.抛物线的对称轴是直线,∴点的坐标是.2020/5/9教研云资源页(2)由题意可知图形为线段,,.当抛物线经过点时,解得或;当抛物线经过点时,解得.如图,当时,抛物线与图形恰有⼀个公共点.如图,当时,抛物线与图形恰有两个公共点.如图,当时,抛物线与图形恰有两个公共点.结合函数的图象可知,当,或或时,抛物线与图形恰有⼀个公共点.图图图27.(1)(2)(3),点在射线上,点,在射线上(点与点在点的两侧),且,以点为旋转中⼼,将线段逆时针旋转,得到线段(点与点对应,点与点对应).ONMP A B如图,若,,依题意补全图形.若,当线段在射线上运动时,线段与射线有公共点,求的取值范围.2020/5/9教研云资源页(1)(2)(3)【答案】(1)(2)(3)【解析】⼀条线段上所有的点都在⼀个圆的圆内或圆上,称这个圆为这条线段的覆盖圆,若,当点在射线上运动时,以射线上⼀点为圆⼼作线段的覆盖圆,直接写出当线段的覆盖圆的直径取得最⼩值时和的⻓度.画图⻅解析.的取值范围是.,.补全图形,如图所示.ONMP A BD C 图如图,作交于点,作交于点,由题意可知,当线段在射线上从左向右平移时,线段在射线上从下向上平移,且,如图,当点与点重合时,取得最⼩值,为,,如图,当点与点重合时,取得最⼩值,为.综上所述,的取值范围是.O NMP ABD C 图ONMPB D图,.28.,是平⾯直⻆坐标系中的两点,若平⾯内直线上⽅的点满⾜:,则称点为线段的可视点.2020/5/9教研云资源页(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】在点,,,中,线段的可视点为 .若点是直线上线段的可视点,求点的横坐标的取值范围.直线与轴交于点,与轴交于点,若线段上存在线段的可视点,直接写出的取值范围.、点的横坐标的取值范围是.或.,.如图,以为圆⼼,为半径作圆,以为圆⼼,为半径作圆,两圆在直线上⽅的部分与直线分别交于点,.可求,两点坐标分别为和,只有当点在线段上时,满⾜,点是线段的可视点,∴点的横坐标的取值范围是.或.。
北京市朝阳区2019-2020学年中考数学二模试卷含解析

北京市朝阳区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.2.π这个数是( )A.整数B.分数C.有理数D.无理数3.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣34.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-5.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.506.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°7.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)8.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q9.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy10.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数8 8方差 1.2 1.8A.甲B.乙C.丙D.丁11.下列计算正确的是()A.2x+3x=5x B.2x•3x=6x C.(x3)2=5 D.x3﹣x2=x12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.14.函数1xy+=中,自变量x的取值范围是.15.函数y=123xx++中,自变量x的取值范围是_____.16.如图,矩形OABC的两边落在坐标轴上,反比例函数y=kx的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.18.如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到__边上,小球P与正方形的边完成第5次碰撞所经过的路程为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.20.(6分)如图,在四边形ABCD 中,E 为AB 的中点,DE AB ⊥于点E ,66A ∠=o ,90ABC ∠=o ,BC AD =,求C ∠的度数.21.(6分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题: (1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.22.(8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率.23.(8分)如图,⊙O 直径AB 和弦CD 相交于点E ,AE =2,EB =6,∠DEB =30°,求弦CD 长.24.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.25.(10分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?26.(12分)如图,已知平行四边形ABCD ,点M 、N 分别是边DC 、BC 的中点,设AB u u u r =a r ,AD u u u r =b r ,求向量MN u u u u r 关于a r 、b r的分解式.27.(12分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系2.D【解析】【分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【详解】解:实数π是一个无限不循环的小数.所以是无理数.故选D.【点睛】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.3.C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为4.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.5.A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:.n0430n=+ ,计算得出:n=20, 故选A.点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 6.C 【解析】试题分析:∵PA 、PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C . 考点:切线的性质. 7.A 【解析】 【分析】根据位似变换的性质可知,△ODC ∽△OBA ,相似比是13,根据已知数据可以求出点C 的坐标. 【详解】由题意得,△ODC ∽△OBA ,相似比是13, ∴OD DCOB AB=, 又OB=6,AB=3, ∴OD=2,CD=1,∴点C 的坐标为:(2,1), 故选A . 【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用. 8.C 【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.9.D【解析】【分析】A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.【详解】A.-2x-2y3 2x3y=-4xy4,故本选项错误;B. (−2a2)3=−8a6,故本项错误;C. (2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.10.D【解析】【分析】求出甲、乙的平均数、方差,再结合方差的意义即可判断.【详解】x 甲=110(6+10+8+9+8+7+8+9+7+7)=8,2 S 甲=110[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=110×13=1.3;x乙=(7+10+7+7+9+8+7+9+9+7)=8,2 S 乙=110[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=110×12=1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大.故应该淘汰丁.故选D.【点睛】本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.11.A【解析】【分析】依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.【详解】A、2x+3x=5x,故A正确;B、2x•3x=6x2,故B错误;C、(x3)2=x6,故C错误;D、x3与x2不是同类项,不能合并,故D错误.故选A.【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.12.D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8【解析】 【分析】 【详解】解:设边数为n ,由题意得, 180(n-2)=360⨯3 解得n=8.所以这个多边形的边数是8. 14.x 1≥-且x 2≠. 【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x -在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件. 15.x≠﹣32. 【解析】 【分析】该函数是分式,分式有意义的条件是分母不等于1,故分母x ﹣1≠1,解得x 的范围. 【详解】解:根据分式有意义的条件得:2x+3≠1 解得:32x ≠-. 故答案为32x ≠-. 【点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.16. 【解析】 【分析】设AD=a ,则AB=OC=2a ,根据点D 在反比例函数y=k x 的图象上,可得D 点的坐标为(a ,k a),所以OA=k a ;过点E 作EN ⊥OC 于点N ,交AB 于点M ,则OA=MN=ka,已知△OEC 的面积为12,OC=2a ,根据三角形的面积公式求得EN=12a ,即可求得EM=12k a-;设ON=x ,则NC=BM=2a-x ,证明△BME∽△ONE,根据相似三角形的性质求得x=24ak,即可得点E的坐标为(24ak,12a),根据点E在在反比例函数y=kx的图象上,可得24ak·12a=k,解方程求得k值即可.【详解】设AD=a,则AB=OC=2a,∵点D在反比例函数y=kx的图象上,∴D(a,ka),∴OA=ka,过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=ka,∵△OEC的面积为12,OC=2a,∴EN=12a,∴EM=MN-EN=ka-12a=12ka-;设ON=x,则NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴EM BMEN ON=,即12212ka xaxa--=,解得x=24ak,∴E(24ak,12a),∵点E在在反比例函数y=kx的图象上,∴24ak·12a=k,解得k=122±∵k>0,∴k=122.故答案为:122. 【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(24ak,12a)是解决问题的关键.17.5.【解析】【详解】试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:222243BC CE+=+考点:1.正方形的性质;2.三角形的面积;3.勾股定理.18.AB, 115 2【解析】【分析】根据已知中的点E,F的位置,可知入射角的正切值为12,通过相似三角形,来确定反射后的点的位置.再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度.【详解】根据已知中的点E,F的位置,可知入射角的正切值为12,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,第二次碰撞点为G,在AB上,且AG=16 AB,第三次碰撞点为H,在AD上,且AH=13 AD,第四次碰撞点为M,在DC上,且DM=13 DC,第五次碰撞点为N,在AB上,且BN=16 AB,第六次回到E点,BE=13 BC.由勾股定理可以得出EF=5,FG=325,GH=125,HM=5,MN=325,NE=125,故小球第5次经过的路程为:5+325+125+5+325=1125,故答案为AB,1125.【点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×64200=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名.20.78o【解析】【分析】连接BD,根据线段垂直平分线的性质得到DA DB=,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】连接BD,∵E为AB的中点,DE AB⊥于点E,∴AD BD=,∴DBA A∠=∠,∵66A∠=o,∴66DBA∠=o,∵90ABC∠=o,∴24DBC ABC DBA∠=∠-∠=o,∵AD BC=,∴BD BC=,∴C BDC∠=∠,∴180782DBCC-∠∠==oo.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.(1)200;(2)72°,作图见解析;(3)3 10.【解析】【分析】(1)用一等奖的人数除以所占的百分比求出总人数;(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案. 【详解】解:(1)这次知识竞赛共有学生2010%=200(名);(2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×40200=72°;(3)小华获得“一等奖或二等奖”的概率是:2040200+=310.【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.22.(1)详见解析(2)1 4【解析】【分析】设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为a、b,其余两把钥匙分别为m、n,根据题意,可以画出树形图,再根据概率公式求解即可.【详解】(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为a、b,其余两把钥匙分别为m、n,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果;(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)=21 84 =.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.23.【解析】试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.试题解析:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.考点:垂径定理;勾股定理.24.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.25.(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.【解析】【分析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:3000027000100x x=+,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每辆山地自行车的进价是600元.【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 26.答案见解析【解析】试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=12BD,根据向量减法表示出BD即可得.试题解析:连接BD,∵点M 、N 分别是边DC 、BC 的中点,∴MN 是△BCD 的中位线,∴MN ∥BD ,MN=12 BD , ∵DB=AB-AD=a b -u u u v u u u v u u u v v v , ∴1122MN a b =-u u u u v v v . 27.(1)答案见解析(2)36°(3)4550名【解析】试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数; (2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人, ;(2)360×40400=36°; (3)反对中学生带手机的大约有6500×280400=4550(名). 考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.。
北京市朝阳区2019-2020学年中考数学二模考试卷含解析

