不等式的基本性质(书)
不等式及其性质ppt课件
![不等式及其性质ppt课件](https://img.taocdn.com/s3/m/22fb603676a20029bc642d5b.png)
位置吗?
(不可随意互换位置)
(3)什么叫不等式?
(用不等号表示不等关系的式子叫不等式)
练习:
1.判断下列式子哪些是不等式?为什么?
√(1)3> 2 √(2)a2+1> 0 (3)3x2+2x
√(4)< 2x+1
(5)x=2x-5
√(6)x2+4x< 3x+1
√(7)a+b≠c
2.用“>”或“<”填空: (1)4>-6 (2)-1<0 (3)-8<-3 (4)-4.5<-4
小结: 1.掌握不等式是否成立的判断方法; 2.依题意列出正确的不等式. (留意:表示不等关系的词语要用
不等号来表示,“不大于〞即“≤”, “不小于〞即“≥” )
1.什么是等式? 2.等式的基本性质是什么? 3.用“>”或“<”填空:
7 + 3 >4 + 3 7 +(-3) >4 +(-3) 7×3 >4×3 7×(-3) < 4×(-3)
2.已知数值:-5, 0.5, 3, 0, 2, -2.5, 5.2 (1)判别:上述数值,哪些使不等式x+3<6
成立?哪些使之不成立? (2)说出几个使不等式x+3<6成立的x的值,
及使之不成立的x的值.
总结:判断不等式是否成立的方法-------不等号两边的大小关系是否与不等号一致
反馈练习:
1.当x取下列数值时,哪些是不等式 x+3>6解?
2.统计全班同学的年龄,年龄最大者为16岁, 可以知道全班每个同学的年龄都小于17岁;
若设物体A的重量为x克;某天的气温为 t℃; 本班某同学的年龄为a岁,上述不等关系能 用式子
思考教材的3个问题
《不等式的性质》不等式与不等式组PPT课件
![《不等式的性质》不等式与不等式组PPT课件](https://img.taocdn.com/s3/m/dc16d6cb09a1284ac850ad02de80d4d8d15a019c.png)
例1:
我是最棒的 ☞
判断下列各题的推导是否正确?为什么(学生口答)
(1)因为7.5>5.7,所以-7.5<-5.7;
方向不变。
➢如式不果的等a两>式边b,基都c本乘<性0以质(那3或么:除ac以<b)c同(或一ac个负bc数,不)就等是号说的不方等向
改变。
等式性质与不等式性质的区别和联系
• 区别:等式两边都乘以(或除以)同一个数(除数不 为0)时,结果仍相等;不等式两边都乘以(或除以) 同一个数(除数不为0)时,会出现两种情况,若是 正数,不等号方向不改变,若是负数不等号方向要改 变,而且不等式两边同乘以0,结果相等.
5. 8 x 1,两边都乘 7 ,得 _x____87_.
7
8
例 已知a<0 ,试比较2a与a的大小。 解法一:∵2>1,a<0, ∴2a<a(不等式的基本性质3)
解法二: 在数轴上分别表示2a和a的点(a<0), 如图.2a位于a的左边,所以2a<a
∣a∣ ∣a∣
2a
a
想一想:还有其 他比较2a与a的 大小的方法吗?
如果_a_>_b_,那么a±c>b±c _________.
不等式还有什么类似的性质呢? ➢如果 7 > 3
那么 7×5 _>___ 3× 5 , 7÷5 __>__ 3÷ 5 ,
➢如果-1< 3,
那么-1×2<____3×2,
-1÷2__<__3÷2,
不等式基本性质2:不等式的两边都乘以
《不等式的基本性质》课件ppt
![《不等式的基本性质》课件ppt](https://img.taocdn.com/s3/m/374148e29b89680203d825d8.png)
a b 如果a >b,c > 0 ,那么 ac>bc(或 ) 就是说 c c
不等式的两边都乘以(或除以)同一个正数,不等号 的方向不变。
不等式基本性质3:
如果a>b,c<0 那么ac<bc(或 )就是说不等式 的两边都乘以(或除以)同一个负数,不等号的方向 改变。 不等式的对称性:
a b c c
如果a>b,那么b<a
不等式传递性:
如果a>b,b>c,那么a>c
小结: ①在利用不等式的基本性质进行变形时,当 不等式的两边都乘以(或除以)同一个字母, 字母代表什么数是问题的关键,这决定了是 用不等式基本性质2还是基本性质3,也就是 不等号是否要改变方向的问题; ②运用不等式基本性质3时,要变两个号,一 个性质符号,另一个是不等号.
