偏心受压构件的荷载
偏心受压构件承载力
一栋高层商住楼在进行结构检测时, 发现部分柱子偏心受压承载力不足, 经过加固处理后满足了安全使用要求。
工程应用中的注意事项
充分考虑偏心压力的影响
在工程设计、施工和检测中,应充分考虑偏心压力对结构的影响, 采取相应的措施来提高结构的承载能力。
重视结构细节设计
对于关键部位的构件,应注重细节设计,如合理布置钢筋、加强节 点连接等,以提高结构的整体性和稳定性。
高层建筑
高层建筑的柱子在承受竖向荷载的同 时,也受到由于楼面荷载分布不均产 生的偏心压力。
工程实例分析
某高速公路桥梁墩柱承载力不足,经 过分析发现是由于偏心压力引起的, 通过加固措施提高了墩柱的承载能力。
一家大型化工厂的厂房在运行过程中 出现柱子下沉、裂缝等现象,经过检 测发现是由于偏心压力过大所致,采 取相应措施后解决了问题。
加强构造措施
设置支撑和拉结
通过合理设置支撑和拉结, 提高构件的整体稳定性和 承载能力。
增加连接节点
在关键连接节点处增加连 接板、焊缝等,以提高连 接处的承载能力。
增加配筋
在构件的关键部位增加配 筋,以提高其抗弯和抗剪 切能力。
采用高强度材料
选择高强度钢材
采用高强度钢材,如Q345、Q420等,以提高构件的承载能力。
04 偏心受压构件的承载力提升措施
CHAPTER
优化截面设计
01
ห้องสมุดไป่ตู้
02
03
增大截面尺寸
通过增加构件的截面尺寸, 提高其抗弯和抗剪承载能 力,从而提高整体承载力。
优化截面形状
根据受力特点,选择合适 的截面形状,如工字形、 箱形等,以充分利用材料, 提高承载力。
加强边缘
在构件的边缘处增加加强 筋或板条,提高其抗弯和 抗剪切能力。
第7章 偏心受压构件的正截面承载力
第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。
压力N的作用点离构件截面形心的距离e称为偏心距。
截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。
根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。
β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。
钢筋混凝土偏心受压构件的截面型式如图7-2所示。
矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。
圆形截面主要用于柱式墩台、桩基础中。
图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。
纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。
对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。
箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。
此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。
但因剪力的数值一般较小,故一般不予计算。
箍筋数量及间距按普通箍筋柱的构造要求确定。
图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。
本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。
7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。
偏心受压构件的正截面承载力计算
xhoho 22[0Ndesffcsd 'db A s'(hoas')]
➢当 2as x时bh,0
As fcdbxffs'dsdAs' 0Nd
➢当 x ,b h且0
时x , 2 a s
令 x ,2则a可s 求得
As
0 Nd es
偏压构件是同时受到轴向压力N和弯矩M的作用, 等效于对截面形心的偏心距:e。=M/N的偏心压力的 作用。
图7-1偏心受压构件与压弯构件图
偏心距: 压力N的作用点离构件截面形心的距离e0 压弯构件: 截面上同时承受轴心压力和弯矩的构件。
偏心受压: (压弯构件)
单向偏心受力构件 双向偏心受力构件
大偏心受压构件 小偏心受压构件
fsd (ho as)
2)当 e0 0时.3h0
已知:b hN d M d f c d f s d f s d l 0
求: As 、 As '
注:As不论是拉还是压,均未达屈服强度,可按一则最小配筋 率来进行设计.