北京市朝阳区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知D 是ABC V 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE2.等腰三角形两边长分别是2 cm 和5 cm ,则这个三角形周长是( )A .9 cmB .12 cmC .9 cm 或12 cmD .14 cm3.下列二次根式中,最简二次根式是( )A .9aB .35aC .22a b +D .12a + 4.已知x a =2,xb =3,则x 3a ﹣2b 等于( )A .89B .﹣1C .17D .725.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A .①②B .①③C .②③D .①②③6.下列命题中,错误的是( )A .三角形的两边之和大于第三边B .三角形的外角和等于360°C .等边三角形既是轴对称图形,又是中心对称图形D .三角形的一条中线能将三角形分成面积相等的两部分7.- 14的绝对值是( ) A .-4 B .14 C .4 D .0.48.如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,连接BC 、BD 、AC ,下列结论中不一定正确的是( )A .∠ACB=90°B .OE=BEC .BD=BCD .»»AD AC =9.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年10.如图,在正八边形ABCDEFGH 中,连接AC ,AE ,则AE AC 的值是( )A .1B .2C .2D .3 11.﹣18的相反数是( ) A .8 B .﹣8 C .18 D .﹣1812.下列因式分解正确的是( )A .22x 2x 1(x 1)+-=-B .22x 1(x 1)+=+C .()2x x 1x x 11-+=-+D .()()22x 22x 1x 1-=+- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在Rt △ABC 纸片上剪出7个如图所示的正方形,点E ,F 落在AB 边上,每个正方形的边长为1,则Rt △ABC 的面积为_____.14.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.15.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.16.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为________.17.计算:(13)0﹣38=_____. 18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程x 2+2(m ﹣1)x+m 2﹣3=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.20.(6分)如图矩形ABCD 中AB=6,AD=4,点P 为AB 上一点,把矩形ABCD 沿过P 点的直线l 折叠,使D 点落在BC 边上的D′处,直线l 与CD 边交于Q 点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l .(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD ,①求线段AP 的长度;②求sin ∠QD′D .21.(6分)如图所示,在△ABC 中,BO 、CO 是角平分线.∠ABC =50°,∠ACB =60°,求∠BOC 的度数,并说明理由.题(1)中,如将“∠ABC =50°,∠ACB =60°”改为“∠A =70°”,求∠BOC 的度数.若∠A =n°,求∠BOC 的度数.22.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D 的高度.如图,当在点A 处放置标杆时,李明测得直立的标杆高AM 与影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处放置同一个标杆,测得直立标杆高BN 的影子恰好是线段AB ,并测得AB =1.2m ,已知标杆直立时的高为1.8m ,求路灯的高CD 的长.23.(8分)计算:2-1+20160-3tan30°+|-3| 24.(10分)如图,抛物线y =ax 2+bx+c (a >0)的顶点为M ,直线y =m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶. 由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____.抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.25.(10分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.26.(12分)如图所示,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC 的延长线交BD 于点P .(1)把△ABC 绕点A 旋转到图1,BD ,CE 的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC 绕点A 旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD 的最小值为 ,最大值为 .27.(12分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【详解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故C错误.故选C.【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.2.B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.3.C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.A【解析】∵x a=2,x b=3,∴x3a−2b=(x a)3÷(x b)2=8÷9= 89,故选A.5.B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.C【解析】【分析】根据三角形的性质即可作出判断.【详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.8.B【解析】【分析】根据垂径定理及圆周角定理进行解答即可.【详解】∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴»»BD BC,∴BD=BC ,故C 正确;∴AD AC u u u r u u u r,故D 正确.故选B .【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键. 9.B【解析】【分析】根据半衰期的定义,函数图象的横坐标,可得答案.【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B .【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.10.B【解析】【分析】连接AG 、GE 、EC ,易知四边形ACEG 为正方形,根据正方形的性质即可求解.【详解】解:连接AG 、GE 、EC ,则四边形ACEG 为正方形,故AE AC 2 故选:B .【点睛】 本题考查了正多边形的性质,正确作出辅助线是关键.11.C【解析】互为相反数的两个数是指只有符号不同的两个数,所以18-的相反数是18, 故选C .12.D【解析】【分析】直接利用提取公因式法以及公式法分解因式,进而判断即可. 【详解】解:A 、2x 2x 1+-,无法直接分解因式,故此选项错误;B 、2x 1+,无法直接分解因式,故此选项错误;C 、2x x 1-+,无法直接分解因式,故此选项错误;D 、()()22x 22x 1x 1-=+-,正确. 故选:D .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.494【解析】【分析】如图,设AH=x ,GB=y ,利用平行线分线段成比例定理,构建方程组求出x ,y 即可解决问题.【详解】解:如图,设AH =x ,GB =y ,∵EH ∥BC ,AH EH AC BC∴=, 135x x y∴=++① ∵FG ∥AC ,FG BG AC BC ∴=135y x y=++②, 由①②可得x =12,y =2, ∴AC =72,BC =7, ∴S △ABC =494, 故答案为494.【点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型. 14.32-2 13- 2 【解析】 【分析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可. 【详解】y 1=32-, y 2=−1312-+=2,y 3=−112+=13-,y 4=−1113-+=32-,…,∴每3次计算为一个循环组依次循环, ∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同, ∴y2006=2, 故答案为32-;2;13-;2. 【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律. 15.(-2,-2) 【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.16.5【解析】【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=12AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10,∴EF=12×10=5.故答案为5.【点睛】本题主要考查三角形中位线定理,直角三角形斜边上的中线,熟悉掌握是关键. 17.-1【解析】【分析】本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【详解】由分析可得:(13)038-2=﹣1.【点睛】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.18.【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】解:列表如下:-2 -1 1 2-2 2 -2 -4-1 2 -1 -21 -2 -1 22 -4 -2 2由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为=,故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,即﹣8m+2>3.解得m<2;(2)∵m<2,且m 为非负整数,∴m=3 或m=1,当m=3 时,原方程为x2-2x-3=3,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=3,解得x1=2,x2=﹣2,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.20.(1)见解析;(2)10 10【解析】【分析】(1)根据题意作出图形即可;(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=22AD AP=25,根据三角函数的定义即可得到结论.【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP与△BPD′中,90{A BADP BPD PD PD'∠=∠=∠=='∠,∴△ADP≌△BPD′,∴AD=PB=4,AP= BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD=22AD AP+=25,BD′=2∴CD′=BC- BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=2PD=210,∵PQ垂直平分DD′,连接Q D′则DQ= D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=10210CDDD==''.【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.21.(1)125°;(2)125°;(3)∠BOC=90°+12 n°.【解析】【分析】如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+12∠A,然后根据此结论分别解决(1)、(2)、(3).【详解】如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+12∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+12×70°=125°;(2)∠BOC=90°+12∠A=125°;(3)∠BOC=90°+12 n°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.22.路灯高CD为5.1米.【解析】【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【详解】设CD长为x米,∵AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA =MA , ∴MA ∥CD ∥BN , ∴EC =CD =x 米, ∴△ABN ∽△ACD , ∴BN CD =AB AC ,即1.8 1.21.8x x =-,解得:x =5.1.经检验,x =5.1是原方程的解, ∴路灯高CD 为5.1米. 【点睛】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形. 23.32【解析】 【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果; 【详解】原式=1+1323-⨯+=1+12 =32. 【点睛】此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算. 24.(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB ,(2)2,4;(2)①y =13x 2﹣2;②在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2. 【解析】 【分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B (m ,m ),代入抛物线解析式进而得出m 的值,即可得出AB 的值; (2)①根据题意得出抛物线必过(2,0),进而代入求出答案; ②根据y =13x 2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,进而得出答案.(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB , 如图1,∵△AMB 是等腰直角三角形,且N 为AB 的中点,∴MN ⊥AB ,MN =12AB , 故答案为MN ⊥AB ,MN =12AB ;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4; 故答案为2,4;(2)①由已知,抛物线对称轴为:y 轴,∵抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ∴抛物线必过(2,0),代入y =ax 2﹣4a ﹣53(a >0),得,9a ﹣4a ﹣53=0,解得:a =13,∴抛物线的解析式是:y =13x 2﹣2;②由①知,如图2,y =13x2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,∴在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键. 25.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元. 【解析】 【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围. 【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩.故y 与x 之间的函数关系式为:y=-10x+700, (2)由题意,得 -10x+700≥240, 解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000, ∵-10<0,∴x <50时,w 随x 的增大而增大, ∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元; (3)w-150=-10x 2+1000x-21000-150=3600, -10(x-50)2=-250, x-50=±5, x 1=55,x 2=45, 如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元. 【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点. 26.(1)BD ,CE 的关系是相等;(2)53417或203417;(3)1,1 【解析】分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ;(2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到PD AE =CDCE,进而得到PD=53417;依据∠ABD=∠PBE ,∠BAD=∠BPE=90°,可得△BAD ∽△BPE ,即可得到PB BE AB BD =,进而得出PB=63434,PD=BD+PB=203417; (3)以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大.在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小.分两种情况进行讨论,即可得到旋转过程中线段PD 的最小值以及最大值. 详解:(1)BD ,CE 的关系是相等.理由:∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°, ∴BA=CA ,∠BAD=∠CAE ,DA=EA , ∴△ABD ≌△ACE , ∴BD=CE ; 故答案为相等.(2)作出旋转后的图形,若点C 在AD 上,如图2所示:∵∠EAC=90°, ∴2234AC AE +=∵∠PDA=∠AEC ,∠PCD=∠ACE , ∴△PCD ∽△ACE , ∴PD CDAE CE=,∴PD=534 17;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,BD=2234AD AB+=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即334PB=,解得PB=634 34,∴PD=BD+PB=34+63434=203417,故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt △PDE 中,1=,即旋转过程中线段PD 的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD 的最大值为1.故答案为1,1.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.27.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.。
2019届北京市朝阳区中考数学二模试卷(附解析)

24.(5分)阅读下列材料: 2017年3月29日,习主席来到了北京市朝阳区将台乡参加首都义务植树活动,他指出爱绿护绿是每个公民的职责,造林绿化是 功在当代、利在千秋的事业.首都北京一直致力于创造绿色低碳的良好生态环境,着力加大城区规划建绿.2013年,城市绿化 覆盖率达到46.8%,森林覆盖率为40%,园林绿地面积67048公顷.2014年,城市绿化覆盖率比上年提高0.6个百分点,森林覆 盖率为41%.2015年,城市绿化覆盖率达到48.4%,森林覆盖率为41.6%,生态环境进一步提升,园林绿地面积达到81305公 顷.2016年,城市绿化覆盖率达到48.1%,森林覆盖率为42.3%,园林绿地面积比上年增加408公顷. 根据以上材料解答下列问题: (1)2016年首都北京园林绿地面积为公顷; (2)用统计表将2013﹣2016年首都北京城市绿化覆盖率、森林覆盖率表示出来. 25.(5分)如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,点D 在AB 上,以BD 为直径的⊙O 切AC 于点E ,连接DE 并延 长,交BC 的延长线于点F . (1)求证:△BDF 是等边三角形; (2)连接AF 、DC ,若BC=3,写出求四边形AFCD 面积的思路.
