偏心受压构件承载力

合集下载

偏心受压构件承载力

偏心受压构件承载力

一栋高层商住楼在进行结构检测时, 发现部分柱子偏心受压承载力不足, 经过加固处理后满足了安全使用要求。
工程应用中的注意事项
充分考虑偏心压力的影响
在工程设计、施工和检测中,应充分考虑偏心压力对结构的影响, 采取相应的措施来提高结构的承载能力。
重视结构细节设计
对于关键部位的构件,应注重细节设计,如合理布置钢筋、加强节 点连接等,以提高结构的整体性和稳定性。
高层建筑
高层建筑的柱子在承受竖向荷载的同 时,也受到由于楼面荷载分布不均产 生的偏心压力。
工程实例分析
某高速公路桥梁墩柱承载力不足,经 过分析发现是由于偏心压力引起的, 通过加固措施提高了墩柱的承载能力。
一家大型化工厂的厂房在运行过程中 出现柱子下沉、裂缝等现象,经过检 测发现是由于偏心压力过大所致,采 取相应措施后解决了问题。
加强构造措施
设置支撑和拉结
通过合理设置支撑和拉结, 提高构件的整体稳定性和 承载能力。
增加连接节点
在关键连接节点处增加连 接板、焊缝等,以提高连 接处的承载能力。
增加配筋
在构件的关键部位增加配 筋,以提高其抗弯和抗剪 切能力。
采用高强度材料
选择高强度钢材
采用高强度钢材,如Q345、Q420等,以提高构件的承载能力。
04 偏心受压构件的承载力提升措施
CHAPTER
优化截面设计
01
ห้องสมุดไป่ตู้
02
03
增大截面尺寸
通过增加构件的截面尺寸, 提高其抗弯和抗剪承载能 力,从而提高整体承载力。
优化截面形状
根据受力特点,选择合适 的截面形状,如工字形、 箱形等,以充分利用材料, 提高承载力。
加强边缘
在构件的边缘处增加加强 筋或板条,提高其抗弯和 抗剪切能力。

第7章 偏心受压构件的正截面承载力

第7章 偏心受压构件的正截面承载力

第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。

压力N的作用点离构件截面形心的距离e称为偏心距。

截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。

根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。

β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。

钢筋混凝土偏心受压构件的截面型式如图7-2所示。

矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。

圆形截面主要用于柱式墩台、桩基础中。

图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。

纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。

对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。

箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。

此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。

但因剪力的数值一般较小,故一般不予计算。

箍筋数量及间距按普通箍筋柱的构造要求确定。

图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。

本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。

7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。

4.3-偏心受压构件承载力计算

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。

按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。

1.受拉破坏当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。

在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。

当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。

荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。

最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。

此时,受压钢筋一般也能屈服。

由于受拉破坏通常在轴向压力偏心距e0较大发生,故习惯上也称为大偏心受压破坏。

受拉破坏有明显预兆,属于延性破坏。

2.受压破坏当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。

加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。

随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。

由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。

受压破坏无明显预兆,属脆性破坏。

3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。

偏心受压构件的承载力

偏心受压构件的承载力

三、M — N相关曲线
对偏压短柱其承载力: Nu与 e0/h0 有关 <=> Nu与Mu有关
对小偏压:增加轴向力会使构件 构件 N Na 的抗弯能力减小 Nb 对大偏压 对大 偏压:增加 :增加轴向力会使构件 构件 的抗弯能力增大 界限破坏:构件 构件的 的抗弯能力最大.Nc O
a
短柱
b
长柱
截面承载力
D = βε cu Es As (h0 − as' )
h / h0 > ξ > ξb
由7-4 γ 0 N d − f cd bx + σ s As As′ = ' f sd
选钢筋 并合理布置
x < ξ b h0
若ξ ≥ h / h0 , 令x = h
由7-5 γ 0 N d es − f cd bh(h0 − h / 2) ' As = ' f sd (h0 − as' )
N
ζ 2 = 1.15 − 0.01l0 / h ≤ 1
试验研究表明:对于两端铰接柱的侧向挠度曲线近似符合正弦曲线
d2y π2 πx π2 挠度曲线曲率 φ = − = u 2 sin =y 2 2 d x l0 l0 l0 2 l 10 π 2 ≈10 →φ = y 2 或 y =φ 0 10 l0 εc + εs
β = 0.8
' γ 0 N d es ≤ f sd As ( h0 − a′ s ) (7-12)
(3)对小小偏心,As不得小于按下式计算的数量
'2 ' γ 0 N d e ' ≤ 0.5 f cd bh0 + f sd As ( h0 '− a s ) (7-13)