(1)-3<0; (2)4x+3y>0 (3)x=3;(4) X2+xy+y2 (5)x≠5; (6)X+2>y+5;
不等式的性质 2
等式具有那些性质?
不等式是否具有这些的性质?
由a+2=b+2, 你能得到a=b吗? 由a-2=b-2, 你能得到a=b吗? 由0.5a=0.5b, 你能得到a=b吗?
a a 正 (2) ∵ , ∴a是____数 2 3
(3) ∵ ax < a 且 x > 1 , 负 ∴a是____数
1、已知 a < - 1 ,则下列不等式中错误的是 ( B ) A、4a < - 4 B、- 4a < 4 C、a + 2 < 1 D、2 – a > 3
2、已知x < y,下列哪些不等式成立? (1) x – 3 < y – 3 (2)- 5 x < - 5 y
不等式的基本性质
![不等式的基本性质](https://img.taocdn.com/s3/m/4e00b855804d2b160b4ec037.png)
4
3
2
= 2x (x -1)+(1- x)(1+ x) 3 =(x -1)(2x - x -1) 2 = (x 1)(x 1)(2x 2x 1) 1 1 = (x -1) 2(x + 2) + 2 > 0
2 2
3
∴A>B
1、不等式的基本性质: ①对称性: a b b a
考点突破 利用不等式性质判断命题真假 运用不等式的性质判断时,要注意不等式成立的 条件,不要弱化条件,尤其是不能凭想当然随意 捏造性质.解有关不等式的简单判断和选择题时,
也可采用特殊值法进行排除,注意取值一定要遵
循如下原则:一是满足题设条件;二是取值要简
单,便于验证计算.
对于实数 a,b,c,下列命题中的真命题 是( ) A.若 a>b,则 ac2>bc2 1 1 B.若 a>b>0,则a>b b a C.若 a<b<0,则 > a b 1 1 D.若 a>b,a>b,则 a>0,b<0
本专题知识结构
第一讲 不等式和绝对值不等式
不 等 式 选 讲
第二讲 证明不等式的基本方法 第三讲 柯西不等式与排序不等式 第四讲 数学归纳法证明不等式
第一讲
不等式和绝对值不等式
1.不等式的基本性质
知识回顾
A B a b b>a B b
a>b
A a
a>b a-b>0
解:
2
2
2 2 2
4 2 4
4
,
4
不等式的基本性质
![不等式的基本性质](https://img.taocdn.com/s3/m/5cb6edb6f61fb7360b4c65b0.png)
课题:不等式的基本性质()教学目标:1.掌握作差比较大小的方法,并能证明一些不等式。
1.掌握不等式的性质,掌握它们的证明方法及其功能,能简单运用。
2.提高逻辑推理和分类讨论的能力;培养条理思维的习惯和认真严谨的学习态度。
教学重点:作差比较大小的方法;不等式的性质。
教学难点:不等式的性质的运用教学过程:第1课时:问题情境:现有A、B、C、D四个长方体容器,A、B容器的底面积为a2,高分别为a、b,C、D容器的底面积为b2,高分别为a、b,其中a≠b。
甲先从四个容器中取两个容器盛水,乙用剩下的两个容器盛水。
问如果你是甲,是否一定能保证两个容器所盛水比乙的多? 分析:依题意可知:A 、B 、C 、D 四个容器的容积分别为a 3、a 2b 、ab 2、b 3,甲有6种取法。
问题可以转化为比较容器两两和的大小。
研究比较大小的依据:我们知道,实数与数轴上的点是一一对应的。
在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大。
在右图中,点A 表示实数a ,点B 表示实数b ,点A 在点B 右边,那么a >b 。
而a -b 表示a 减去b 所得的差,由于a >b ,则差是一个正数,即a -b >0。
命题:“若a >b ,则a -b >0”成立;逆命题“若a -b >0,则a >b ”也正确。
类似地:若a <b ,则a -b <0;若a =b ,则a -b =0。
逆命题也都正确。
结论:(1)“a >b ”⇔“a -b >0”(2)“a =b ”⇔“a -b =0”(3)“a <b ”⇔“a -b <0”——以上三条即为比较大小的依据:“作差比较法”。
正负数运算性质:(1) 正数加正数是正数;(2) 正数乘正数是正数;(3) 正数乘负数是负数;(4) 负数乘负数是正数。
研究不等式的性质:性质1:若a >b ,b >c ,则a >c (不等式的传递性)证明:∵a >b ∴a -b >0∵b >c ∴b -c >0∴(a -b)+(b -c)=a -c >0 (正负数运算性质)则a >c反思:证明要求步步有据。
人教版数学七年级下册第九章《不等式的性质及绝对值不等式》优课件
![人教版数学七年级下册第九章《不等式的性质及绝对值不等式》优课件](https://img.taocdn.com/s3/m/d4d70e30ae45b307e87101f69e3143323968f580.png)
2x-3,x>2 画出此函数的图象可知,f(x)≥1, ∴要使关于 x 的不等式x-1+x-2≤a2+a+1 的解 集为空集,则需 a2+a+1<1,解得-1<a<0.