14. 【解答】解:这位同学的说法合理, 理由:由函数图象可知函数图象上升的比较陡,从而可知从2015年到2016年A市常住人口大幅增加, 故答案为:由函数图象可知函数图象上升的比较陡,从而可知从2015年到2016年A市常住人口大幅增加. 15. 【解答】解:(x+a)(x+b)=x2+ax+bx+ab; 故答案:(x+a)(x+b)=x2+ax+bx+ab(答案不唯一). 16.
2019年北京朝阳区初三二模数学试卷

( 3 ) 结合画出的函数图象,解决问题:当
时, 的⻓度约为
.
25. 某部⻔为新的生产线研发了一款机器人,为了了解它的操作技能情况,在相同条件下与人工操作 进行了抽样对比.过程如下,请补充完整. 收集数据:对同一个生产动作,机器人和人工各操作 次,测试成绩(十分制)如下:
线 的上方相交于点 ;
②作射线 ,以点 为圆心, ⻓为半径画弧,交 的延⻓线于点 ;
③作直线 .
所以直线 就是所求作的直线.
根据小东设计的尺规作图过程.
https:///#/print?id=a03b996e29294aa191363999f11f2e15
1/8
2020/5/9
教研云资源页
A.
B.
C.
D.
6. 如果 A.
,那么代数式 B.
的值为( ).
C.
D.
7. 某公司生产的一种产品按照质量由高到低分为 , , , 四级,为了增加产量、提高质量,
该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产
工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:
.
26. 在平面直⻆坐标系 中,抛物线
的对称轴与 轴交于点 .
( 1 ) 求点 的坐标(用含 的代数式表示).
( 2 ) 记函数
的图象为图形 ,若抛物线与图形 恰有一个公共
点,结合函数的图象,求 的取值范围.
27.
,点 在射线 上,点 , 在射线 上(点 与点 在点 的两侧),且
,以点 为旋转中心,将线段 逆时针旋转 ,得到线段 (点 与点 对应,点
2019年北京市朝阳区初三数学二模试题和答案

2019年北京市朝阳区初三数学二模试题和答案(Word 版,可编辑)数学试卷 2019.6学校 班级 姓名 考号一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.下列轴对称图形中只有一条对称轴的是(A ) (B ) (C ) (D )2.2019年4月25-27日,第二届“一带一路”国际合作高峰论坛在北京举行,自“一带一路”倡议提出以来,五年之间,北京市对外贸易总额累计约30 000亿美元,年均增速1.5%.将30 000用科学记数法表示应为(A )3.0×103 (B )0.3×104 (C )3.0×104 (D )0.3×105 3.右图是某个几何体的展开图,该几何体是 (A )圆锥 (B )圆柱 (C )三棱柱(D )四棱柱4.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是(A )0ac > (B )b c<(C )a d >- (D )0b d +>5.如图,直线1l ∥2l ,AB =BC ,CD ⊥AB 于点D ,若∠DCA =20°,则∠1的度数为(A )80° (B )70° (C )60°(D )50°6.如果30x y -=,那么代数式22(2)()x y x x y y+-÷-的值为 (A )-2 (B )2 (C )12(D )37.某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息,下列推断合理的是(A )改进生产工艺后,A 级产品的数量没有变化(B )改进生产工艺后,B 级产品的数量增加了不到一倍 (C )改进生产工艺后,C 级产品的数量减少 (D )改进生产工艺后,D 级产品的数量减少 8.小明使用图形计算器探究函数2()axy x b =-的图象,他输入了一组a ,b 的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a ,b 的值满足(A )a >0,b >0 (B )a >0,b <0 (C )a <0,b >0 (D )a <0,b <0二、填空题(本题共16分,每小题2分)9.在函数121y x =+中,自变量x 的取值范围是_____. 10.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=_____°.11.点A (1x ,1y ),B (2x ,2y )在二次函数241y x x =--的图象上,若112x <<,234x <<,则1y _____2y .(填“>”,“=”或“<”)12.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.若一家水果商店以6元/kg 的价格购买了5000kg 该种水果,不考虑其他因素,要想获得约15 000元的利润,销售此批水果时定价应为_____元/kg .13.如图,AB 是⊙O 的直径,C 是⊙O 上一点,将AC 沿直线AC 翻折,若翻折后的图形恰好经过点O ,则∠CAB=_____°.14.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,E 是OB 的中点,连接AE并延长交BC 于点F ,若△BEF 的面积为1,则△AED 的面积为_____.15.世界上大部分国家都使用摄氏温度(°C ),但美、英等国的天气预报仍然使用华氏温度(°F ),两种计量之间有如下的对应表: 由上表可以推断出,华氏..0.度.对应的摄氏温度是_____°C ,若某一温度时华氏温度的值与对应的摄氏温度的值相等,则此温度为_____°C . 16.某公园门票的收费标准如下:门票类别 成人票 儿童票 团体票(限5张及以上)价格(元/人)1004060第13题图第14题图第10题图有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:连接BP ,∵ _____=_____=_____=AP ,∴点A ,P ,Q 在以点B 为圆心,AP 长为半径的圆上. ∴∠APQ =90°(_____).(填写推理的依据) 即PQ ⊥l .20.关于x 的方程220mx mx m n -++=有两个实数根.(1)求实数m ,n 需满足的条件;(2)写出一组满足条件的m ,n 的值,并求此时方程的根.21.如图,在□ABCD 中,∠ABD =90°,延长AB 至点E ,使BE =AB ,连接CE . (1)求证:四边形BECD 是矩形;(2)连接DE 交BC 于点F ,连接AF ,若CE =2,∠DAB =30°,求AF 的长.22.如图,△ABC 内接于以AB 为直径的⊙O ,过点A 作⊙O 的切线,与BC 的延长线相交于点D ,在CB 上截取CE =CD ,连接AE 并延长,交⊙O 于点F ,连接CF . (1)求证:AC =CF ; (2)若AB =4,3sin 5B =,求EF 的长.23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点P (3,4). (1)求k 的值; (2)求OP 的长;(3)直线(0)y mx m =≠与反比例函数的图象有两个交点A ,B ,若AB >10,直接写出m 的取值范围.小超根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当MN=2AP时,AP的长度约为_____cm.25.某部门为新的生产线研发了一款机器人,为了了解它的操作技能情况,在相同条件下与人工操作进行了抽样对比.过程如下,请补充完整.收集数据对同一个生产动作,机器人和人工各操作20次,测试成绩(十分制)如下:机器人8.0 8.1 8.1 8.1 8.2 8.2 8.3 8.4 8.4 9.09.0 9.0 9.1 9.1 9.4 9.5 9.5 9.5 9.5 9.66.1 6.2 6.67.2 7.2 7.58.0 8.2 8.3 8.5人工9.1 9.6 9.8 9.9 9.9 9.9 10 10 10 10(说明:成绩在9.0分及以上为操作技能优秀,8.0~8.9分为操作技能良好,6.0~7.9分为操作技能合格,6.0分以下为操作技能不合格)分析数据 两组样本数据的平均数、中位数、众数和方差如下表所示:得出结论(1)如果生产出一个产品,需要完成同样的操作200次,估计机器人生产这个产品达到操作技能优秀的次数为_____;(2)请结合数据分析机器人和人工在操作技能方面各自的优势:_____.26.在平面直角坐标系xOy 中,抛物线222(0)y ax a x a =-≠的对称轴与x 轴交于点P .(1)求点P 的坐标(用含a 的代数式表示); (2)记函数3944y x =-+(-1≤x ≤3)的图象为图形M ,若抛物线与图形M 恰有一个公共点,结合函数的图象,求a 的取值范围.27.∠MON =45°,点P 在射线OM 上,点A ,B 在射线ON 上(点B 与点O 在点A 的两侧),且AB =1,以点P 为旋转中心,将线段AB 逆时针旋转90°,得到线段CD (点C 与点A 对应,点D 与点B 对应).(1)如图,若OA =1,OP ,依题意补全图形;(2)若OP ,当线段AB 在射线ON 上运动时,线段CD 与射线OM 有公共点,求OA 的取值范围;(3)一条线段上所有的点都在一个圆的圆内或圆上,称这个圆为这条线段的覆盖圆.若OA =1,当点P 在射线OM 上运动时,以射线OM 上一点Q 为圆心作线段CD 的覆盖圆,直接写出当线段CD 的覆盖圆的直径取得最小值时OP 和OQ 的长度.28.1(1,)2M --,1(1,)2N -是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P 满足:45°≤∠MPN ≤90°,则称点P 为线段MN 的可视点.(1)在点11(0,)2A ,21(,0)2A ,3A ,4(2,2)A 中,线段MN 的可视点为_____; (2)若点B 是直线12y x =+上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线(0)y x b b =+≠与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考2019.6一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:原式24=+-………………………………………………………………4分 4=.………………………………………………………………………………………5分18.解:原不等式组为2(1)41, 2. 2x x x x -≤+⎧⎪⎨+>⎪⎩①②解不等式①得,23-≥x . ……………………………………………………………………2分解不等式②得,2<x . ……………………………………………………………………3分∴原不等式组的解集为223<≤-x .…………………………………………………………4分 ∴原不等式组的所有整数解为-1,,1.……………………………………………………5分 19.(1)图略. …………………………………………………………………………………………2分 (2)BP ,BA ,BQ ,直径所对的圆周角是直角. …………………………………………………5分20.解:(1)∵关于x 的方程220mx mx m n -++=有两个实数根,∴0≠m .…………………………………………………………………………………1分2(2)4()m m m n ∆=--+40.mn =-≥…………………………………………………………………………2分∴0≤mn . ∴实数m ,n 需满足的条件为≤mn 且0≠m .………………………………………3分(2)答案不唯一,如:1=m ,0=n .……………………………………………………4分此时方程为2210x x -+=. 解得121==x x . ………………………………………………………………………5分21.(1)证明:∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB . …………………………………………………………………1分∵BE =AB , ∴BE =CD .∴四边形BECD 是平行四边形. ∵∠ABD =90°, ∴∠DBE =90°. ∴□BECD 是矩形. ……………………………………………………………………2分(2)解:如图,取BE 中点G ,连接FG .由(1)可知,FB =FC =FE , ∴FG =21CE =1,FG ⊥BE . ……………………………………………………………3分∵在□ABCD 中,AD ∥BC , ∴∠CBE =∠DAB =30°. ∴BG =3. ∴AB =BE =32. ∴AG =33.……………………………………………………………………………4分∴在Rt△AGF 中,由勾股定理可求AF = ……………………………………5分22.(1)证明:∵AD 是⊙O 的切线,∴∠DAB =90°. ………………………………………………………………………1分∴∠CAD +∠CAB =90°. ∵AB 是⊙O 的直径, ∴∠ACB =90°. ∴∠CAB +∠B =90°. ∴∠CAD =∠B . ∵CE =CD , ∴AE =AD .∴∠CAE =∠CAD =∠B . ∵∠B =∠F ,∴∠CAE =∠F . ∴AC =CF .………………………………………………………………………………2分(2)解:由(1)可知,sin ∠CAE =sin ∠CAD =sin B=35. ∵AB =4, ∴在Rt△ABD 中,AD =3,BD =5.………………………………………………………3分∴在Rt △ACD 中,CD =95. ∴DE =185,BE =75. ……………………………………………………………………4分 ∵∠CEF =∠AEB ,∠B =∠F , ∴CEFAEB ∆∆.∴35EF CE EB AE ==. ∴EF =2521. ………………………………………………………………………………5分 23.解:(1)∵反比例函数ky x=的图象经过点P (3,4),∴12=k .…………………………………………………………………………………2分(2)过点P 作PE ⊥x 轴于点E .∵点P (3,4), ∴OE =3,PE =4. ∴在Rt△EOP 中,由勾股定理可求OP =5.……………………………………………4分(3)43m >或304m <<. ……………………………………………………………………6分 24.解:(1)………………………………2分(2)…………………………4分(3)1.4. ……………………………………………………………………………………………6分25.解:补全表格如下:6≤x ……………3分(1)110; ………………………………………………………………………………………4分(2)机器人的样本数据的平均数和中位数都明显高于人工,方差较小,可以推断其优势在于操作技能水平较高的同时还能保持稳定.人工的样本数据的众数为10,机器人的样本数据的最大值为9.6,可以推断人工的优势在于能完成一些最高水平的操作. ……6分26. 解:(1)抛物线x a ax y 222-=的对称轴是直线a aa x =--=222, ∴点P 的坐标是(a ,0). …………………………………………………………………2分 (2)由题意可知图形M 为线段AB ,A (-1,3),B (3,0).当抛物线经过点A 时,解得32a =-或a =1; 当抛物线经过点B 时,解得32a =.……………………………………………………3分 如图1,当32a =-时,抛物线与图形M 恰有一个公共点.如图2,当a =1时,抛物线与图形M 恰有两个公共点.图 1如图3,当32a =时,抛物线与图形M 恰有两个公共点.结合函数的图象可知,当32a ≤-或01a <<或32a >时,抛物线与图形M 恰有一个公共点.………………………………………………………………………………………6分27.解:(1)补全图形,如图1所示.………………………………………2分(2)如图2,作PE ⊥OM 交ON 于点E ,作EF ⊥ON 交OM 于点F .由题意可知,当线段AB 在射线ON 上从左向右平移时,线段CD 在射线EF图1图2 图3上从下向上平移,且OA=EC.……………………………………………………………………3分如图1,当点D与点F重合时,OA取得最小值,为1.……………………………4分如图3,当点C与点F重合时,OA取得最大值,为2.综上所述,OA的取值范围是1≤OA≤2.………………………………………………5分(3)OP=,OQ7分28.解:(1)A1,A3;……………………………………………………………………………………2分(2)如图,以(0,12-)为圆心,1为半径作圆,以(0,12为半径作圆,两圆在直线MN上方的部分与直线12y x=+分别交于点E,F.图2 图3.. 可求E,F两点坐标分别为(0,12)和(1,32).只有当点B在线段EF上时,满足45°≤∠MBN≤90°,点B是线段MN的可视点.∴点B的横坐标t的取值范围是01t≤≤.……………………………………………5分(3)15 22b≤≤或322b-<≤-.…………………………………………………………7分。