第八章 偏心受压构件承载力计算公式

第八章 偏心受压构件承载力计算公式

第8章 偏心受压构件正截面承载力知 识 点 回 顾•破坏形式及特点 •大小偏心划分 •大偏心算法第8章 偏心受压构件正截面承载力8.1.4 矩形截面偏心受压构件正截面承载力 1. 大偏心受压x £ xb 正截面破坏åN =0g 0 N £ N u = a1 f c bx + f y¢ As¢ - f y Asxö æ ¢ g 0 Ne £ N u e = a1 f c bx ç h0 - ÷ + f y¢ As¢ ( h0 - as ) 2ø èå M As = 0适用条件: x £ xb ¢ x ³ 2 as As 配筋率: r= ³ r min = max ( 0.45 ft fy, 0.2% ) bh第8章 偏心受压构件正截面承载力¢ 当 x < 2as 时,受压钢筋(此时不屈服)计算, 有两种处理方式: (1)规范算法设混凝土合力中心与 As¢ 形心重合。

åM¢ As=0¢ Ne¢ £ N u e¢ = f y As ( h0 - as )(2)平截面假定算法¢ s s¢ = Ese cu (1 - b1 as x )第8章 偏心受压构件正截面承载力2. 小偏心受压构件 (1)基本计算公式 x > xb矩形截面小偏心受压构件承载力计算简图第8章 偏心受压构件正截面承载力小偏心受压构件计算公式:åN =0åMAsg 0 N £ N u = a1 f c bx + f y¢ As¢ - s s Asxö æ ¢ g 0 Ne £ N u e = a1 f c bx ç h0 - ÷ + f y¢ As¢ ( h0 - as ) 2ø è=0依据平截面假定( b1 = 0.8 ):æ b1hoi ö s si = Ese cu ç - 1÷ è x ø公路桥规:æ b1 - x ö s si = ç ÷ fy è b1 - xb øxb < x £ 2 b1 - xb第8章 偏心受压构件正截面承载力依据平截面假定:公路桥规:第8章 偏心受压构件正截面承载力(2) “反向破坏”的计算公式 偏心距很小,且远离轴向压力一侧的钢筋配置得 不够多,偏心压力有可能位于换算截面形心轴和 截面几何中心之间。

偏心受力构件承载力

偏心受力构件承载力

承载力分析的方法
解析法
基于力学原理和数学公式,通过计算得出构件的承载力。 解析法适用于简单结构和规则截面。
有限元法
利用数值计算方法,将构件离散化为有限个单元,通过求 解单元的应力分布来得到构件的承载力。有限元法适用于 复杂结构和不规则截面。
试验法
通过试验手段对实际构件进行加载测试,直接测得其承载 力。试验法具有较高的精度和可靠性,但成本较高。
ABCD
数值分析
利用数值计算方法,如有限元分析、有限差分法 等,对构件进行受力分析和性能评估。
人工智能
利用人工智能算法,如遗传算法、模拟退火算法 等,对设计方案进行智能优化。
优化设计的实施步骤
需求分析
明确设计需求和目标,分析构件的工作环境 和受力特点。
建立模型
根据需求分析结果,建立描述构件性能的数学 模型。
偏心受力构件
指在承受外力时,外力作用点与构件 重心不重合的构件。
承载力的计算方法
01
02
03
解析法
通过数学公式和物理原理, 计算出结构或构件的承载 力。
试验法
通过实际试验,测量出结 构或构件的承载力。
经验法
根据工程经验,估算结构 或构件的承载力。
承载力的影响因素
材料性能
材料的弹性模量、泊松比、抗拉压强度等性能参数对承载力有直接影 响。
根据计算结果,评估构件的承 载能力和稳定性,对不满足要
求的构件进行优化设计。
04 偏心受力构件的优化设计
优化设计的目标
提高构件承载能力
通过优化设计,使构件在承受偏心荷 载时具有更高的承载能力,减少因荷 载过大而导致的破坏。
降低成本
在满足承载力要求的前提下,通过优 化设计降低材料消耗和制造成本,提 高经济效益。

偏心受压构件承载力.

