(完整版)控制系统的极点配置设计法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统的极点配置设计法
一、极点配置原理
1.性能指标要求
2.极点选择区域
主导极点:
2
11
1
cos tan
ξ
βξ
ξ
--
-
==
图3.22 系统在S平面上满足
时域性能指标的范围
n
s
t
ζω
4
=
;当Δ=0.02时,。

n
s
t
ζω
3
=
当Δ=0.05时,
3.其它极点配置原则
系统传递函数极点在s 平面上的分布如图(a )所示。

极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2)
;同时,极点s 1、s 2的附近不存在系统的零点。

由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为
135
1
451s n s t t =⨯≤
ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。

图(b )表示图(a )所示的单位阶跃响应函数的分量。

由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。

因为它衰减得最慢。

其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。

因此,对系统过渡过程进行近似分析时。

可以忽略这些分量对系统过渡过程的影响。

n x o (t)
(a )
(b )
系统极点的位置与阶跃响应的关系
二、极点配置实例
磁悬浮轴承控制系统设计
1.1磁悬浮轴承系统工作原理
图1是一个主动控制的磁悬浮轴承系统原理图。

主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。

设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。

(a)(b)
图1 磁悬浮轴承系统的工作原理
Fig.1 The magnetic suspension bearing system principle
drawing
假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。

反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。

因此,不论转子受到向上或向下的扰动,都能回到平衡状态。

这就是主动磁轴承系统的工作原理。

即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。

悬浮系统的刚
度、阻尼及稳定性主要是由控制规律决定。

实际的磁悬浮轴承系统中,在某个坐标方向上,通常是对称于转子布置两个结构及参数完全相同而作用相反的电磁铁,由这两个电磁铁共同作用产生磁悬浮力将转子悬浮在平衡位置,如图1(b )所示。

2.磁悬浮轴承的开环控制模型 2.1磁悬浮轴承的控制模型 1.磁悬浮力方程
由图1(b )求磁悬浮轴承的单边子系统电磁铁对转子产生的磁悬浮力,可根据法拉第电磁力公式近似表示为
2
204
x N A I F x μ⎛⎫
=
⎪⎝⎭
(1)
式中,0μ为真空磁导率,N 为线圈匝数,A 为铁心与气隙的横截面面积,I 为电流,x 为气隙大小.
设转子处于平衡位置时的气隙为0g ,当转子离开平衡位置向电磁铁方向产生偏移量x ,则通过减小流进绕组的电流i 来调节使转子回复到平衡位置,把电流表示成0I I i =-。

在转子位移变化很小(x<<g o )时,将其线性化得
x x i F K x K i =⋅+⋅ (2)
式中,322
003
02x AN I K g μ=
为位移刚度系数;20
2
02o i AN I K g μ=
为电流刚度系数。

其拉普拉斯变换为:
()()()x x i F s K X s K I s =⋅+⋅ (3)
2.电磁绕组端电压方程
由于常导电磁轴承的转子位移变化时,其自感系数也要变化,即
常导电磁轴承的线圈的电感系数是转子位移x 的函数,因此其端电压(或电流)也是转子位移x 的函数。

对于图2的转子上、下电磁铁绕组,由于x 为一微小量,故其自感系数分别近似为
22001
00022
002000(1)2()2(1)2()2SN SN x
L g x g g SN SN x L g x g g μμμμ⎧=≈+⎪-⎪
⎨⎪=≈-⎪+⎩
(4) 绕组端电压分别为
001
0000200()(1)22()(1)22L L i x di dx
u t Ri g dt g dt L L i x di dx u t Ri g dt g dt
⎧=+++⎪⎪

⎪=--+⎪⎩
(5)
式中,R 为各电磁铁绕组电阻,2
000
SN L g μ=为转子处于平衡位置时上
下常导绕组的电感值。

由式(9)的第一式加上第二式可得整个串联线圈绕组的端电压为
120
()
()()()2di t u t u t u t L Ri dt
=+=+ (6) 其拉氏变换为:
()0()2()U s L s R I s =+ (7)
式中,2
00
2o AN L g μ=
为转子在平衡位置时绕组的电感。

3.转子运动方程
根据牛顿第二定律得球形转子沿x 方向运动的运动方程为
22x d d x
F F m dt
+= (8)
式中,m 为球形转子的质量;d F 为电磁悬浮力以外的扰动作用。

将上式进行拉普拉斯变换得:
)()()(2s F s F s X ms d x += (9)
式(3)、式(7)以及式(9)即为描述通风机磁悬浮轴承系统动力学特性的数学模型。