2019年数学二模-朝阳

北京市朝阳区九年级综合练习(二)数学试卷 2019.6学校 班级 姓名一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.-2的绝对值是A .-2B .12-C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为 A .57.510´ B.57.510-´C .40.7510-´ D.67510-´ 3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是 A. 35 B. 925 C. 38D.584.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19B .18C .29D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 A.3π B. 6πC. 12πD. 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是 A .176,176 B .176,177 C .176,178 D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第 3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我 B .的 C .梦 D .中二、填空题(本题共16分,每小题4分) 9.在函数y =x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上,若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B,且A(-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA 3B 3C 3;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分)13.计算:)214452-⎛⎫︒ ⎪⎝⎭.14.计算:2312()111x x x -÷-+- .15.如图,为了测量楼AB 的高度,小明在点C 处测得楼AB 的顶端A 的仰角为30º,又向前走了20米后到达点D ,点B 、D 、C 在同一条直线上,并在点D 测得楼AB 的顶端A 的仰角为60º,求楼AB 的高.16.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF .求证:AB ∥CD .17.如图,在平面直角坐标系xOy 中,一次函数y kx =-2的图象与x 、y 轴分别交于点A 、B ,与反比例函数32y x =-(x <0)的图象交于点3()2M n -,. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y kx =-2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.18.某新建小区要铺设一条全长为2200米的污水排放管道,为了尽量减少施工对周边居民所造成的影响,实际施工时,每天铺设的管道比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?B四、解答题(本题共20分,每小题5分)19.如图,在平行四边形ABCD 中,AD = 4,∠B =105º,E 是BC 边的中点,∠BAE =30º,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.20.如图,在△ABC 中,AC=BC ,D 是BC 上的一点,且满足∠BAD =12∠C ,以AD 为直径的⊙O 与AB 、AC 分别相交于点E 、F . (1)求证:直线BC 是⊙O 的切线; (2)连接EF ,若tan ∠AEF =43,AD =4,求BD 的长.21.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题: (1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?B (元)教育支出频数分布表 教育支出频数分布直方图22.阅读下列材料:小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30º,BC =6,AC =5,在△ABC 内部有一点P ,连接P A 、PB 、PC ,求P A +PB +PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60º,得到△EDC ,连接PD 、BE ,则BE 的长即为所求.(1)请你写出图2中,P A +PB +PC 的最小值为 ; (2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD 中,∠ABC =60º,在菱形ABCD 内部有一点P ,请在图3中画出并指明长度等于P A +PB +PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当P A +PB +PC 值最小时PB 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程x 2+(4-m )x +1-m = 0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是-3,在平面直角坐标系xOy 中,将抛物线y =x 2+(4-m )x +1-m向右平移3个单位,得到一个新的抛物线,当直线y =x +b 与这个新抛物线有且只有一个公共点时,求b 的值.24.如图,在平面直角坐标系xOy 中,抛物线y = ax 2+bx +4与x 轴交于点A (-2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x 轴,且与抛物线交于点D ,P 是抛物线上一动 点.B图2B图3C B 图1(1)求抛物线的解析式; (2)过点P 作PQ ⊥CD 于点Q ,将△CPQ 绕点C 顺时针旋转,旋转角为α(0º﹤α﹤90º),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.25. 在□ABCD 中,E 是AD 上一点,AE =AB ,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .(1)如图1,当EF 与AB 相交时,若∠EAB =60°,求证:EG =AG +BG ; (2)如图2,当EF 与AB 相交时,若∠EAB = α(0º﹤α﹤90º),请你直接写出线段EG 、AG 、BG 之间的数量关系(用含α的式子表示);(3)如图3,当EF 与CD 相交时,且∠EAB =90°,请你写出线段EG 、AG 、BG 之间的数量关系,并证明你的结论.图3 图2 F 图1 F。
北京朝阳区2019中考二模试题-数学

北京朝阳区2019中考二模试题-数学数学试卷2018.6学校班级姓名下面各题均有四个选项,其中只有一个是符合题意的、 1、3的算术平方根是A 、3B 、3±C 、3D 、±32、2018年1月21日,北京市环保监测中心开始在其官方网站上公布PM2.5的研究性监测数据.PM2.5是指大气中直径小于或等于0.0000025米即2.5微米的颗粒物,也称为可入肺颗粒物.把0.0000025用科学记数法表示为A 、51025.0-⨯ B.5105.2-⨯C 、6105.2-⨯ D.71025-⨯3.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数小于3的概率为A 、21B 、31C 、41D 、61 4、如图,直线m ∥n ,直角三角板ABC 的顶点A在直线m 上,那么∠α等于 A.19°B.38° C.42°D.52°5、有一组数据:0,2,3,4,6,这组数据的方差是A 、3B 、4C 、6D 、206、如图,在⊙O 中,直径AB ⊥弦CD 于点H ,E 是⊙O 上的点, 假设∠BEC =25°,那么∠BAD 的度数为 A.65°B.50° C.25°D.12.5°7.下面由8个完全相同的小正方体组成的几何体的主视图是ABCD8、如图,在平面直角坐标系xOy 中,P 是反比例函数xy 1=〔x >0〕图象上的一个动点,点A 在x 轴上,且PO =PA , AB 是PAO △中OP 边上的高、设m OA =,n AB =,那么 以下图象中,能表示n 与m 的函数关系的图象大致是ABCD【二】填空题〔此题共16分,每题4分〕mn9、假设分式321-x 有意义,那么x 的取值范围是、10、分解因式:a ax ax 442+-=、11、在平面直角坐标系中,点P 〔k -2,k 〕在第二象限,且k 是整数,那么k 的值为、 12、如图,在平面直角坐标系xOy 中,A 1是以O 为圆心,2为半径的圆与过点〔0,1〕且平行于x 轴的直线l 1的一个交点;A 2是以原点O 为圆心,3为半径的圆与过点〔0,-2〕 且平行于x 轴的直线l 2的一个交点;A 3是以原点O 为圆心,4为半径的圆与过点〔0,3〕且平行于x 轴的直线l 3的一个交点;A 4是以原点O 为圆心,5为半径的圆与过点〔0,-4〕且平行于x 轴的直线l 4的一个交点;……,且点1A 、2A 、3A 、4A 、…都在y 轴右侧,按照这样的规律进行下去,点A 6的坐标为,点A n 的坐标为(用含n 的式子表示,n 是正整数)、【三】解答题〔此题共30分,每题5分〕 13、计算:︒--++-45cos 411812.14、解方程:53412-=+x x . 15、02=-x y ,求)11(2222yx y xy x y x +⋅++的值. 16、:如图,点D 、E 分别在AB 、AC 上,BE 与CD 相交于点,,∠=∠.求证:BE =CD . 17、如图,点P 〔-3,1〕是反比例函数my x=的图象上的一点、 〔1〕求该反比例函数的解析式;〔2〕设直线y kx =与双曲线my x=的两个交点分别为P 和P ′,当mx<kx 时,直接写出x 的取值范围、18、如图,四边形ABCD 是矩形,AB =3,BC =4,把矩形沿直线AC 折叠,点B 落在点F 处,连接DF ,CF 与AD 相交于点E ,求DE 的长和△ACE 的面积.【四】解答题〔此题共21分,第19、20、21题每题5分,第22题6分〕19、如图,AB 、BF 分别是⊙O 的直径和弦,弦CD 与AB 、BF 分别相交于点E 、G ,过点F 的切线HF 与DC 的延长线相交于点H ,且HF =HG .〔1〕求证:AB ⊥CD ;〔2〕假设sin ∠HGF =43,BF =3,求⊙O 的半径长20.2018年4. ①根据调查结果,将受访者购置汽车的意愿情况整理后,制成如右侧统计图:②将有购买家庭用汽车意愿的受访者的购车预算情况整理后,作出相应的统计表和频数分布直方图: 〔注:每组包含最小值不包含最大值〕频数请你根据以上信息,回答以下问题:〔1〕统计表中的c =,d =;〔2〕补全频数分布直方图; 〔3〕这次调查中一共调查了位参观者. 21、如图,港口B 在港口A 的东北方向,上午9时,一艘轮船从港口A 出发,以16 海里/时的速度向正东方向航行,同时一艘快艇从港口B 出发也向正东方向航行、上午11时轮船到达C 处,同时快艇到达D 处,测得D 处在C 处的北偏东60°的方向上,且C 、D 两地相距80海里,求快艇每小时航行多少海里?〔结果精确到0.1海里/时,参考数据:414.12≈,732.13≈,236.25≈〕22、二次函数c x x y ++=22、〔1〕当c =-3时,求出该二次函数的图象与x 轴的交点坐标; 〔2〕假设-2<x <1时,该二次函数的图象与x 轴有且只有一个交点,求c 的取值范围、 【五】解答题〔此题共21分,第23题6分,第24题7分,第25题8分〕23、正方形ABCD 的边长为4,点P 是BC 边上的动点,点E 在AB 边上,且∠EPB =60°,沿PE 翻折△EBP 得到△P EB '.F 是CD 边上一点,沿PF 翻折△FCP 得到△P FC ',使点'C 落在射线'PB 上、〔1〕如图,当BP =1时,四边形''FC EB 的面积为;〔2〕假设BP =m ,那么四边形''FC EB 的面积为〔要求:用含m 的代数式表示,并写出m 的取值范围〕、备用图24.如图,D 是△ABC 中AB 边的中点,△BCE 和△ACF 都是等边三角形,M 、N 分别是CE 、CF的中点.〔1〕求证:△DMN 是等边三角形;〔2〕连接EF ,Q 是EF 中点,CP ⊥EF 于点P . 求证:DP =DQ .同学们,如果你觉得解决此题有困难,可以阅读下面两位同学的解题思路作为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造 三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM 绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.25.在平面直角坐标系xOy 中,抛物线42++=bx ax y 经过A 〔-3,0〕、B 〔4,0〕两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC ,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. 〔1〕求该抛物线的解析式;〔2〕假设经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;〔3〕该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?假设存在,求出点M的坐标;假设不存在,请说明理由.。