偏心受压构件承载力.

N
N
As 太

ssAs
f'yA's
ssAs
f'yA's
7.2 偏心受压构件的破坏形态
第七章 偏心受压构件承载力
2、受压破坏compressive failure
N
产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
ssAs
f'yA's
◆ 纵向钢筋的保护层厚度要求见表8-3,且不小于钢筋直径d。 ◆ 当柱为竖向浇筑混凝土时,纵筋的净距不小于50mm; ◆ 对水平浇筑的预制柱,其纵向钢筋的最小应按梁的规定取值。 ◆ 截面各边纵筋的中距不应大于350mm。当h≥600mm时,在柱
侧面应设置直径10~16mm的纵向构造钢筋,并相应设置复合 箍筋或拉筋。
◆ 对于长细比较大的构件,二阶 N ei 效应引起附加弯矩不能忽略。
◆ 图示典型偏心受压柱,跨中侧 向挠度为 f 。
N ( ei+ f ) ◆ 对跨中截面,轴力N的偏心距 为ei + f ,即跨中截面的弯矩为 M =N ( ei + f )。 ◆ 在截面和初始偏心距相同的情 况下,柱的长细比l0/h不同,侧 向挠度 f 的大小不同,影响程度 会有很大差别,将产生不同的破 坏类型。
◆ 当柱中全部纵筋的配筋率超过3%,箍筋直径不宜小于8mm, 且箍筋末端应应作成135°的弯钩,弯钩末端平直段长度不 应小于10箍筋直径,或焊成封闭式;箍筋间距不应大于10倍 纵筋最小直径,也不应大于200mm。
◆ 当柱截面短边大于400mm,且各边纵筋配置根数超过多于3 根时,或当柱截面短边不大于400mm,但各边纵筋配置根 数超过多于4根时,应设置复合箍筋。

偏心受力构件承载力的计算

偏心受力构件承载力的计算

第七章 偏心受力构件承载力的计算西安交通大学土木工程系 杨 政第七章 偏心受力构件承载力的计算结构构件的截面受到轴力N和弯矩M共同作用,只在截 面上产生正应力,可以等效为一个偏心(偏心距 e0=M/N ) 作用的轴力N。

因此,截面上受到轴力和弯矩共同作用的结 构构件称为偏心受力构件。

N NM N(a )N N M(b )N(c )(d )(e )(f)第七章 偏心受力构件承载力的计算显然,轴心受力( e0=0 )和受弯( e0=∞)构件为其特 例。

当轴向力为压力时,称为偏心受压;当轴向力为拉力 时,称为偏心受拉。

偏心受压构件多采用矩形截面,工业建筑中尺寸较大的 预制柱也采用工字形和箱形截面,桥墩、桩及公共建筑中的 柱等多采用圆形截面;而偏心受拉构件多采用矩形截面。

e0=0 轴心受拉 偏心受拉 大偏心 e0=∞ 纯弯 偏心受压 小偏心 e0=0 轴心受压小偏心大偏心第七章 偏心受力构件承载力的计算7.1 偏心受压构件正截面承载力计算7.1.1 偏心受压构件的破坏形态偏心受压构件是工程中使用量最大 的结构构件,其受力性能随偏心距、配 筋率和长细比( l0/h )等主要因素而变 化。

与轴心受压构件类似,根据构件的 长细比,偏心受压柱也有长柱和短柱之 分。

此外,其他一些重要因素,例如混 凝土和钢筋材料的种类和强度等级、构 件的截面形状、钢筋的构造、荷载的施 加途径等,都对构件的受力性能和破坏 形态产生影响。

第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 偏心受压构件破坏类型 受拉(大偏心受压)破坏7.1 偏心受压构件正截面承载力计算第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 受压应力较大一侧的应变首先达到混凝土的极限压应变 而破坏,同侧的纵向钢筋也受压屈服;而另一侧纵向钢筋可 能受压也可能受拉,如果受压可能达到受压屈服,但如果受 拉,则不可能达到受拉屈服。