规律总结
1.运用不等式的性质时,一定要注意不等式成立的条 件,若弱化了条件或强化了条件都可能得出错误的结论.使 用不等式性质解题时,要搞清性质成立的条件,明确各步推 理的依据,以防出现解题失误.
命题趋势
本单元的内容,是对必修5的补充和深化,预计2011年, 考查的重点一是绝对值不等式的解法;二是利用不等式的 性质求最值;三是柯西不等式和数学归纳法的应用.考查 知识面比较广,有一定的技巧.
使用建议
本单元内容是作为高考的选考内容,在考试中所占的 分值较少,但对提高同学们的逻辑思维能力、分析解决问 题的能力、数形结合的能力和抽象思维能力作用很大.为 此,在复习中建议注意以下几点:
【点评】 本例较好地体现了利用基本不等式求 最值时应充分考虑成立条件,即一正二定三等.不过 首先需由三点共线推出a、b的关系式,利用斜率公式 可得.
变 式 题 已 知 cos2α + cos2β + cos2γ = 1 , 则 sinαsinβsinγ 的最大值为________.
【思路】利用均值不等式求最值时,一定要注意 “一正二定三相等”,同时还要注意一些变形技巧, 积极创造条件利用均值不等式.常用的初等变形有均 匀裂项、增减项、配系数等. 利用均值不等式还可以证 明条件不等式,关键是如何恰当地利用好条件.本题 中目标函数为积式,而cos2α+cos2β+cos2γ=1为隐含 的条件等式,故需创造条件使各因式之和为定值.
浙教版数学八年级上册3.2《不等式的基本性质》教案
![浙教版数学八年级上册3.2《不等式的基本性质》教案](https://img.taocdn.com/s3/m/5c5d8bfcdc3383c4bb4cf7ec4afe04a1b071b0c3.png)
浙教版数学八年级上册3.2《不等式的基本性质》教案一. 教材分析浙教版数学八年级上册3.2《不等式的基本性质》一节,主要让学生掌握不等式的性质,包括不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
这些性质是解不等式问题的关键,为后续学习不等式的解法、不等式的应用等奠定基础。
二. 学情分析学生在七年级已经学习了不等式的概念,掌握了不等式的基本运算,但对于不等式的性质理解不够深入。
通过本节课的学习,学生应能理解并掌握不等式的基本性质,能够运用不等式的性质解决一些实际问题。
三. 教学目标1.知识与技能:掌握不等式的基本性质,能够运用不等式的性质解决一些实际问题。
2.过程与方法:通过观察、操作、交流、归纳等活动,培养学生的逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:不等式的基本性质。
2.难点:不等式性质的运用。
五. 教学方法采用问题驱动法、合作交流法、实践操作法等,引导学生主动探究、合作交流,培养学生的动手操作能力和解决问题的能力。
六. 教学准备1.教具:多媒体课件、黑板、粉笔。
2.学具:练习本、笔。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的不等式图片,如身高、体重等,引导学生回顾不等式的概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师出示不等式,如2x > 3,引导学生观察、思考:不等式的两边同时加上或减去同一个数或整式,不等号的方向是否会改变?不等式的两边同时乘以或除以同一个正数,不等号的方向是否会改变?不等式的两边同时乘以或除以同一个负数,不等号的方向是否会改变?3.操练(10分钟)学生分组讨论,每组选择一个不等式,如3x - 2 > 7,运用不等式的性质进行化简,并解释理由。
不等式的基本性质
![不等式的基本性质](https://img.taocdn.com/s3/m/c43fff1d6c175f0e7cd137bb.png)
从而a<c<b。当b-c=0,即b=c时,因为bc>a2,
所以b2>a2,即b≠a。又a2-2ab+b2=(a-b)2=0,所以a=b,
与前面矛盾,故b≠c.所以a<c<b.