北京市朝阳区2019年中考二模数学试题及答案

北京市朝阳区九年级综合练习(二)数学试卷 2019.6学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.某种埃博拉病毒(EBV )长0.000 000 665nm 左右.将0.000 000 665用科学记数法表示 应为A .0. 665×10-6B .6.65×10-7C .6.65×10-8D .0. 665×10-92合并的是AB C D 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是A B C D4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若23AD DB ,AE =6,则EC 的长为 A . 6 B. 9 C. 15 D. 185.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是 A . 10 B. 14 C. 16 D. 406.某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如下表 所示:设甲、乙两人射击成绩的平均数分别为x 甲、x 乙,射击成绩的方差分别为2s 甲、2s 乙,则 下列判断中正确的是A .x 甲<x 乙,2s 甲>2s 乙B .x 甲=x 乙,2s 甲<2s 乙C .x 甲=x 乙,22=s s 甲乙D .x 甲=x 乙,2s 甲>2s 乙7.一个隧道的横截面如图所示,它的形状是以点O 为圆心, 5为半径的圆的一部分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =6,则隧道的高(ME 的 长)为A .4B .6C .8D .98.某数学课外活动小组利用一个有进水管与出水管的容器 模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出 水,在随后的10分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则第12分钟容器内的 蓄水量为A. 22B. 25C. 27D. 289. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将 矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若 此时BN CN =13,则△AMD′ 的面积与△AMN 的面积的比为 A .1:3 B .1:4 C .1:6 D .1: 910. 如图,矩形ABCD 中,E 为AD 中点,点F 为BC 上的动点(不 与B 、C 重合).连接EF ,以EF 为直径的圆分别交BE ,CE 于点G 、H . 设BF 的长度为x ,弦FG 与FH 的长度和为y ,则 下列图象中,能表示y 与x 之间的函数关系的图象大致是A B C D二、填空题(本题共18分,每小题3分) 11.若分式162+-x x 的值为0,则x 的值为 . 12.分解因式:22312x y - = .13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .14. 如图,△ABC 中,AB=AC ,AD 是BC 边中线,分别以点A 、C 为圆心,以大于12AC 长为半径画弧,两弧交点分别为点E 、F ,直线EF 与AD 相交于点O ,若OA =2,则△ABC 外接圆的面积为 .(第14题) (第15题)15.如图,点B 在线段AE 上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD ,那么这个条件可以是 (要求:不在图中添加其他辅助线,写出一个条件即可 ). 16.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 .三、解答题(本题共30分,每小题5分) 17.已知:如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D . 求证:BE=CD .18.计算:-2018cos60(2π⎛⎫- ⎪⎝⎭.19.解不等式12212333x x --≥,并把它的解集在数轴上表示出来.20.已知a b -=,求2(2)(2)4(1)a b b a a -+-+-的值.21.如图,一次函数y kx b =+()0≠k 的图象与反比例函数 my x=()0≠m 的图象交于A (-3,1),B (1,n )两点. (1)求反比例函数和一次函数的表达式;(2)设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标.22.列方程或方程组解应用题:四、解答题(本题共20分,每小题5分)23.如图,点F 在□ABCD 的对角线AC 上,过点F 、 B 分别作AB 、AC 的平行线相交于点E ,连接BF ,∠ABF=∠FBC+∠FCB .(1)求证:四边形ABEF 是菱形; (2)若BE=5,AD=8,21sin =∠CBE ,求AC 的长.24.某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:(说明:40---55分为不合格,55---70分为合格,70---85分为良好,85---100分为优秀) 请根据以上信息,解答下列问题: (1)表中的a = ,b= ;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为 .25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,P A ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:P A 是⊙O 的切线;(2)若BC =4 ,求AD 的长.26.阅读下面材料:正正正正某校60名学生体育测试成绩 频数分布表小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O , AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形 ABCD 的面积为 (用含a 、b 、α的式子表示).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .图1 图2图328.数学活动课上,老师提出这样一个问题:如果AB =BC ,∠ABC =60°,∠APC =30°,连接PB ,那么P A 、PB 、PC 之间会有怎样的等量关系呢? 经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P 在BA 延长线上(如图1),得到了一个猜想: P A 2+PC 2=PB 2 .小东:我假设点P 在∠ABC 的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△P AB 后得到△P′C B ,并且可推出△PBP′ ,△PCP ′ 分别是等边三角形、直角三角形,就能得到猜想和证明方法. 这时老师对同学们说,请大家完成以下问题: (1)如图2,点P 在∠ABC 的内部,①P A =4,PC=PB= .②用等式表示P A 、PB 、PC 之间的数量关系,并证明.(2)对于点P 的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON . (1)求该二次函数的表达式; (2)若点P 的坐标是(-6,3),求△OPN 的面积; (3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.图1图2北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2019.6一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠ 16. 8或10(写出一个正确结果给1分)三、解答题(本题共30分,每小题5分) 17. 证明:∵BE ⊥CE ,AD ⊥CE ,∴∠BEC=∠CDA =90°. ………………………1分 ∴∠EBC +∠ECB =90°.又∵∠DCA +∠ECB =90°,∴∠EBC=∠DCA . ………………………………2分 又∵BC=AC ,……………………………………3分∴△BEC ≌△CDA . ………………………………………………………………4分 ∴BE =CD . ………………………………………………………………………5分18. 解:原式 =1218324-⨯-+. ………………………………………………………4分 =132-. ……………………………………………………………………5分19. 解:2443-≥-x x .……………………………………………………………………1分4243+-≥-x x .……………………………………………………………………2分2≥-x . …………………………………………………………………………3分解得2-≤x . ………………………………………………………………………4分…………………………5分20. 解:)1(4)2()2(2-+-+-a a b b a=4424422-+-++-a ab b a a . ……………………………………………3分 =ab b a 222-+=2)(b a -.……………………………………………………………………………4分 ∵2=-b a ,∴原式=2)2(2=. ………………………………………………………………5分21. 解:(1)把A (-3,1)代入,有31-=m, 解得3-=m .∴反比例函数的表达式为xy 3-=. ……………………………………1分 当1=x 时,313-=-=y . ∴B (1,-3). …………………………………………………………2分 把A (-3,1),B (1,-3)代入b kx y +=,有⎩⎨⎧+=-+-=b k bk 331, 解得⎩⎨⎧-=-=21b k .∴一次函数的表达式为2--=x y . ……………………………………3分 (2)(4,0)或(-2,0). ……………………………………………………5分22. 解:设小白家这两年用水的年平均下降率为x . …………………………………………1分由题意,得1264000)1(%3630002=-⋅x . ………………………………………2分 解得 8.11=x ,2.02=x . ……………………………………………3分 ∵8.1=x 不符合题意,舍去. ………………………………………………4分 ∴%.20=x答:小白家这两年用水的年平均下降率为%.20 ………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形.∵∠ABF=∠FBC +∠FCB ,∠AFB=∠FBC +∠FCB ,∴∠ABF=∠AFB . …………………………………………………………………1分 ∴AB =AF .∴□ABEF 是菱形. ………………………………………………………………2分 (2)解:作DH ⊥AC 于点H ,∵21sin =∠CBE , ∴︒=∠30CBE .∵BE ∥AC , ∴CBE ∠=∠1. ∵AD ∥BC , ∴12∠=∠.∴︒=∠=∠302CBE .Rt △ADH 中,342cos =∠⋅=AD AH .………………………………………………3分42sin =∠⋅=AD DH .∵四边形ABEF 是菱形, ∴CD= AB=BE=5, Rt △CDH 中,322=-=DH CD CH . ………………………………………………4分∴334+=+=CH AH AC .…………………………………………5分24.(1)18,50%. …………………………………………………………………………2分 (2)…………………………………………4分(3)120. ………………………………………………………………………………5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分 ∵PA ∥BC , ∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分 26. 解:(1)32m ;……………………………………………………………………………1分 (2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°,∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ·················································································· 1分 =4.即0∆>.∴方程有两个不相等的实数根. ·········································································· 2分(2) 解:由求根公式,得2(1)22a x a -±=. ∴1x =或21x a=-. ······························································································ 3分 0a >,1x >2x ,11x ∴=,221x a=-. ···························································································· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2.∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分∴PA =P ′C ,∠A =∠BCP ′.在四边形ABCP 中,∵∠ABC =60°,∠APC =30°,∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形.∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分29.(1)解:设二次函数的表达式为4)4(2++=x a y ,把点(0,0)代入表达式,解得41-=a . ………………………………………1分 ∴二次函数的表达式为4)4(412++-=x y , 即x x y 2412--=. ……………………………………………………………2分 (2)解:设直线OP 为y kx =,将P (-6,3)代入y kx =,解得12k =-, ∴12y x =-. 当4-=x 时,2=y .∴M (-4,2). ……………………………………………………………………3分 ∵点M 、N 关于点A 对称,∴N (-4,6).∴MN =4.∴12=+=∆∆∆PMN OMN PON S S S . ……………………………………………………4分(3)①证明:设点P 的坐标为)241,(2t t t --,其中4-<t ,设直线OP 为x k y '=,将P )241,(2t t t --代入x k y '=,解得48'+-=t k∴x t y 48+-=.当4-=x 时,8+=t y .∴M (-4,8+t ).∴AN =AM =)8(4+-t =4--t .设对称轴l 交x 轴于点B ,作PC ⊥l 于点C ,则B (-4,0),C )241,4(2t t ---.∴OB =4,NB =)4(4--+t =t -,PC =t --4NC =)241(2t t t ----=t t +241.则44412t t tt PC NC -=--+=,44tt OB NB -=-=.∴OB NBPC NC =.又∵∠NCP =∠NBO =90°,∴△NCP ∽△NBO .∴∠PNM =∠ONM . …………………………………………………………………6分 ② (4,244---). ………………………………………………………………8分其他正确解法,请参考标准给分.。