构件的承载力主要取决于受压混凝土和受压纵向钢筋。

偏心受压构件承载力计算

偏心受压构件承载力计算

轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。

按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。

1.受拉破坏当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。

在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。

当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。

荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。

最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。

此时,受压钢筋一般也能屈服。

由于受拉破坏通常在轴向压力偏心距e0 较大发生,故习惯上也称为大偏心受压破坏。

受拉破坏有明显预兆,属于延性破坏。

2.受压破坏当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。

加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。

随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。

由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。

受压破坏无明显预兆,属脆性破坏。

3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于材料破坏”。

6.3.1 偏心受压构件受力特征-结构设计原理-湖大

6.3.1 偏心受压构件受力特征-结构设计原理-湖大

N
◆ 侧向挠度 f 的影响已很大。
N0
◆在未达到截面承载力极限状态之前, 侧向挠度 f 已呈不稳定发展,即柱 Nus 的轴向荷载最大值发生在荷载增长 Num
Nusei Numei
曲线与截面承载力 Nu-Mu相关曲线 Nul Nul ei
相交之前。
◆ 这种破坏为失稳破坏,应进行专门 计算
Num fm Nul fl
6.3.1
17
四.柱纵向弯曲的影响——偏心距增大系数
1.柱的变形
➢ 对跨中截面,轴力N的偏
心距为e0 + f ,即跨中截
面的弯矩为: M =N ( e0 + f )
➢ M1=Ne0 为一阶弯矩; M2=Nf 为二阶弯矩;
6.3.1
e0
N y
f
l
x
N
e0
N e0
N (e0+f )
18
◆ 由于柱的侧向挠曲变形,轴向力将在柱内产生二阶效应, 引起附加弯矩。
Nusei Numei
Nul Nul ei
Num fm Nul fl
M0
M
◆ 虽然最终在M和N的共同作用下达到截面承载力极限状态,
但轴向承载力明显低于同样截面和初始偏心距情况下的短
柱。
◆ 因此,对于长柱,在设计中应考虑附加挠度 f 对弯矩增大
的影响。
6.3.1
21
➢ 长细比l0/h >30的细长柱:
6.3.1
10
受拉破坏
受压破坏
6.3.1
11
二.受拉破坏及受压破坏的界限(大小两种偏压的判断)
➢ 根本判断
大、小偏压破坏的本质区别是较大受压边缘混凝土压碎而破坏 时,受拉钢筋是否屈服,这与受弯构件适筋与超筋破坏的区别 一致,且受压构件在其受力破坏过程中,平截面假定亦能较好 地满足,故知大小偏压两种破坏的界限是:

钢筋混凝土偏心受压构件承载力计算

钢筋混凝土偏心受压构件承载力计算
x ¢ (h0 a ¢) N e 1 f c bx (h0 ) f y¢ As 2 e ei 0.5h a
式中:
ei e0 ea
当 >b时 —受压破坏(小偏心受压)
N M
ssAs
f'yA's
¢ s s As N ( N u )1 f cbx f y¢ As x ¢ (h0 a¢) N e 1f cbx(h0 ) f y¢ As 2
2.两种偏心受压破坏形态的界限 二者根本区别:距N较远侧钢筋在构件破坏时是否能屈服。 当 b 时,为大偏心受压构件; 当 b 时,为小偏心受压构件。
Ê Ü À ­ Æ » µ
Ü Ñ Ê ¹ Æ » µ
3.偏心受压构件的N-M相关曲线 对于给定截面、配筋及材料强度的偏心受压构件,到 达承载能力极限状态时,截面承受的内力设计值N,M并不 是独立的,而是相关的。 任意点e位于图 中曲线的内侧,说明 截面在该点坐标给出 的内力组合下未达到 承线能力极限状态 是安全的;若e点位 于图中曲线的外侧, 则表明截面的承载力 不足。
偏心受拉构件是一种介于轴心受拉构件与受弯构件之 间的受力构件。承受节间荷载的悬臂式桁架上弦、建筑及 桥梁工程中的双肢柱的受拉肢、矩形水池的池壁,属于偏 心受拉构件。
钢筋混凝土偏心受压构件多采用矩形截面,截面尺寸 较大的预制柱可采用工字形截面和箱形截面。 偏心受拉构件多采用矩形截面。
§7.2 偏心受压构件正截面承载力计算
第7章 钢筋混凝土偏心受力构件承载力计算
本章的重点是: 了解偏心受压构件的受力特性,熟悉两种不同的受压 破坏特性及两类受压构件 掌握其判别方法;
熟悉偏心受压构件的二阶效应及计算方法;