14
• • • • • • • • • • •
小结
小结:理解并掌握不等式的六个基本性质
作业
一、课本 P10 3
2、求证:
1 1 (1)如果a>b, ab>0,那么 ; a b (2)如果a>b>0,c<d<0,那么ac<bd。
3、选做题:设a≥b,c≥d,
3.已知 a 0,比较 (a 2 2a 1)( a 2 2a 1) 与 (a a 1)(a a 1) 的大小.
a2 c2 且 0, c>0。 a>0,所以b= 2a
因为(a-c)2=a2-2ac+c2=2ab-2ac=2a(b-c )≥0,所以b-c≥0. 2 2 a c a2 c2 2 2 c a , , bc a , 当b-c>0,即b>c时,b= 得 2a 2a 所以a2c+c3 >2a3即a3-c3+a3-a2c<0,(a-c)(2a2+ac+c2)<0
• 例2、比较
【典型例题】
例3、比较以下两个实数的大小:
1 (1)16 与18 ; ( 2) 与2 n (n N* ) n1 n
18 16
(3)比较a b 和a b 的
2019-2020学年人教版高中数学选修4-5教材用书:第一讲 不等式和绝对值不等式 一 不等式 1.不等式的基本性
![2019-2020学年人教版高中数学选修4-5教材用书:第一讲 不等式和绝对值不等式 一 不等式 1.不等式的基本性](https://img.taocdn.com/s3/m/1905b474866fb84ae45c8dd6.png)
1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差与0的大小;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差与0的大小.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘一个数仍为等式,但不等式两边同乘同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N*).已知x,y均为正数,设m=x +y,n=x+y,试比较m和n的大小.两式作差――→变形 转化为因式乘积形式――→与0比较判断正负,得出大小 m -n =1x +1y -4x +y =x +y xy -4x +y =+-4xy+=-+,∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0. ∴m -n ≥0,即m ≥n (当x =y 时,等号成立).比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2) =(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b2≥0. 当且仅当a =b 时,等号成立, 所以a 4+b 4≥a 3b +ab 3.2.在数轴的正半轴上,A 点对应的实数为6a29+a4,B 点对应的实数为1,试判断A 点在B 点的左边,还是在B 点的右边?解:因为6a29+a4-1=--9+a4≤0,所以6a29+a4≤1. 当且仅当a =±3时,等号成立,所以当a ≠±3时,A 点在B 点左边,当a =±3时,A 点与B 点重合.已知a >b >0,c <d <0,e <0.求证:a -c >b -d .可以作差比较,也可用不等式的性质直接证明. 法一:e a -c -eb -d=-d -a +--=-a +c ---,∵a >b >0,c <d <0,∴b -a <0,c -d <0.∴b -a +c -d <0.又∵a >0,c <0,∴a -c >0.同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴-a +c --->0,即e a -c >eb -d . 法二:⎭⎪⎬⎪⎫c<d<0⇒-c>-d>0a>b>0⇒⎭⎪⎬⎪⎫a -c>b -d>0⇒1a -c <1b -d e<0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.已知x ≥1,y ≥1,求证:x 2y +xy 2+1≤x 2y 2+x +y . 证明:左边-右边=(y -y 2)x 2+(y 2-1)x -y +1 =(1-y )=(1-y )(xy -1)(x -1).因为x ≥1,y ≥1,所以1-y ≤0,xy -1≥0,x -1≥0. 所以x 2y +xy 2+1≤x 2y 2+x +y .4.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b .证明:因为a ,b ,x ,y 都是正数,且1a >1b ,x >y ,所以x a >y b ,所以a x <by .故a x +1<b y +1,即x +a x <y +b y .所以x x +a >yy +b.(1)已知-π2≤α≤β≤2,求α-β的取值范围.(2)已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围. 求代数式的范围应充分利用不等式的基本性质. (1)∵-π2≤α≤β≤π2, ∴-π2≤α≤π2,-π2≤-β≤π2,且α≤β.∴-π≤α-β≤π且α-β≤0.∴-π≤α-β≤0.即α-β的取值范围为.(2)设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b .解得λ1=53,λ2=-23.∴-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23.∴-113≤a +3b ≤1.即a +3b 的取值范围为⎣⎢⎡⎦⎥⎤-113,1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1⇒⎩⎪⎨⎪⎧m =12,n =32.又∵1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12α+β,-3≤32α-β-32⇒-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.6.三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,求ba 的取值范围.解:两个不等式同时除以a ,得⎩⎪⎨⎪⎧1≤b a +ca≤2,①b a ≤1+c a ≤2·ba ,②将②×(-1),得⎩⎪⎨⎪⎧1≤b a +ca≤2,-2·b a ≤-1-c a ≤-ba,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.即b a 的取值范围是⎣⎢⎡⎦⎥⎤23,32. 课时跟踪检测(一)1.下列命题中不.正确的是( ) A .若3a>3b ,则a >b B .若a >b ,c >d ,则a -d >b -c C .若a >b >0,c >d >0,则a d >bcD .若a >b >0,ac >bd ,则c >d解析:选D 当a >b >0,ac >ad 时,c ,d 的大小关系不确定. 2.已知a >b >c ,则下列不等式正确的是( ) A .ac >bc B .ac 2>bc 2C .b (a -b )>c (a -b )D .