解: 令 A sm 'in b h 0 .0 0 2 b h
由式(7-6)和式(7-10),可求得x方程组
由7-10可钢筋应力 s
s cuEs(xh0 1)
由7-4可求得NU
0 N d fc d b x fs dA s sA s
2.当 h时/ h,0 取 代x入7h-10得钢筋应力
承载力NU1
近偏心则破坏
再由 7s -4求得截面
由公式7-13求截面承载力NU2 远偏心则破坏
0 N d e s f c d b h ( h 0 h /2 ) f s d A s ( h 0 a s )
偏心受力构件承载力
承载力分析的方法
解析法
基于力学原理和数学公式,通过计算得出构件的承载力。 解析法适用于简单结构和规则截面。
有限元法
利用数值计算方法,将构件离散化为有限个单元,通过求 解单元的应力分布来得到构件的承载力。有限元法适用于 复杂结构和不规则截面。
试验法
通过试验手段对实际构件进行加载测试,直接测得其承载 力。试验法具有较高的精度和可靠性,但成本较高。
ABCD
数值分析
利用数值计算方法,如有限元分析、有限差分法 等,对构件进行受力分析和性能评估。
人工智能
利用人工智能算法,如遗传算法、模拟退火算法 等,对设计方案进行智能优化。
优化设计的实施步骤
需求分析
明确设计需求和目标,分析构件的工作环境 和受力特点。
建立模型
根据需求分析结果,建立描述构件性能的数学 模型。
偏心受力构件
指在承受外力时,外力作用点与构件 重心不重合的构件。
承载力的计算方法
01
02
03
解析法
通过数学公式和物理原理, 计算出结构或构件的承载 力。
试验法
通过实际试验,测量出结 构或构件的承载力。
经验法
根据工程经验,估算结构 或构件的承载力。
承载力的影响因素
材料性能
材料的弹性模量、泊松比、抗拉压强度等性能参数对承载力有直接影 响。
根据计算结果,评估构件的承 载能力和稳定性,对不满足要
求的构件进行优化设计。
04 偏心受力构件的优化设计
优化设计的目标
提高构件承载能力
通过优化设计,使构件在承受偏心荷 载时具有更高的承载能力,减少因荷 载过大而导致的破坏。
降低成本
在满足承载力要求的前提下,通过优 化设计降低材料消耗和制造成本,提 高经济效益。
钢筋砼偏心受力构件承载力计算
Nu(kN)
1000 800 600 400 200
0
受压破坏
B
A
界限破坏
受拉破坏
10 20 30 40
利用M-N相关曲线寻找最不利内力:
• 作用在结构上的荷载往往有很多种,在结构设 计时应进行荷载组合;
• 在受压构件同一截面上可能会产生多组M、N 内力他们当中存在一组对该截面起控制作用;
• 这一组内力不容易凭直观多组M、N中挑选出 来,但利用N-M相关曲线的规律,可比较容易 地找到最不利内力组合
As先屈服,然后受压混凝土达到c,max,
As f y。
受拉破坏 (大偏心受
压破坏)
N
cmax1
cmax2
cu
ei N
ei N
sAs
f yAs
sAs
f yAs
(a) N
(b)
(c)
N的偏心较小一些或N的e0大,
然而As较多。 截面大部分受压
受
而少部分受拉,荷载增大沿构 件受拉边一定间隔将出现垂直
ei+ f = ei(1+ f / ei) = ei
=1 +f / ei
…7-6
––– 偏心距增大系数
ei N
af ei
f
N
图7-9
l
2 0
10
1
f
cu y
h0
规范采用了的界限状态为 依据,然后再加以修正
1 1
1 4 0 0 ei
(
l0 h
)2
1
2
h0
…7-7
式中: ei = e0+ ea
短柱 中长柱 细长柱
––– 材料破坏 ––– 失稳破坏
偏心受压构件承载力.