4.3 偏心受压构件承载力计算

4.3 偏心受压构件承载力计算

4.2轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为的偏心力N的作用,当弯矩M相对较小时,气就很小,构件接近于轴心受压,相反当N相对较小时,气就很大,构件接近于受弯,因此,随着气的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。

按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。

1.受拉破坏当轴向压力偏心距分较大,且受拉钢筋配置不太多时,构件发生受拉破坏。

在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。

当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。

荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。

最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。

此时,受压钢筋一般也能屈服。

由于受拉破坏通常在轴向压力偏心距分较大发生,故习惯上也称为大偏心受压破坏。

受拉破坏有明显预兆,属于延性破坏。

2.受压破坏当构件的轴向压力的偏心距分较小,或偏心距分虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。

加荷后整个截面全部受压或大部份受压,靠近轴向压力M 一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。

随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变先被压碎,受压钢筋的应力也达到远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。

由于受压破坏通常在轴向压力偏心距%较小时发生,故习惯上也称为小偏心受压破坏。

受压破坏无明显预兆,属脆性破坏。

3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。

其相同之处是,截面的最终破坏都是受压区边缘混凝土达到极限压应变而被压碎。

7.偏心受压构件的截面承载力计算20191120

7.偏心受压构件的截面承载力计算20191120
(1) M1/M2>0.9
(2)轴压比N/fcA>0.9
(3) l0 3412(M1 )
i
M2
2、两端弯矩异号时的P—δ效应
e0 N
M2=N e0 M2
M2
Nf
N
M0
N
N
M1 = -N e1 M1
e1
一般不会出现控制截面转移的情况,故不必考虑P—δ 效应。
(二) 结构有侧移偏心受压构件的二阶弯矩
a‘
xc
A
‘ s
h h0
cu
N
ηei
e‘ s
x
e
As a
b
>y
N
二、 矩形截面偏心受压
x
构件承载力计算公式 e
1.矩形截面大偏心受压 构件承载力计算公式
fyA‘ s‘ D
T=fyAs fyA‘ s‘
C =afcbx
T=fyAs
(1)计算公式
由纵向力的平衡和各力对受拉 钢筋合力点取矩,可以得到下 面两个基本计算公式:
试验表明,在“受压破
坏轴”力的一情定况时下,,随弯着矩轴越 力大的越增危加险,。构件的抗弯
能力随之减小。
但在“受拉破坏’’的
情弯况矩下一,定轴时力,的存小在偏反心 而高在受 险使。界压 ,构限,大件状轴偏的态力 心抗时越 受弯,能构大 压力越 ,提危轴 件力能越承小受越弯危矩险的能。
力达到最大值。
四、偏心受压构件的二阶效应
混凝土的极限压应变值随着偏心距的减小而减小,当为轴 心受压时,混凝土的极限压应变0.002。
构件截面的极限曲率值也是随着偏心距的减小而减小,
截面所能承受的轴向压力N则随着偏心距的减小而不断增大。 因此,《规范》取用界限状态下的承载力Nb与N的相对大小来 间接反映偏心距对极限曲率的影响,即:

偏心受压构件承载力计算

偏心受压构件承载力计算
截面最后是由于受压区混凝土首先压碎而达到 破坏,受压侧钢筋能够达到屈服,而另一侧钢 筋未达到屈服;临近破坏时,受拉区混凝土可 能出现细微的横向裂缝。
承载力主要取决于压区混凝土和受压侧钢筋, 这种破坏突然,属于脆性破坏。
偏心受压构件承载力计算
两类偏心受压破坏的界限
共同点:破坏时受压钢筋均可以屈服。 根本区别:破坏时受拉纵筋 As是否屈服。 界限状态:受拉纵筋 As屈服,同时受压区混凝土达到极限压 应变 cu 。 界限破坏特征与适筋梁、与超筋梁的界限破坏特征完全 相同,因此, b 的表达式与受弯构件的完全一样。
系数考虑。
N ei
N ( ei+ f )
1 1
140e0i
lh0 212
h0
1 考虑小偏心受压构件截面的曲率修正系数
2 偏心受压构件长细比对截面曲率的影响系数
10.5 N fcA1.0
21.1 50.0lh 0 11.0
偏心受压构件承载力计算
偏心受压构件N-M相关曲线
N-M相关曲线反映了在压力和弯矩共同作用下偏心受压构件承载力的规律
b 1
N b b 1 e 1 f c b 0 2 ( 1 h 0 . 5 ) b b 1 ( N 1 f c b h 0 ) h 0 ( a s ')
这是一个 的三次方程,设计中计算很麻烦。为简化计算,取
(10.5) b0.4 b1
3 b b1
N (1 e0 .N b 4) h (3 0 1f 1cfb a cb s0 )2 h0 h b 1fcb0hb
工程结构(1)
偏心受压构件承载力计算
偏心受压构件承载力计算
学习目标
掌握偏心受压构件的破坏形态 掌握大小偏心受压判别 掌握对称配筋矩形截面偏心受压构件承载力计算 熟悉偏心受压构件构造要求