2018-2019学年北京市朝阳区九年级二模数学试卷(含答案)

北京市朝阳区九年级综合练习(二)数学试卷2019.6学校班级姓名考号考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、班级、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1.下列轴对称图形中只有一条对称轴的是(A)(B)(C)(D)2.2019年4月25-27日,第二届“一带一路”国际合作高峰论坛在北京举行,自“一带一路”倡议提出以来,五年之间,北京市对外贸易总额累计约30 000亿美元,年均增速1.5%.将30 000用科学记数法表示应为(A)3.0×103(B)0.3×104(C)3.0×104(D)0.3×1053.右图是某个几何体的展开图,该几何体是(A)圆锥(B)圆柱(C)三棱柱(D)四棱柱4.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是(A)0ac>(B)b c<(C)a d>-(D)0b d+>5.如图,直线1l∥2l,AB=BC,CD⊥AB于点D,若∠DCA=20°,则∠1的度数为(A)80°(B)70°(C)60°(D)50°6.如果30x y-=,那么代数式22(2)()x yx x yy+-÷-的值为(A)-2 (B)2 (C)12(D)37.某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息,下列推断合理的是(A )改进生产工艺后,A 级产品的数量没有变化 (B )改进生产工艺后,B 级产品的数量增加了不到一倍 (C )改进生产工艺后,C 级产品的数量减少 (D )改进生产工艺后,D 级产品的数量减少 8.小明使用图形计算器探究函数2()axy x b =-的图象,他输入了一组a ,b 的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a ,b 的值满足 (A )a >0,b >0 (B )a >0,b <0 (C )a <0,b >0 (D )a <0,b <0二、填空题(本题共16分,每小题2分)9.在函数121y x =+中,自变量x 的取值范围是_____. 10.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=_____°.11.点A (1x ,1y ),B (2x ,2y )在二次函数241y x x =--的图象上,若112x <<,234x <<,则1y _____2y .(填“>”,“=”或“<”)12.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.发货时重量(kg)100 200 300 400 500600 1000 收货时重量(kg)94 187 282 338 435 530 901 若一家水果商店以6元/kg的价格购买了5000kg该种水果,不考虑其他因素,要想获得约15 000元的利润,销售此批水果时定价应为_____元/kg.13.如图,AB是⊙O的直径,C是⊙O上一点,将»AC沿直线AC翻折,若翻折后的图形恰好经过点O,则∠CAB=_____°.14.如图,在正方形ABCD中,对角线AC,BD相交于点O,E是OB的中点,连接AE并延长交BC于点F,若△BEF的面积为1,则△AED的面积为_____.15.世界上大部分国家都使用摄氏温度(°C),但美、英等国的天气预报仍然使用华氏温度(°F),两种计量之间有如下的对应表:摄氏温度(°C)0 10 20 30 40 50华氏温度(°F)32 50 68 86 104 122由上表可以推断出,华氏..0.度.对应的摄氏温度是_____°C,若某一温度时华氏温度的值与对应的摄氏温度的值相等,则此温度为_____°C.16.某公园门票的收费标准如下:门票类别成人票儿童票团体票(限5张及以上)价格(元/人)100 40 60 有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算:212cos303122-⎛⎫+-+-⎪⎝⎭o.第13题图第14题图第10题图18.解不等式组2(1)41,2,2x x x x -≤+⎧⎪⎨+>⎪⎩并写出它的所有整数解.19.下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:直线l 及直线l 上一点P .求作:直线PQ ,使得PQ ⊥l . 作法:如图,①在直线l 上取一点A (不与点P 重合),分别以点P ,A 为圆心,AP 长为半径画弧,两弧在直线l 的上方相交于点B ;②作射线AB ,以点B 为圆心,AP 长为半径画弧,交AB 的延长线于点Q ;③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:连接BP ,∵ _____=_____=_____=AP ,∴点A ,P ,Q 在以点B 为圆心,AP 长为半径的圆上. ∴∠APQ =90°(_____).(填写推理的依据) 即PQ ⊥l .20.关于x 的方程220mx mx m n -++=有两个实数根.(1)求实数m ,n 需满足的条件;(2)写出一组满足条件的m ,n 的值,并求此时方程的根.21.如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是矩形;(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.22.如图,△ABC内接于以AB为直径的⊙O,过点A作⊙O的切线,与BC的延长线相交于点D,在CB上截取CE=CD,连接AE并延长,交⊙O于点F,连接CF.(1)求证:AC=CF;(2)若AB=4,3sin5B ,求EF的长.23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点P (3,4). (1)求k 的值; (2)求OP 的长;(3)直线(0)y mx m =≠与反比例函数的图象有两个交点A ,B ,若AB >10,直接写出m 的取值范围.24.如图,P 是»AB 所对弦AB 上一动点,过点P 作PM ⊥AB 交»AB 于点M ,作射线PN 交»AB 于点N ,使得∠NPB =45°,连接MN .已知AB =6cm ,设A ,P 两点间的距离为x cm ,M,N两点间的距离为y cm.(当点P与点A重合时,点M也与点A重合,当点P与点B重合时,y的值为0)小超根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;x/cm 0 1 2 3 4 5 6y/cm 4.2 2.9 2.6 2.0 1.6 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当MN=2AP时,AP的长度约为_____cm.25.某部门为新的生产线研发了一款机器人,为了了解它的操作技能情况,在相同条件下与人工操作进行了抽样对比.过程如下,请补充完整.收集数据 对同一个生产动作,机器人和人工各操作20次,测试成绩(十分制)如下: 机器人 8.0 8.1 8.1 8.1 8.2 8.2 8.3 8.4 8.4 9.0 9.0 9.0 9.1 9.1 9.4 9.5 9.5 9.5 9.5 9.6 人工 6.1 6.2 6.6 7.2 7.2 7.5 8.0 8.2 8.3 8.59.19.69.89.99.99.910101010整理、描述数据 按如下分段整理、描述这两组样本数据:(说明:成绩在9.0分及以上为操作技能优秀,8.0~8.9分为操作技能良好,6.0~7.9分为操作技能合格,6.0分以下为操作技能不合格)分析数据 两组样本数据的平均数、中位数、众数和方差如下表所示:得出结论(1)如果生产出一个产品,需要完成同样的操作200次,估计机器人生产这个产品达到操作技能优秀的次数为_____;(2)请结合数据分析机器人和人工在操作技能方面各自的优势:_____.26.在平面直角坐标系xOy 中,抛物线222(0)y ax a x a =-≠的对称轴与x 轴交于点P .(1)求点P 的坐标(用含a 的代数式表示);(2)记函数3944y x=-+(-1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.27.∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A 对应,点D与点B对应).(1)如图,若OA=1,OP=2,依题意补全图形;(2)若OP=2,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围;(3)一条线段上所有的点都在一个圆的圆内或圆上,称这个圆为这条线段的覆盖圆.若OA=1,当点P在射线OM上运动时,以射线OM上一点Q为圆心作线段CD的覆盖圆,直接写出当线段CD的覆盖圆的直径取得最小值时OP和OQ的长度.28.1(1,)2M--,1(1,)2N-是平面直角坐标系xOy中的两点,若平面内直线MN上方的点P满足:45°≤∠MPN≤90°,则称点P为线段MN的可视点.(1)在点11(0,)2A ,21(,0)2A ,3(0,2)A ,4(2,2)A 中,线段MN 的可视点为_____; (2)若点B 是直线12y x =+上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线(0)y x b b =+≠与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考2019.6一、选择题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:原式24=-………………………………………………………………4分 4=.…………………………………………………………………………5分18.解:原不等式组为2(1)41, 2. 2x x x x -≤+⎧⎪⎨+>⎪⎩①②解不等式①得,23-≥x . ……………………………………………………2分 解不等式②得,2<x . ……………………………………………………3分 ∴原不等式组的解集为223<≤-x .…………………………………………4分 ∴原不等式组的所有整数解为-1,0,1.………………………………………5分19.(1)图略. ………………………………………………………………………………2分 (2)BP ,BA ,BQ ,直径所对的圆周角是直角. ………………………………………5分20.解:(1)∵关于x 的方程220mx mx m n -++=有两个实数根,∴0≠m .………………………………………………………………………1分2(2)4()m m m n ∆=--+40.mn =-≥………………………………………………………………2分∴0≤mn .∴实数m ,n 需满足的条件为0≤mn 且0≠m .………………………3分(2)答案不唯一,如:1=m ,0=n .……………………………………………………4分此时方程为2210x x -+=.解得121==x x . …………………………………………………………5分21.(1)证明:∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB . ……………………………………………………1分 ∵BE =AB , ∴BE =CD .∴四边形BECD 是平行四边形. ∵∠ABD =90°, ∴∠DBE =90°.∴□BECD 是矩形. ……………………………………………………2分(2)解:如图,取BE 中点G ,连接FG .由(1)可知,FB =FC =FE , ∴FG =21CE =1,FG ⊥BE . …………………………………………………3分 ∵在□ABCD 中,AD ∥BC , ∴∠CBE =∠DAB =30°. ∴BG =3. ∴AB =BE =32.∴AG =33.………………………………………………………………4分 ∴在Rt △AGF 中,由勾股定理可求AF =27. ………………………5分22.(1)证明:∵AD 是⊙O 的切线,∴∠DAB =90°. …………………………………………………………1分 ∴∠CAD +∠CAB =90°.∵AB 是⊙O 的直径, ∴∠ACB =90°.∴∠CAB +∠B =90°. ∴∠CAD =∠B . ∵CE =CD , ∴AE =AD .∴∠CAE =∠CAD =∠B . ∵∠B =∠F , ∴∠CAE =∠F .∴AC =CF .……………………………………………………………………2分(2)解:由(1)可知,sin ∠CAE =sin ∠CAD =sin B=35. ∵AB =4,∴在Rt △ABD 中,AD =3,BD =5.……………………………………………3分 ∴在Rt △ACD 中,CD =95. ∴DE =185,BE =75. ………………………………………………………4分∵∠CEF =∠AEB ,∠B =∠F ,∴CEF AEB ∆∆:.