|ac |>|bc |解析:选C a >b >c ⇒a -b >0⇒(a -b )b >(a -b )c . 3.如果a <b <0,那么下列不等式成立的是( ) A.1a <1b B .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -b ab <0,-1a <-1b成立,故D 项正确.4.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d-c )中,成立的个数是( )A .1B .2C .3D .4解析:选 C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个数为3.5.给出四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 能得出1a <1b成立的有________(填序号).解析:由1a <1b ,得1a -1b <0,b -a ab <0,故①②④可推得1a <1b成立.答案:①②④6.设a >b >1,c <0,给出下列三个结论:①c a >c b ;②a c <b c;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是________.解析:由a >b >1,c <0,得1a <1b ,c a >c b ;幂函数y =x c (c <0)是减函数,所以a c <b c;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:①②③7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________. 解析:设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y .∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎪⎨⎪⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ).∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152.由不等式同向可加性,得3<-12(x +y )+52(x -y )<8,即3<z <8.答案:(3,8)8.若a >0,b >0,求证:b2a +a2b≥a +b . 证明:∵b2a +a2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =-+ab,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴-+ab≥0.∴b2a +a2b≥a +b . 9.已知-6<a <8,2<b <3,分别求2a +b ,a -b ,ab 的取值范围.解:∵-6<a <8,∴-12<2a <16. 又2<b <3,∴-10<2a +b <19. ∵2<b <3,∴-3<-b <-2. 又∵-6<a <8,∴-9<a -b <6. ∵2<b <3,∴13<1b <12.①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab<0.综合①②得-3<ab<4.∴2a +b ,a -b ,ab的取值范围分别为(-10,19),(-9,6),(-3,4).10.已知a >0,a ≠1. (1)比较下列各式大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,am +n+1与a m +a n的大小关系,并加以证明.解:(1)由题意,知a >0,a ≠1,①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a .②a 3+1-(a 2+a )=a 2(a -1)-(a -1) =(a +1)(a -1)2>0,∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2)=a 3(a 2-1)-(a 2-1)=(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1,∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1, ∴(a 2-1)(a 3-1)>0,即a 5+1>a 3+a 2. (2)根据(1)可得am +n+1>a m +a n.证明如下:a m +n +1-(a m +a n )=a m (a n -1)+(1-a n )=(a m -1)(a n -1).当a >1时,a m>1,a n>1,∴(a m-1)(a n-1)>0. 当0<a <1时,0<a m<1,0<a n<1, ∴(a m-1)(a n-1)>0.综上可知(a m-1)(a n-1)>0,即a m +n+1>a m +a n.。
§7.3 不等式的基本性质(陈宏圣)
![§7.3 不等式的基本性质(陈宏圣)](https://img.taocdn.com/s3/m/999342f64693daef5ef73d3b.png)
苏科版8年级下课题:§7.3 不等式的基本性质授课人:陈宏圣授课时间:2009.12.29教学目标知识与能力1.探索并掌握不等式的基本性质;2.能熟练运用不等式的性质进行不等式的变形.过程与方法通过自主讨论培养观察力和归纳的能力.情感态度与价值观1.通过学生的讨论使学生进一步体会合作的作用,培养集体合作的精神.2.在积极参与探索发现不等式基本性质的过程中,体会不等式的两条基本性质的作用和意义,培养学生探索数学问题的能力.教学重点和难点重点:探索不等式的基本性质。
难点:能正确应用不等式的基本性质进行不等式的变形.教学方法:引导学生自主探究,促进学生学会在实践中思考、探索、交流、合作,主动地获取数学知识和发展能力。
教具准备:多媒体。
教学过程一、引入新课前面同学们学习了不等式的概念,那不等式具有什么性质呢?这就是本节课我们所要研究的内容。
二、探索不等式的性质由课本的情境乘电梯引入不等式的性质1的讨论多媒体展示问题,引导学生思考。
(边放多媒体,边叙述)师:电梯里有母女两人,妈妈的身高a米比女儿的身高b米要高,当电梯升高6米时,妈妈相对于原来的高度仍比女儿高,即:由a>b可得a+6>b+6。
当电梯下降3米时,妈妈相对于原来的高度仍比女儿高,即:由a+6>b+6可得a+6-3>b+6-3。
问:你有什么发现吗?答:不等式两边同时加上或减去同一个数,不等号的方向不变。
问:如果在不等式两边同时加上或减去同一个整式呢?学生讨论后再请大家看表格归纳不等式的性质1问:从上面的描述中,能发现什么规律吗?学生分组讨论,交流意见。
一段时间后请学生回答:不等式两边都加上或减去同一个数,不等号的方向不变。
问:根据以上内容你能对下面问题做出判断吗?如果a>b,那么a+c > b+c , a-c > b-c问:由此你能概括出不等式具有什么性质吗?学生回答后,老师再强调并用大屏幕给出。
不等式的基本性质(初中)PPT课件
![不等式的基本性质(初中)PPT课件](https://img.taocdn.com/s3/m/1aefc59d81c758f5f61f67b7.png)
通过这节课的学习活 动你有哪些收获?