(新)第7章:钢筋混凝土偏心受力构件承载力计算

(新)第7章:钢筋混凝土偏心受力构件承载力计算
判别方法 : 大偏压 : b 小偏压 : b 大偏压 : 小偏压 :
b的取值与受弯构件相同 。
近似判别方法 :
ei 0.3h0 ei 0.3h0
2.偏心受压构件正承载力计算
2.2 偏心受压构件正截面承载力计算
矩形截面非对称配筋
大偏压:
X 0,N 1 fcbx f y' As' f y As
由式(7-19)得:
…7-33
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
小偏心受压
无法避免,可增加横 向钢筋约束砼,提高 变形能力。 要避免
产生条件: (1)偏心距很小。
(2)偏心距 (e0 / h) 较大,但离力较远一侧的钢筋过多。 破坏特征:靠近纵向力一侧的混凝土首先达到极限压应变而压碎 ,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋 不论受拉还是受压,一般达不到屈服强度。构件的承 载力取决于受压区混凝土强度和受压钢筋强度。 破坏性质: 脆性破坏。
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
大偏心受压
产生条件: 相对偏心距 (e0 / h ) 较大, 且离力较远一侧的钢筋适当。 破坏特征: 部分受拉、部分受压,受拉钢筋应力先达到屈 服强度,随后,混凝土被压碎,受压钢筋达屈 服强度。 构件的承载力取决于受拉钢筋的强度和数量。 破坏性质: 塑性破坏。
c
0.5 f c A 1.0 N
2.偏心受压构件正承载力计算
小偏心受压时的应力可按下式近似计算:
1 s fy b 1
s 0时,As受拉; s 0时,As受压; f y f y ; s f y时,取 s f y。

钢筋混凝土偏心受压构件正截面承载力计算

钢筋混凝土偏心受压构件正截面承载力计算

2、受压破坏(小偏心受压) As受压不屈服
As受拉不屈服
As受压屈服
As受压屈服时 As受压屈服判断条件
大小偏心近似判据 真实判据
不对称配筋
大偏心受压不对称配筋 小偏心受压不对称配筋
实际工程中,受压构件常承受变号弯矩作用,所以采用对 称配筋 对称配筋不会在施工中产生差错,为方便施工通常采用对 称配筋
随l 0/h的增加而减小,通过乘一个修正系数ζ2(称为偏
心受压构件长细比对截面曲率的影响系数)
实际考虑是在初始偏心距ei 的基础上×η
上节课总结
一、初始偏心距
e0=M/N
附加偏心距ea取20mm与h/30 两者中的较大值, h是指偏心方向的截面尺寸。
二、两类偏心受压破坏的界限
ξ ≤ξb, 受拉钢筋先屈服,然后混凝土压碎-
1、大偏心受压 x=N/a1 fcb
若x=N /a1 fcb<2a",可近似取x=2a",对受压钢筋合力点取矩可
e" = hei - 0.5h + a"
2、小偏心受压 x=N /a1 fcb>
对称配筋截面设计
对称配筋截面校核 例5-9、5-10及5-11 构造要求(配筋率问题讲解) 作业:5.4、5.5、5.6、5.7、5.8
对称配筋
大偏心受压对称配筋 小偏心受压对称配筋
非对称配筋矩形截面
截面设计
按e i ≤ 0.3h0按小偏心受压计算
若ei > 0.3h0先按大偏心受压计算, (ξ≤ξb确定 为大偏心受压构件。若求得的ξ>ξb时,按小
偏心受压计算。) 强度复核
一s 不对称配筋截面设计 1 s 大偏心受压(受拉破坏)
受压构件正截面承载力计算