N
N
As 太
多
ssAs
f'yA's
ssAs
f'yA's
7.2 偏心受压构件的破坏形态
第七章 偏心受压构件承载力
2、受压破坏compressive failure
N
产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
ssAs
f'yA's
◆ 纵向钢筋的保护层厚度要求见表8-3,且不小于钢筋直径d。 ◆ 当柱为竖向浇筑混凝土时,纵筋的净距不小于50mm; ◆ 对水平浇筑的预制柱,其纵向钢筋的最小应按梁的规定取值。 ◆ 截面各边纵筋的中距不应大于350mm。当h≥600mm时,在柱
侧面应设置直径10~16mm的纵向构造钢筋,并相应设置复合 箍筋或拉筋。
◆ 对于长细比较大的构件,二阶 N ei 效应引起附加弯矩不能忽略。
◆ 图示典型偏心受压柱,跨中侧 向挠度为 f 。
N ( ei+ f ) ◆ 对跨中截面,轴力N的偏心距 为ei + f ,即跨中截面的弯矩为 M =N ( ei + f )。 ◆ 在截面和初始偏心距相同的情 况下,柱的长细比l0/h不同,侧 向挠度 f 的大小不同,影响程度 会有很大差别,将产生不同的破 坏类型。
◆ 当柱中全部纵筋的配筋率超过3%,箍筋直径不宜小于8mm, 且箍筋末端应应作成135°的弯钩,弯钩末端平直段长度不 应小于10箍筋直径,或焊成封闭式;箍筋间距不应大于10倍 纵筋最小直径,也不应大于200mm。
◆ 当柱截面短边大于400mm,且各边纵筋配置根数超过多于3 根时,或当柱截面短边不大于400mm,但各边纵筋配置根 数超过多于4根时,应设置复合箍筋。
偏心受力构件承载力的计算
第七章 偏心受力构件承载力的计算西安交通大学土木工程系 杨 政第七章 偏心受力构件承载力的计算结构构件的截面受到轴力N和弯矩M共同作用,只在截 面上产生正应力,可以等效为一个偏心(偏心距 e0=M/N ) 作用的轴力N。
因此,截面上受到轴力和弯矩共同作用的结 构构件称为偏心受力构件。
N NM N(a )N N M(b )N(c )(d )(e )(f)第七章 偏心受力构件承载力的计算显然,轴心受力( e0=0 )和受弯( e0=∞)构件为其特 例。
当轴向力为压力时,称为偏心受压;当轴向力为拉力 时,称为偏心受拉。
偏心受压构件多采用矩形截面,工业建筑中尺寸较大的 预制柱也采用工字形和箱形截面,桥墩、桩及公共建筑中的 柱等多采用圆形截面;而偏心受拉构件多采用矩形截面。
e0=0 轴心受拉 偏心受拉 大偏心 e0=∞ 纯弯 偏心受压 小偏心 e0=0 轴心受压小偏心大偏心第七章 偏心受力构件承载力的计算7.1 偏心受压构件正截面承载力计算7.1.1 偏心受压构件的破坏形态偏心受压构件是工程中使用量最大 的结构构件,其受力性能随偏心距、配 筋率和长细比( l0/h )等主要因素而变 化。
与轴心受压构件类似,根据构件的 长细比,偏心受压柱也有长柱和短柱之 分。
此外,其他一些重要因素,例如混 凝土和钢筋材料的种类和强度等级、构 件的截面形状、钢筋的构造、荷载的施 加途径等,都对构件的受力性能和破坏 形态产生影响。
第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 偏心受压构件破坏类型 受拉(大偏心受压)破坏7.1 偏心受压构件正截面承载力计算第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 受压应力较大一侧的应变首先达到混凝土的极限压应变 而破坏,同侧的纵向钢筋也受压屈服;而另一侧纵向钢筋可 能受压也可能受拉,如果受压可能达到受压屈服,但如果受 拉,则不可能达到受拉屈服。
构件的承载力主要取决于受压混凝土和受压纵向钢筋。
双向偏心受压构件的正截面的承载力计算
(2) 长柱的受力分析和破坏形态(l0/b>8、l0/d>7) 1) 初始偏心距 → 产生附加 弯矩和侧向挠度 → 偏心距增加 → 附加弯矩和侧向挠度不断增加 →长柱在N和M共同作用下破坏 2)长柱的破坏特征 破坏时,首先在凹侧出现纵向 裂缝,随后混凝土被压碎,纵筋 被压屈向外凸出;凸侧混凝土出 现横向裂缝,侧向挠度不断增加, 柱子破坏。→ 表现为“材料破坏” 和“失稳破坏”。长细比l0/b很大 时,表现为失稳破坏; 图6-6 长柱的破坏