∴35EF CE EB AE ==. ∴EF =2521. ………………………………………………………………5分23.解:(1)∵反比例函数ky x=的图象经过点P (3,4),∴12=k .……………………………………………………………………2分 (2)过点P 作PE ⊥x 轴于点E .∵点P (3,4), ∴OE =3,PE =4.∴在Rt △EOP 中,由勾股定理可求OP =5.…………………………………4分 (3)43m >或304m <<. ……………………………………………………6分24.解:(1)………………………………2分(2)…………………………4分(3)1.4. ……………………………………………………………………………………………6分 25.解:补全表格如下:6≤x <77≤x <8 8≤x <9 9≤x ≤10 机器人 0 0 9 11 人工 33 4 10 ……………3分(1)110; …………………………………………………………………………4分 (2)机器人的样本数据的平均数和中位数都明显高于人工,方差较小,可以推断其优势在于操作技能水平较高的同时还能保持稳定.人工的样本数据的众数为10,机器人的样本数据的最大值为9.6,可以推断人工的优势在于能完成一些最高水平的操作. ……6分26. 解:(1)抛物线x a ax y 222-=的对称轴是直线a aa x =--=222, ∴点P 的坐标是(a ,0). …………………………………………………2分 (2)由题意可知图形M 为线段AB ,A (-1,3),B (3,0).当抛物线经过点A 时,解得32a =-或a =1;平均数 中位数 众数 方差 机器人 8.8 9.0 9.5 0.333 人工8.68.8101.868当抛物线经过点B时,解得32a=.……………………………………3分如图1,当32a=-时,抛物线与图形M恰有一个公共点.如图2,当a=1时,抛物线与图形M恰有两个公共点.如图3,当32a=时,抛物线与图形M恰有两个公共点.结合函数的图象可知,当32a≤-或01a<<或32a>时,抛物线与图形M恰有一个公共点.…………………………………………………………6分27.解:(1)补全图形,如图1所示.图1 图2 图3图1…………………………2分(2)如图2,作PE ⊥OM 交ON于点E ,作EF ⊥ON 交OM 于点F .由题意可知,当线段AB 在射线ON 上从左向右平移时,线段CD 在射线EF 上从下向上平移,且OA =EC . ……………………………………………3分如图1,当点D 与点F 重合时,OA 取得最小值,为1. …………………4分 如图3,当点C 与点F 重合时,OA 取得最大值,为2.综上所述,OA 的取值范围是1≤OA ≤2.……………………………5分 (3)OP =324,OQ =322.…………………………………………………7分 28.解:(1)A 1,A 3;…………………………………………………………………………2分(2)如图,以(0,12-)为圆心,1为半径作圆,以(0,12)为圆心,2为半径作圆,两圆在直线MN 上方的部分与直线12y x =+分别交于点E ,F .可求E ,F 两点坐标分别为(0,12)和(1,32). 只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点.∴点B 的横坐标t 的取值范围是01t ≤≤.………………………………5分(3)1522b ≤≤或332b -<≤-. …………………………………………7分图2 图3。
北京市朝阳区2019-2020学年中考第二次质量检测数学试题含解析

北京市朝阳区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.62.下列命题中假命题是()A.正六边形的外角和等于B.位似图形必定相似C.样本方差越大,数据波动越小D.方程无实数根3.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:14.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是( )A.点A B.点B C.点C D.点D5.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1066.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A.2011年我国的核电发电量占总发电量的比值约为1.5%B.2006年我国的总发电量约为25000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时7.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )A .12B .14C .15D .258.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和39.如图,A ,C ,E ,G 四点在同一直线上,分别以线段AC ,CE ,EG 为边在AG 同侧作等边三角形△ABC ,△CDE ,△EFG ,连接AF ,分别交BC ,DC ,DE 于点H ,I ,J ,若AC=1,CE=2,EG=3,则△DIJ 的面积是( )A .38B .34C .12D .3210.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .411.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-= 12.如图,AB 为⊙O 的直径,C 为⊙O 上的一动点(不与A 、B 重合),CD ⊥AB 于D ,∠OCD 的平分线交⊙O 于P ,则当C 在⊙O 上运动时,点P 的位置( )A .随点C 的运动而变化C.在使PA=OA的劣弧上D.无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:3﹣1﹣30=_____.14.某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元.设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为______.15.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上kyx=,则k值为_____.17.2(2)-=__________18.关于x 的方程ax=x+2(a≠1) 的解是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).(1)t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为8cm2?20.(6分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值x(万元)1 2 2.5 3 5 y A (万元) 0.4 0.8 1 1.2 2 信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额x(万元)之间存在二次函数关系:y B =ax 2+bx ,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B 与x 的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A 与x 之间的关系,并求出y A 与x 的函数关系式;(3)如果企业同时对A 、B 两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?21.(6分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE22.(8分)如图1,已知抛物线y=ax 2+bx (a≠0)经过A (6,0)、B (8,8)两点.(1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3)如图2,若点N 在抛物线上,且∠NBO=∠ABO ,则在(2)的条件下,在坐标平面内有点P ,求出所有满足△POD ∽△NOB 的点P 坐标(点P 、O 、D 分别与点N 、O 、B 对应).23.(8分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭. 24.(10分)如图,在平面直角坐标系中,△AOB 的三个顶点坐标分别为A (1,0),O (0,0),B (2,2).以点O 为旋转中心,将△AOB 逆时针旋转90°,得到△A 1OB 1.画出△A 1OB 1;直接写出点A 1和点B 1的坐标;求线段OB 1的长度.25.(10分)如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.26.(12分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|27.(12分)先化简,再求值:(x2x2+-+24x4x4-+)÷xx2-,其中x=12参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.2.C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.考点:命题与定理.3.B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.4.B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.5.D2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.6.B【解析】【分析】由折线统计图和条形统计图对各选项逐一判断即可得.【详解】解:A 、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B 、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;C 、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D 、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B .【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况. 7.C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.8.A【解析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.9.A【解析】【分析】根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到AEAG=EJGF=36,ACAE=CIEF=13,根据三角形的面积公式即可得到结论.【详解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等边三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等边三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴AEAG=EJGF=36,∴EJ=13,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴AC AE =CI EF =13, ∴CI =1,DI =1,DJ =12,∴IJ∴DIJ S V =12•DI•IJ =12×12×2. 故选:A .【点睛】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键.10.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1故选A.考点: 1.旋转;2.勾股定理.11.C【解析】【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误,故选C .【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.12.B【解析】【分析】因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.【详解】解:连接OP,∵CP是∠OCD的平分线,∴∠DCP=∠OCP,又∵OC=OP,∴∠OCP=∠OPC,∴∠DCP=∠OPC,∴CD∥OP,又∵CD⊥AB,∴OP⊥AB,∴¼¼AP BP,∴PA=PB.∴点P是线段AB垂直平分线和圆的交点,∴当C在⊙O上运动时,点P不动.故选:B.【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣2 3 .【解析】【分析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【详解】原式=13﹣1=﹣23.故答案是:﹣2 3 .【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.14.10 5000300034000 x yx y+=⎧⎨+=⎩【解析】试题解析:根据题意得:10 5000300034000. x yx y+=⎧⎨+=⎩故答案为10 5000300034000. x yx y+=⎧⎨+=⎩15.1【解析】【分析】【详解】解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=12×12×3=1.故答案为1.【点睛】本题考查正多边形和圆;扇形面积的计算.16.1【解析】作DH⊥x轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),∵四边形ABCD为正方形,∴AB=AD ,∠BAD=90°,∴∠BAO+∠DAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠DAH ,在△ABO 和△DAH 中AOB DHA ABO DAH AB DA ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABO ≌△DAH ,∴AH=OB=3,DH=OA=1,∴D 点坐标为(1,1),∵顶点D 恰好落在双曲线y=k x上, ∴a=1×1=1.故答案是:1.17.2;【解析】试题解析:先求-2的平方4. 18.2a 1- 【解析】分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.详解:移项,得:ax ﹣x=1,合并同类项,得:(a ﹣1)x=1.∵a≠1,∴a ﹣1≠0,方程两边都除以a ﹣1,得:x=21a -.故答案为x=21a -. 