第六章偏心受压构件承载力

第六章偏心受压构件承载力

第六章 偏心受压构件承载力判 断 题1.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有屈服。

( )2.轴向压力的存在对于偏心受压构件的斜截面抗剪能力是有提高的,但是不是无限制的。

( )3.小偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小;( )4.对称配筋时,如果截面尺寸和形状相同,混凝土强度等级和钢筋级别也相同,但配筋数量不同,则在界限破坏时,它们的u N 是相同的。

( )5.钢筋混凝土大偏压构件的破坏特征是远侧钢筋受拉屈服,随后近侧钢筋受压屈服,混凝土也压碎;( )6.界限破坏时,正截面受弯承载力达到最大值;( )7.偏压构件的抗弯承载力随着轴向力的增加而增加;( )8.判别大偏心受压破坏的本质条件是03.0h e i >η;( )问 答 题1. 判别大、小偏心受压破坏的条件是什么?大、小偏心受压的破坏特征分别是什么?2. 偏心受压短柱和长柱有何本质的区别?偏心距增大系数的物理意义是什么?3. 附加偏心距a e 的物理意义是什么?4. 什么是构件偏心受压正截面承载力M N -的相关曲线?5. 什么是二阶效应? 在偏心受压构件设计中如何考虑这一问题?6. 写出偏心受压构件矩形截面对称配筋界限破坏时的轴向压力设计值b N 的计算公式。

7. 怎样进行对称配筋矩形截面偏心受压构件正截面的设计与复核?8. 怎样进行不对称配筋矩形截面偏心受压构件正截面受压承载力的设计与复核?9. 怎样计算双向偏心受压构件的正截面承载力?10. 怎样计算偏心受压构件的斜截面受剪承载力?11. 什么情况下要采用复合箍筋?为什么要采用这样的箍筋?12. 写出桥梁工程中,矩形、Ⅰ形截面大、小偏心受压构件承载力的计算公式。

选 择 题1.偏心受压构件计算中,通过哪个因素来考虑二阶偏心矩的影响( )。

A . 0e ;B . a e ;C . i e ;D . η;2.判别大偏心受压破坏的本质条件是:( )。

A .03.0h e i >η;B .03.0h e i <η;C .B ξξ<;D .B ξξ>;3.由u u M N -相关曲线可以看出,下面观点不正确的是:( )。