6.1.1 截面型式及尺寸
柱的吊装方式及简图
6.1.1 截面型式及尺寸
2. 截面尺寸: (1) 方形或矩形截面柱 截 面 不 宜 小 于 250mm×250mm ( 抗 震 不 宜 小 于 300mm×300mm) 。为了避免矩形截面轴心受压构件长细 比过大,承载力降低过多,常取 l0/b≤30, l0/h≤25 。此处 l0 为 柱的计算长度,b为矩形截面短边边长,h为长边边长。 为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸 ≤ 800mm ,以 50mm 为模数;截面尺寸> 800mm ,以 100mm 为模数。 (2) 工字形截面柱 翼缘厚度≦120mm,腹板厚度≦100mm。
3. 箍筋一般采用HPB235级、HRB335级钢筋,也可采用
HRB400级钢筋。
6.1.3 纵 筋
1. 纵筋的配筋率 轴心受压构件、偏心受压构件全部纵筋的配筋率≦0.6 %;同时,一侧钢筋的配筋率≦ 0.2 %。(用全截面计算) 2. 轴心受压构件的纵向受力钢筋 (1) 沿截面四周均匀放置,根数不得少于 4 根, ( 圆柱根 数)图6-1(a); (2)直径不宜小于 12mm,通常为16~32mm。宜采用较 粗的钢筋; (3) 全部纵筋配筋率≧ 5%。
7 偏心受压构件承载力计算09土木XIN
(c)双向偏心受压
受压构件( 受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整 往往在结构中具有重要作用,一旦产生破坏, 个结构的损坏,甚至倒塌。 个结构的损坏,甚至倒塌。
7.2 偏心受压构件受力性能分析 心受压构件受力性能分析
N M=N e0 As
′ As
e0
N
=
As
′ As
压弯构件
《混凝土结构设计规范》 混凝土结构设计规范》 (GB50010-2010): ):
是否考虑附加弯矩的判别条件
l 0 / i ≤ 34 − 12( M 1 / M 2 )
偏心受压长柱设计弯矩计算方法
设计弯矩的计算方法 混凝土规范(GB50010-2010)规定,将柱端的附加弯矩计算用偏心距调节系 混凝土规范(GB50010-2010)规定,将柱端的附加弯矩计算用偏心距调节系 数和弯矩增大系数来表示,即偏心受压柱的设计弯矩( 数和弯矩增大系数来表示,即偏心受压柱的设计弯矩(考虑了附加弯矩影响 表示
方法二:界限偏心距判别大、 方法二:界限偏心距判别大、小偏心
求出ξ后做第 二步判断
2 两类偏心受压破坏的界限
根本区别: 是否屈服。 根本区别:破坏时受拉纵筋 As 是否屈服。 界限状态: 屈服, 界限状态:受拉纵筋 As 屈服,同时受压区边缘混凝土达到极限压应变ε cu 界限破坏特征与适筋梁、与超筋梁的界限破坏特征完全相同,因此, 界限破坏特征与适筋梁、与超筋梁的界限破坏特征完全相同,因此, 的表达式与受弯构件的完全一样。 ξ b 的表达式与受弯构件的完全一样。 大、小偏心受压构件判别条件: 小偏心受压构件判别条件: 判别条件 偏心受压; 当 ξ ≤ ξ b 时,为 大 偏心受压; 偏心受压。 当 ξ > ξ b 时,为 小 偏心受压。
偏心受压构件正截面承载力计算—矩形截面偏心受压构件正截面承载力计算
即x≤ξbh0,且x<2a’s,则由基本公式3可得:
Ne f y As h0 as
As As
Ne f y(h0 as )
(4)若判定为小偏心受压破坏
则按下式重新计算x:
N 1 fcbh0b
Ne 0.431 fcbh02 (1 b )(h0 as)
1
fcbh0
e
ei N
N Nu 1 fcbx f yAs f y As
Ne
Nue
1 fcbx(h0
x) 2
f yAs (h0
as )
e ei 0.5h as
fyAs
f'yA's
(1)情况1:As和A's均未知时 两个基本方程中有三个未知数,As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积(As+A's)最小?