15
探究活动 比较等式与不等式的基本性质. 例如,等式是否有与不等式的基本性
质1类似的传递性?不等式是否有与等式的 基本性质类似的移项法则?你可以用列表 的方式进行对比.(请与你的伙伴交流)
16
比较等式与不等式的基本性质
基本性质1 基本性质2 基本性质3
(1)若2 x >-6,两边同除以2,得_____x__>_,-依3据 __不__等__式__的___基__本__性. 质3
(2)若-0.5 x≤1,两边同乘以-2,得_____X_≥__-,2依据 ___不__等__式__的__ 基本性质3
(3). 8 x 1,两边都乘 7 ,得x____7__.依据是不__等_式__的_基__本_性_ 质3
(对 )
2.x
1 2
0, 两边都加上(
1 2
),得
x
1 2
(
对
)
3.若-m>5,则m > -5.
(错 )
4. -0.9<-0.3,两边都除以(-0.3),得3 > 1 ( 对 )
11
例1 已知x > y ,试比较2- 1 x与 2- 1 y的大小。
3
3
12
•
13
例2 已知a<0 ,试比较2a与a的大小。
19
已知a> b,试比较4-3 a与 4-3b的大小。
20
(1)下列说法中>2a一定成立
C a>- a一定成立
D若-3x>12,则x>-4
(2)如果a>b,则下列式子中以一定成立的是 (C )
A a2>b2 C a-b>0
不等式的基本性质 (说课稿)
![不等式的基本性质 (说课稿)](https://img.taocdn.com/s3/m/d688dbef19e8b8f67c1cb916.png)
§9.1.2 不等式的基本性质(说课稿)收成中学严文选我今天说课的题目是《不等式的性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。
一、教材分析:1.教材的地位和作用本节课的内容是选自人教版义务教育课程标准实验教科书七年级下册第九章第一节第二课时《不等式的性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。
是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。
2.教学目标的确定教学目标分为三个层次的目标:⑴知识目标:主要是理解并掌握不等式的三个基本性质。
⑵能力目标:培养学生利用类比的思想来探索新知的能力,会利用不等式的性质进行化简。
⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,培养学生的数感,渗透数形结合的思想,体会类比思想和获得成功的喜悦。
3.教学重点和难点不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习。
性质3是学生比较难理解的知识,所以确定为本节课的教学难点。
二、教学方法、教学手段的选择:本节课在性质讲解中我采取探索、类比、归纳的学习方法,通过观察探索归纳得出不等式的性质。
使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。
为了突破学生对不等式性质3,理解的困难,采取了类比操作化抽象为具体的方法来设置教学。
整节课采用多媒体进行教学,精讲多练、讲练结合来落实各教学知识点。
三、学法指导:鉴于初一的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。
鼓励学生一题多解,并及时引导学生用小结方法,克服思维定势。
例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。
充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
四、(主要环节)教学流程:1、课题引入复习提问首先回顾等式的性质,教师提问:等式有哪些性质?解一元一次方程的基本步骤是什么?通过回顾等式的性质,为本节课类比等式的性质,探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,有助于学生建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
苏科版数学七年级下册1《不等式的性质》课件
![苏科版数学七年级下册1《不等式的性质》课件](https://img.taocdn.com/s3/m/6015de29a517866fb84ae45c3b3567ec102ddcc4.png)
A.>
B.<
不等式的基本性质2
不等式的两边同时乘以(或除以)同一个正数, 不等号的方向不变。
A. x> 4
若3x>12,则( )
3x > 12 33
x> 4
B. x<4
C. x>5
D. x<5
不等式的基本性质
不等式的两边同时加上(或减去)同一个数或同一个整式, 不等号的方向不变。
不等式的两边同时乘以(或除以)同一个正数, 不等号的方向不变。
不等式的两边同时乘以(或除以)同一个 不等号的方向
不等式的基本性质
不等式的两边同时乘以(或除以)同一个 , 不等号的方向
2 >1 2×(-2) 1×(-2)
-4 -2
-4 -3 -2 -1 0 1
不等式的基本性质3
如果a>b,那么-6a___-6b.