点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)t =154秒;(1)t =5s ). 【解析】【分析】(1)利用勾股定理列式求出 AB ,再表示出 AP 、AQ ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;(1)过点 P 作 PC ⊥OA 于 C ,利用∠OAB 的正弦求出 PC ,然后根据三角形的面积公式列出方程求解即可.解:(1)∵点A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵点P的速度是每秒1个单位,点Q 的速度是每秒1个单位,∴AQ=t,AP=10﹣t,①∠APQ是直角时,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP 是直角时,△AQP∽△AOB,∴,即,解得t=,综上所述,t=秒时,△APQ 与△AOB相似;(1)如图,过点P 作PC⊥OA 于点C,则PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面积=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故当t=55s)时,△APQ的面积为8cm1.【点睛】本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.20.(1)y B=-0.2x2+1.6x(2)一次函数,y A=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B =ax 2+bx 求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A 产品所获利润+投资B 产品所获利润”列出函数关系式求得最大值【详解】解:(1)y B =-0.2x 2+1.6x,(2)一次函数,y A =0.4x,(3)设投资B 产品x 万元,投资A 产品(15-x )万元,投资两种产品共获利W 万元, 则W=(-0.2x 2+1.6x )+0.4(15-x )=-0.2x 2+1.2x+6=-0.2(x -3)2+7.8,∴当x=3时,W 最大值=7.8,答:该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元.21.证明见解析.【解析】【分析】易证△DAC ≌△CEF ,即可得证.【详解】证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°, ∴∠DCA=∠CFE,在△DAC 和△CEF 中:90DCA CFE A E CD CF ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴△DAC ≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.22.(1)抛物线的解析式是y=12x 2﹣3x ;(2)D 点的坐标为(4,﹣4);(3)点P 的坐标是(345,416--)或(453,164). 【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB 的解析式为y=x ,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B 的解析式,进而由△P 1OD ∽△NOB ,得出△P 1OD ∽△N 1OB 1,进而求出点P 1的坐标,再利用翻折变换的性质得出另一点的坐标.试题解析:(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)∴将A与B两点坐标代入得:64883660a ba b+=⎧⎨+=⎩,解得:123ab⎧=⎪⎨⎪=-⎩,∴抛物线的解析式是y=12x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∴x﹣m=12x2﹣3x,∵抛物线与直线只有一个公共点,∴△=16﹣2m=0,解得:m=8,此时x1=x2=4,y=x2﹣3x=﹣4,∴D点的坐标为(4,﹣4)(3)∵直线OB的解析式为y=x,且A(6,0),∴点A关于直线OB的对称点A′的坐标是(0,6),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+6,过点(8,8),∴8k2+6=8,解得:k2=14,∴直线A′B的解析式是y=164y x=+,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,164x+),又点N在抛物线y=12x2﹣3x上,∴164x+=12n2﹣3n,解得:n1=﹣32,n2=8(不合题意,舍去)∴N点的坐标为(﹣32,458).如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣32,-458),B1(8,﹣8),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴1111 2OP ODON OB==,∴点P1的坐标为(345,416--).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(453,164),综上所述,点P的坐标是(345,416--)或(453,164).【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.23.83-【解析】【分析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【详解】原式=9﹣2+1﹣383-【点睛】本题考查了实数运算,正确化简各数是解题的关键.24.(1)作图见解析;(2)A1(0,1),点B1(﹣2,2).(3)22【解析】【分析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出△A 1OB 1,如图.(2)点A 1(0,1),点B 1(﹣2,2).(3)OB 1=OB ==2. 【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.25.(1)8y x=-;(2)P (0,6) 【解析】试题分析:(1)先求得点A 的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC ,根据三角形两边之差小于第三边知:当A 、C 、P 不共线时,PA-PC<AC ;当A 、C 、P 不共线时,PA-PC=AC ;因此,当点P 在直线AC 与y 轴的交点时,PA-PC 取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC 的解析式,即可求得点P 的坐标.试题解析: ()1令一次函数12y x =-中2y =,则122x =-, 解得:4x =-,即点A 的坐标为(-4,2).∵点A (-4,2)在反比例函数k y x =的图象上, ∴k=-4×2=-8, ∴反比例函数的表达式为8y x=-. ()2连接AC ,根据三角形两边之差小于第三边知:当A 、C 、P 不共线时,PA-PC<AC ;当A 、C 、P 不共线时,PA-PC=AC ;因此,当点P 在直线AC 与y 轴的交点时,PA-PC 取得最大值.设平移后直线于x 轴交于点F ,则F (6,0) 设平移后的直线解析式为12y x b =-+, 将F (6,0)代入12y x b =-+得:b=3∴直线CF 解析式:132y x =-+ 令12x -+3=8x-,解得:128(2x x ==-舍去),, ∴C (-2,4)∵A 、C 两点坐标分别为A (-4,2)、C (-2,4) ∴直线AC 的表达式为6y x =+,此时,P 点坐标为P (0,6).点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.26.1【解析】【分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【详解】解:原式=1﹣1×+1+=1﹣+1+=1. 【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.27.-13【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】原式=[x 2x 2+- +()24x 2-]÷x x 2-=[()22x 4x 2---+()24x 2-]÷x x 2-=()22x x 2-·x 2x -=x x 2-, 当x=12时,原式=12122-=-13. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)求OP的长;
(3)直线 与反比例函数的图象有两个交点A,B,若AB>10,直接写出m的取值范围.
24.如图,P是 所对弦AB上一动点,过点P作PM⊥AB交 于点M,作射线PN交 于点N,使得∠NPB=45°,连接MN.已知AB=6cm,设A,P两点间的距离为xcm,M,N两点间的距离为ycm.(当点P与点A重合时,点M也与点A重合,当点P与点B重合时,y的值为0)
北京市朝阳区九年级综合练习(二)
数学试卷2019.6
学校班级姓名考号
考
生
须
知
1.本试卷共8页,共三道大题,28道小题,满分100分。考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、班级、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)
下面1-8题均有四个选项,其中符合题意的选项只有一个.
1.下列轴对称图形中只有一条对称轴的是
(A)(B)(C)(D)
2.2019年4月25-27日,第二届“一带一路”国际合作高峰论坛在北京举行,自“一带一路”倡议提出以来,五年之间,北京市对外贸易总额累计约30000亿美元,年均增速1.5%.将30 000用科学记数法表示应为
(A)a>0,b>0
(B)a>0,b<0
(C)a<0,b>0
(D)a<0,b<0二、填空题(本题共16分 Nhomakorabea每小题2分)
9.在函数 中,自变量x的取值范围是_____.
10.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=_____°.
∴∠APQ=90°(_____).(填写推理的依据)
即PQ⊥l.
20.关于x的方程 有两个实数根.
(1)求实数m,n需满足的条件;
(2)写出一组满足条件的m,n的值,并求此时方程的根.
21.如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.
(1)求证:四边形BECD是矩形;
15.世界上大部分国家都使用摄氏温度(°C),但美、英等国的天气预报仍然使用华氏温度(°F),两种计量之间有如下的对应表:
摄氏温度(°C)
0
10
20
30
40
50
华氏温度(°F)
32
50
68
86
104
122
由上表可以推断出,华氏0度对应的摄氏温度是_____°C,若某一温度时华氏温度的值与对应的摄氏温度的值相等,则此温度为_____°C.
435
530
901
若一家水果商店以6元/kg的价格购买了5000kg该种水果,不考虑其他因素,要想获得约15000元的利润,销售此批水果时定价应为_____元/kg.
13.如图,AB是⊙O的直径,C是⊙O上一点,将 沿直线AC翻折,若翻折后的图形恰好经过点O,则∠CAB=_____°.
14.如图,在正方形ABCD中,对角线AC,BD相交于点O,E是OB的中点,连接AE并延长交BC于点F,若△BEF的面积为1,则△AED的面积为_____.
(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.
22.如图,△ABC内接于以AB为直径的⊙O,过点A作⊙O的切线,与BC的延长线相交于点D,在CB上截取CE=CD,连接AE并延长,交⊙O于点F,连接CF.
(1)求证:AC=CF;
(2)若AB=4, ,求EF的长.
23.在平面直角坐标系 中,反比例函数 的图象经过点P(3,4).
16.某公园门票的收费标准如下:
门票类别
成人票
儿童票
团体票(限5张及以上)
价格(元/人)
100
40
60
有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.
三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)
作射线AB,以点B为圆心,AP长为半径画弧,交AB的延长线于点Q;
作直线PQ.
所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接BP,
∵_____=_____=_____=AP,
∴点A,P,Q在以点B为圆心,AP长为半径的圆上.
(A)80°(B)70°
(C)60°(D)50°
6.如果 ,那么代数式 的值为
(A)-2(B)2(C) (D)3
7.某公司生产的一种产品按照质量由高到低分为A,B,C,D四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:
根据以上信息,下列推断合理的是
(A)改进生产工艺后,A级产品的数量没有变化
(B)改进生产工艺后,B级产品的数量增加了不到一倍
(C)改进生产工艺后,C级产品的数量减少
(D)改进生产工艺后,D级产品的数量减少
8.小明使用图形计算器探究函数 的图象,他输入了一组a,b的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a,b的值满足
11.点A( , ),B( , )在二次函数 的图象上,若 , ,则 _____ .(填“>”,“=”或“<”)
12.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.
发货时重量(kg)
100
200
300
400
500
600
1000
收货时重量(kg)
94
187
282
338
(A)3.0×103(B)0.3×104(C)3.0×104(D)0.3×105
3.右图是某个几何体的展开图,该几何体是
(A)圆锥(B)圆柱
(C)三棱柱(D)四棱柱
4.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是
(A) (B) (C) (D)
5.如图,直线 ∥ ,AB=BC,CD⊥AB于点D,若∠DCA=20°,则∠1的度数为
17.计算: .
18.解不等式组 并写出它的所有整数解.
19.下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.
已知:直线l及直线l上一点P.
求作:直线PQ,使得PQ⊥l.
作法:如图,
在直线l上取一点A(不与点P重合),分别以点P,A为圆心,AP长为半径画弧,两弧在直线l的上方相交于点B;