• 2.截面复核
已知:截面尺寸、材料强度、e0、L0,AS,AS’
求: N 解:判断大小偏心
1.对于垂直弯矩作用方向还应按轴心受压进行验算即应满足:
N Nu 0.9 ( fcd A fsd As )
2.对于弯矩作用方向按偏心受压进行验算
偏心受压构件正截面承载力计算 基本公式
(建筑规范)
1.计算假定
计算方法及步骤
矩形截面偏心受压构件对称配筋的计算方法
对称配筋,即截面的两侧用相同数量的配筋和相同钢材规格,
As=As',fsd = fsd',as = as'
1.不对称配筋与对称配筋的比较: (1) 不对称配筋: 优点是充分利用混凝土的强度, 节省钢筋;缺点主要是施工不便,容易将钢筋的位置 对调。 (2) 对称配筋: 优点为对结构更有利(可能有相反 方向的弯矩),施工方便,构造简单,钢筋位置不易 放错;缺点是多用钢筋。
第七章偏心受压构件的正承载力计算-PPT
基本计算公式
受压区混凝土都能达到极限压应变; As’达到抗压强度设计值fsd’ ;
As受拉,也可能受压,大小ss。
es e0 h 2 as
es' e0 h 2 as'
es 、 es' —分别为偏心应力 0 Nd 至钢筋 As 合力点和钢筋 As' 合力作用点的距离;
1 2
ei
N
f
s
t
c
h0
偏心距增大系数
1 f
ei
f
1 1717
l0 2 h0
1 2
1
1 1717ei
l0 2 h0
1
2
h 1.1h0
1 1
1400 ei
l0 h
2
1
2
h0
ei
N
f
s
t
c
h0
根据偏心压杆得极限曲率理论分析,《公路桥规》规定
1 1 1400
e0
(
l0 h
)2
1
2
h0
1
0.2 2.7
as 、 as' —分别为钢筋 As 合力点和钢筋 As' 合力作用点至截面边缘的距离。
基本计算公式
纵轴方向得合力为零
0 Nd
Nu
fcdbx
f
' sd
As'
s s As
对钢筋As合力点得力矩之与等于零
0 Nd es
Mu
fcd
bx(h0
x 2
)
f
' sd
As'
(h0
as'
)
1
2
4.3 偏心受压构件承载力计算
4.2轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为的偏心力N的作用,当弯矩M相对较小时,气就很小,构件接近于轴心受压,相反当N相对较小时,气就很大,构件接近于受弯,因此,随着气的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距分较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距分较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距分较小,或偏心距分虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力M 一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变先被压碎,受压钢筋的应力也达到远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距%较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。
其相同之处是,截面的最终破坏都是受压区边缘混凝土达到极限压应变而被压碎。
钢筋混凝土偏心受力构件承载力计算
f y (h0 as' )
' 大
h 其中:e ei as' 2
③小偏心受压构件的配筋计算 I.受弯平面内的计算: 将б s的公式(6-14)代人式(6-12)及式(6-13),并将x代换为 x=ξ h0,则小偏心受压的基本公式为
(6-22)
(6-23) (6-24) 式(6-22)及式(6-23)中有三个未知 数ξ ,As及As’故不能得出唯一的 解、一般情况下As’无论拉压其应力 都达不到强度设计值,故配置数量 很多的钢筋是无意义的。故可取As =0.002bh,但考虑到在N较大而e0 较小的全截面受压情况下如附加偏 心
如图6-7所示,ab段表示大偏心受压时的M-N相 关曲线,为二次抛物线、随着轴向压力N的增大 截面能承担的弯矩也相应提高。 b点为受拉钢筋与受压混凝土同时达到其强 度值的界限状态。此时偏心受压构件承受的弯矩 M最大。 bc段表示小偏心受压时的M-N曲线,是一条 接近于直线的二次函数曲线。由曲线趋向可以看 出,在小偏心受压情况下,随着轴向压力的增大 截面所能承担的弯矩反而降低。