-6a < -6b 不等式的基本性质3
A.>
B.<
不等式的两边同时加上(或减去)同一个数或同一个整式, 不等号的方向不变。
A. x>20
如果a>b,那么a±c>b±c x-5>15
x-5+5>15+5 x>20
B. x>10
C. x<20
D. x<10
不等式的基本性质2
不等式的两边同时加上(或减去)同一个数或同一个整式, 不等号的方向不变。
不等式的两边同时乘以(或除以)同一个正数, 不等号的方向不变。
不等式的基本性质3
如果a>b,判断下面那个选项正确
A. -3a>-3b
B.3a<3b
C. - a<- b D. - a>- b
不等式的基本性质3
将不等式-3 x ≤ -9系数化1为( ) -3 -3
A. x≥3 B. x ≤3
《不等式的基本性质》PPT
![《不等式的基本性质》PPT](https://img.taocdn.com/s3/m/d33ad38329ea81c758f5f61fb7360b4c2f3f2a45.png)
不等式基本性质3:如果a>b,c<0 那么ac<bc(或 )就是说不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
10.2 不等式的基本性质
【学习目标】知道不等式的基本性质,能用不等式的基本性质将不等式变形。【学习重点】不等式的基本性质的导出过程。【学习难点】利用不等式的基本性质将不等式变形。
2023最新整理收集do
something
思考一下
等式具有那些性质?不等式是否具有这些类似性质?
等式基本性质1:等式的两边都加上(或减去)同一个整式,等式仍旧成立
等式基本性质2:等式的两边都乘以(或除以)同一个不为0的数,等式仍旧成立
如果a=b,那么a±c=b±c
如果a=b,那么ac=bc或 (c≠0),
感谢阅读
感谢阅读
>
<
<
>
>
<
通过上面的变形,你发现的规律是:
不等式的两边都乘(或除以)同一个正数,不等号的方向不变
不等式的两边都乘(或除以)同一个负数,不等号的方向改变
2:判断下列各题的推导是否正确?为什么(口答)(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b;(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a.答:.
加上5
2 < 17
a+7 > a
-21>-28
64 > 0
2x>28+7x
2、若m>n,判断下列不等式是否正确:(1)m-7<n-7 ( )(2)3m<3n ( )(3)-5m>-5n ( )(4) ( )(5) m+5≥n+5 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等关系【知识点归纳】【知识点1】 回顾等式的基本性质:基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.【知识点2】不等式的基本性质有哪些?基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.字母表示:若a > b ,则a+c > b+c ,a-c > b-c .基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.字母表示:若a > b ,c > 0,则ac > bc ,a c > b c. 基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变 字母表示:若a > b ,c < 0,则ac < bc ,a c <bc . 【知识点3】比较大小:(a 、b 分别表示两个实数或整式)一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即: a>b <===> a-b>0a=b <===> a-b=0a<b <===> a-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.【知识点4】不等式的基本性质与等式的基本性质有什么异同?①相同点:无论是等式还是不等式,都可以在它的两边加(或减)同一个数或同一个整式,②不同点:对于等式来说,在等式的两边乘(或除以)同一个正数(或同一个负数),等式仍然成立, 但是对于不等式来说,却不大一样,在不等式的两边乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边乘(或除以)同一个负数,不等号要改变方向.1. 以知a>b 用”>”或”<”连接下列各式;(1)a-3 ______b-3, (2)2a ______ 2b, (3)- a 3 ______ -b 3(4)4a-3_______4b-3 (5)a-b ______0例1、不等式的基本性质的简单应用:将下列不等式化成“x a >”或“x a <”的形式.(1)51x -<; (2)34x x >-; (3)132x >-; (4)52x -<-.解:(1)根据不等式的基本性质1,两边都加上5,得15x <+,即6x <.(2)根据不等式的基本性质1,两边都减去x ,得34x x ->-,即24x >-.根据不等式的基本性质3,两边都除以2,得2x >-.(3)根据不等式的基本性质2,两边都乘以2,得6x >-.(4)根据不等式的基本性质3,两边都除以5-,得25x >. 例2、不等式的基本性质的综合应用:2. 