不考虑干扰情况下,由它们得输入绕组电压信号到输出转子径向位移信号的开环系统传递函数为:
()()
2
0()
()2i x K X s U s L s R ms K =+- (10) 由上式可知,开环系统存在S 复平面上的右极点,故系统不可能稳定。

要使其稳定,必须采用反馈控制对系统进行闭环控制。

3.磁悬浮轴承的闭环控制 1.系统控制策略及闭环传递函数 1)控制框图及闭环传递函数
由(10)式可知,要使系统稳定,必须对系统进行综合校正。

本文采用PD 控制策略对系统进行串联校正,图2为PD 控制风机磁悬浮系统框图。

图2磁悬浮轴承系统的PID 控制系统框图
()03
20000()()()
22i
d p i p x i d x X s s v s K T s K L m
K K RK K T L K R s s s L L m L m
Φ=
⋅+=
--+++
(11)
由上式得系统的特征方程为
320000220i p x i d x
K K RK K T L K R s s s L L m L m
--+
++= (12) 欲使系统满足稳定性要求,由特征方程解出来的特征根必须具有负实部。

2)使系统响应速度为最快的极点配置
本设计对系统采用极点配置方法来确定有关控制参数。

为了提高系统的响应速度,并减小稳态误差,应尽可能使系统PD 控制器的系数p K 和d T 增大。

为了确定控制器的参数,可对系统配置3个位于根平面(S 复平面)左侧的闭环极点,并设其中2个极点相等即,
12(0)s s r r ==->,3(0)s p p =->,于是系统的特征方程应表述为
2()()0s r s p ++=
3222(2)(2)0s r p s r pr s pr +++++= (13)
对比式(14)与式(15)得
020*******i d x
i p x R
r p L K T L K r pr L m K K RK r p
L m ⎧=+⎪⎪⎪-⎪=+⎨

⎪-⎪=⎪⎩
(14) 由上式可知,要改善系统的快速响应速度、提高控制精度以及加强系统的稳定性,必须使第2式~第3式中的系数p K 和d T 的值尽可能大。

解式(14)得
020002300243222x d
i x p
i
R p r L R r r L m L K L T K R r r L m RK L K K ⎧⎛⎫=-⎪ ⎪
⎝⎭⎪
⎪⎛⎫⎪-+ ⎪⎪⎝⎭=⎨⎪
⎪⎛⎫⎪-+ ⎪⎪⎝⎭=⎪⎩
(15) 为使p K 和d T 为最大值,应满足
00
200460
460
d i p i R r L m L dT dr
K R r r L m dK L dr
K ⎧⎛⎫
-⎪ ⎪⎝⎭⎪==⎪⎪⎨
⎛⎫⎪- ⎪⎪⎝⎭⎪==⎪⎩ (16) 求解上式得0
23R
r L =
,将其代入式()并把系统所有相应的结构参数代入得各控制参数为
15.72531013212.640172510003.49978d p
r p T K ⎧==⎪
=⎨⎪=⎩ 于是系统的闭环传递函数为
()
32
1111.11212.640172510003.49978()47.1759304741.85613623888.639272
s s s s s ⨯+Φ=
+++ (17) 仿真结果 仿真程序:
mun=1111.11*[0 0 212.6401725 10003.49978]; den=[1 47.1759304 741.86561362 3888.639272]; t=0:0.01:1;
step(mun,den,t); 仿真结果图:
00.10.20.30.40.50.60.70.80.91
0.2
0.4
0.6
0.8
1
1.2
1.4
Step Response
Time (sec)
A m p l i t u d e
2)使系统满足性能指标要求配置极点 性能指标为
005e σ-=≤ (18)
4
0.1s n
t s ξω≈
≤ (19)
式中ξ,和ωn 为系统的阻尼比和无阻尼自然振荡角频率。

按照系统的性能指标要求,可取阻尼比ξ=1,则ωn =40,于是主导极点可配置为:
1,240n s ξω=-±=± (20)
另一极点取:s 3=-400。

则系统的期望闭环特征方程为
2(40)(400)s s ++32
480336006400000s s s =+++=
(22)
将上式与式(12)对比得
02480R
L = 0033600i d x K T L K L m -= 02640000i p x K K RK L m
-= 则结构参数为
()
321111.11242.212502102322.8()48033600640000
s s s s s ⨯+Φ=
+++ (23)
仿真程序:
mun=1111.11/178*[0 0 242.212502 102322.8]; den=[1 480 33600 640000]; t=0:0.01:1; step(mun,den,t); 仿真图:
00.10.20.30.40.50.60.70.80.91
0.10.20.30.40.50.60.70.80.9
1Step Response
Time (sec)
A m p l i t u d e。

相关文档
最新文档