第六章 计算
本章的重点是:
钢筋混凝土偏心受力构件承载力
了解偏心受压构件的受力工作特性,熟悉两 种不同的受压破坏特性及由此划分成的两类受压 构件 掌握两类偏心受压构件的判别方法; 掌握两类偏心受压构件正截面承载力的计算 方法;
掌握偏心受压构件斜截面受剪承载力计算方
法。
§6.1
概述
结构构件的截面上受到轴力和弯矩的共同作用或受 到偏心力的作用时该结构构件称为偏心受压构件。 分为偏心受压构件和偏心受拉构件。 偏心受压构件又分为:单向偏心受压构件(图6-1a) 及双向偏心受压构件(图6-1b)。 偏心受拉构件在偏心拉力的作用下 是一种介于轴 心受拉构件与受弯构件之间的受力构件。承受节间荷载 的悬臂式桁架上弦(图6-2a)一般建筑工程及桥梁工程中 的双肢柱的受拉肢属于偏心受拉构件(图6-2b)。此外, 如图6-2c所示的矩形水池的池壁 其竖向截面同时承受轴 心拉力及平面外弯矩的作用故也属于偏心受拉构件。
矩形截面偏心受压构件正截面的承载力计算
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
6.2-偏心受压构件承载力计算
第六章 受压构件承载力计算
x
e
N
ei
As
As'
b
as
h
a
' s
s s As
1 fcbx f'yA's
N 1 fcbx f yAs s s As
Ne 1 fcbx(h0 x 2) f yAs(h0 as' )
N——轴向力设计值; e——轴向力作用点至受拉钢筋As合力点之间的距离
第六章 受压构件承载力计算
N 1 fcbx f yAs s s As Ne 1 fcbx(h0 x 2) f yAs(h0 as' )
e ei 0.5h as 初始偏心距 ei e0 ea
ss——受拉钢筋应力;As——受拉钢筋面积;
As’——受压钢筋面积;b——宽度; x ——受压区高度;fy‘——受压钢筋屈服强度 ;
情形1最大弯矩M2,二阶弯矩不引起最大弯矩的增加
情形2最大弯矩Mmax ,距离端部某距离,Nf只能使Mmax比
M2稍大。
e0 N
情形1 情形2
M2=N e0 M2
M2
M2
Nf
N
M0
N e1
N M1 = -N e1 M1
Mmax= M0+ Nf
第六章 受压构件承载力计算
结论:
•构件两端作用相等弯矩时,一阶、 二阶弯矩最大处重 合,一阶弯矩增加最大,即,临界截面弯矩最大。
e0
M N
e0为相对偏心距。
由于施工误差及材料的不均匀性等,将使构件的
偏心距产生偏差,因此设计时应考虑一个附加偏心 距ea,规范规定:附加偏心距取偏心方向截面尺寸 的1/30 和20mm中的较大值。
(完整版)矩形截面偏心受压构件正截面的承载力计算
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
钢筋混凝土偏心受压构件正截面承载力计算
2、受压破坏(小偏心受压) As受压不屈服
As受拉不屈服
As受压屈服
As受压屈服时 As受压屈服判断条件
大小偏心近似判据 真实判据
不对称配筋
大偏心受压不对称配筋 小偏心受压不对称配筋
实际工程中,受压构件常承受变号弯矩作用,所以采用对 称配筋 对称配筋不会在施工中产生差错,为方便施工通常采用对 称配筋
随l 0/h的增加而减小,通过乘一个修正系数ζ2(称为偏
心受压构件长细比对截面曲率的影响系数)
实际考虑是在初始偏心距ei 的基础上×η
上节课总结
一、初始偏心距
e0=M/N
附加偏心距ea取20mm与h/30 两者中的较大值, h是指偏心方向的截面尺寸。
二、两类偏心受压破坏的界限
ξ ≤ξb, 受拉钢筋先屈服,然后混凝土压碎-
1、大偏心受压 x=N/a1 fcb
若x=N /a1 fcb<2a",可近似取x=2a",对受压钢筋合力点取矩可
e" = hei - 0.5h + a"
2、小偏心受压 x=N /a1 fcb>
对称配筋截面设计
对称配筋截面校核 例5-9、5-10及5-11 构造要求(配筋率问题讲解) 作业:5.4、5.5、5.6、5.7、5.8
对称配筋
大偏心受压对称配筋 小偏心受压对称配筋
非对称配筋矩形截面
截面设计
按e i ≤ 0.3h0按小偏心受压计算
若ei > 0.3h0先按大偏心受压计算, (ξ≤ξb确定 为大偏心受压构件。若求得的ξ>ξb时,按小
偏心受压计算。) 强度复核
一s 不对称配筋截面设计 1 s 大偏心受压(受拉破坏)
受压构件正截面承载力计算