以知a>b 用”>”或”<”连接下列各式;(1)a-3 ______b-3, (2)2a ______ 2b, (3)- a 3 ______ -b 3(4)4a-3_______4b-3 (5)a-b ______0 (1)若a <b ,则-3a +1________-3b +1.(2)若-35x >5,则x ________-3.【课堂训练】1. 如果b a <,则下面不等式错误的是( B )A.b a 66<B.34+<+b aC.33-<-b aD.22b a ->- 2.已知x >y 且xy <0,a 为任意实数,下列式子正确的是( C )A.-x >yB.a 2x >a 2yC.a -x <a -yD.x >-y3.若a +3>b +3,则下列不等式中错误的是( B )A.-55b a -<B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b )4.若a >b ,c <0,则下列不等式成立的是( B )A.ac >bcB.c b c a <C.a -c <b -cD.a +c <b +c5.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)100x ->; (2)162x x >-; (3)350x +<; (4)125x -<-. 答案:(1)10x < (2)12x >- (3)53x <- (4)10x > 6.如果3415x -<,那么3154x <+,其根据是 ,如果33a b ->-ππ,则a b <,其根据是 .答案:不等式的基本性质1,不等式的基本性质3.7.用“<”或“>”号填空.①已知a <b<0,则-a ______-b ;a 1______b1; ②若a >b ,则a -6______b -6;③若a <b ,c ≠0,则-ac 2______-bc 2.答案:①> > ②> ③>;8.若0a b >>,则b a - 0,22a b - 0答案:<>>,,9.若2x >时,化简|2|x -= .解:由2x >,得2x <.20x ∴-<.|2|(2)2x x x ∴-=--=-.【课后作业】1、将下列不等式化成“x >a ”或“x <a ”的形式:(1)x -5>-1; (2)-2x >3; (3)3x <-9.(4)21>-x (5)65<-x (6)321≤x 2.已知y x >,下列不等式一定成立吗?(1)66-<-y x (2)y x 33< (3)y x 22-<- (4)1212+>+y x1. 讨论下列式子的正确与错误.(1)如果a <b ,那么a +c <b +c ; (2)如果a <b ,那么a -c <b -c ;(3)如果a <b ,那么ac <bc ; (4)如果a <b ,且c ≠0,那么c a 2.设a >b ,用“<”或“>”号填空.(1)a +1 b +1; (2)a -3 b -3; (3)3a 3b ;(4)4a 4b ; (5)-7a -7b ; (6)-a -b . 变式训练:1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式:(1)x -2<3; (2)6x <5x -1;(3)21x >5; (4)-4x >3.2.设a >b .用“<”或“>”号填空.(1)a -3 b -3; (2)2a 2b ; (3)-4a -4b ; (4)5a 5b ; (5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0;(7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0.能力提高:1.比较a 与-a 的大小. ( 说明:解决此类问题时,要对字母的所有取值进行讨论.)2.有一个两位数,个位上的数字是a ,十位上的数是b ,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a 与b 哪个大哪个小?3.若实数1a >,比较实数M a =,23a N +=,213a P +=的大小关系,并说明原因。
解析:本题主要考查实数的大小比较,涉及到解不等式问题.由1a >,知10a ->. 又3211033a a a M P ----==>,所以M P >; 2121033a a a P N +----==>,所以P N >. 从而M P N >>评注:本题也可用特殊值法求解,如取2a =,这时2M =,43N =,53P =,由此知M P N >>1.2.不等式的基本性质(每课一练)一、选择题1.若a +3>b +3,则下列不等式中错误的是( )A.-55b a -<B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b )2.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5二、填空题1.用“>”或“<”填空,并在题后括号内注明理由:(1)∵a >b (2)∵a >2b∴a -m ________b -m ( ) ∴2a ________b ( ) (3)∵3m >5n∴-m ________-35n ( ) 2若a >b ,c ≤0,则ac ________bc .3.若ba b a --||=-1,则a -b ________0. 4.若ax >b ,ac 2<0,则x ________a b . 三、解答题1、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (4)4x ≥3x +5 (2)-0.3x >0.92.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.。