钢筋混凝土偏心受力构件承载力计算

钢筋混凝土偏心受力构件承载力计算

钢筋混凝土偏心受力构件承载力计算首先是弯矩承载力的计算。

偏心受力构件在受力时会产生弯矩,弯矩的计算公式为M=P*e,其中M为弯矩,P为受力的大小,e为受力点离中和轴的偏心距离。

根据受力构件的几何形状和材料特性,可以计算出弯矩的大小。

然后是弯矩承载力的计算。

在计算弯矩承载力时,需考虑到构件的截面尺寸和混凝土的承载能力。

根据混凝土的强度设计理论,可以计算出构件所能承受的最大弯曲矩阻力Mr。

弯矩承载力的计算公式为M<Mr,即弯矩小于最大弯曲矩阻力时,构件能够承受该组合荷载。

对于轴心受压承载力的计算,主要考虑构件在受力时产生的压力和构件的抗压能力。

压力的计算公式为P=N/A,其中P为压力,N为受力大小,A为构件的截面面积。

抗压能力则取决于混凝土的强度和构件的截面形状。

轴心受压承载力的计算公式为P < Pru,即受力小于抗压能力时,构件能够承受该组合荷载。

当同时考虑弯矩承载力和轴心受压承载力时,需要根据构件的实际受力情况,计算出合理的组合荷载,并选择最不利的受力组合进行计算。

通常情况下,受力构件在一侧会产生弯矩和压力,而在另一侧会产生弯矩和拉力。

在进行承载力计算时,还需要考虑构件的受力性质,如它是梁、柱还是悬臂梁等。

不同构件的受力性质会影响其承载力的计算方法。

除了以上两种承载力的计算之外,还需要考虑构件在受力时的变形和破坏形态。

通过合理的结构设计和选择适当的材料,可以保证构件在设计工作条件下具备足够的承载力和安全性。

综上所述,钢筋混凝土偏心受力构件承载力的计算主要包括弯矩承载力和轴心受压承载力两部分。

通过合理的设计和计算,可以保证构件在受力工况下具备足够的承载能力和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 偏心受压构件承载力判断题参考答案1. 对;2. 对;3. 对;4. 对;5. 对;6. 对;7. 错;8. 错;问答题参考答案1. 判别大、小偏心受压破坏的条件是什么?大、小偏心受压的破坏特征分别是什么? 答:(1)b ξξ≤,大偏心受压破坏;b ξξ>,小偏心受压破坏;(2)破坏特征:大偏心受压破坏:破坏始自于远端钢筋的受拉屈服,然后近端混凝土受压破坏; 小偏心受压破坏:构件破坏时,混凝土受压破坏,但远端的钢筋并未屈服;2. 偏心受压短柱和长柱有何本质的区别?偏心距增大系数的物理意义是什么?答:(1)偏心受压短柱和长柱有何本质的区别在于,长柱偏心受压后产生不可忽略的纵向弯曲,引起二阶弯矩。

(2)偏心距增大系数的物理意义是,考虑长柱偏心受压后产生的二阶弯矩对受压承载力的影响。

3. 附加偏心距a e 的物理意义是什么?答:附加偏心距a e 的物理意义在于,考虑由于荷载偏差、施工误差等因素的影响,0e 会增大或减小,另外,混凝土材料本身的不均匀性,也难保证几何中心和物理中心的重合。

4. 什么是构件偏心受压正截面承载力M N -的相关曲线?答:构件偏心受压正截面承载力M N -的相关曲线实质是它的破坏包络线。

反映出偏心受压构件达到破坏时,u N 和u M 的相关关系,它们之间并不是独立的。

5. 什么是二阶效应? 在偏心受压构件设计中如何考虑这一问题?答:二阶效应泛指在产生了层间位移和挠曲变形的结构构件中由轴向压力引起的附加内力。

在偏心受压构件设计中通过考虑偏心距增大系数来考虑。

6. 写出偏心受压构件矩形截面对称配筋界限破坏时的轴向压力设计值b N 的计算公式。

答:01h b f N b c b ξα=7. 怎样进行对称配筋矩形截面偏心受压构件正截面的承载力的设计与复核?答:对称配筋矩形截面偏心受压构件基本计算公式:0=∑N ,bx f N c u 1α=截面设计问题:01h b f N b c b ξα=,b N N ≤,为大偏压;b N N >为小偏压;截面复核问题:取s s A A =',y y f f =,,由,0=∑M 求出x ,即可求出u N ;8. 怎样进行不对称配筋矩形截面偏心受压构件正截面受压承载力的设计与复核?答:不对称配筋矩形截面偏心受压构件:截面设计问题: 03.0h e i ≥η按大偏压设计,03.0h e i <η按小偏压设计。

求出ξ后,再来判别。

截面复核问题: 01h b f N b c b ξα=,b N N ≤,为大偏压;b N N >为小偏压;两个未知数,两个基本方程,可以求解。

9. 怎样计算双向偏心受压构件的正截面承载力?答:《规范》考虑了近似的计算方法:1111u uy ux u N N N N -+= 10. 怎样计算偏心受压构件的斜截面受剪承载力?答:考虑了压力的存在对受剪承载力的提高,但提高是有限的。

N h SnA f bh f V sv yv t u 07.0175.1010+++=λ 其中:A f N c 3.0≤11. 什么情况下要采用复合箍筋?为什么要采用这样的箍筋?答:当柱短边长度大于mm 400,且纵筋多于3根时,应考虑设置复合箍筋。

形成牢固的钢筋骨架,限制纵筋的纵向压曲。

12. 写出桥梁工程中,矩形、Ⅰ形截面大、小偏心受压构件承载力的计算公式。

答:略,参阅教材。

选择题参考答案1. D ;2. C ;3. B ;4. A ;5. A ;6. D ;7. D ;计算题参考答案1.(矩形截面大偏压)已知荷载设计值作用下的纵向压力KN N 600=,弯矩KN M 180=·m,柱截面尺寸mm mm h b 600300⨯=⨯,mm a a s s 40'==,混凝土强度等级为C30,f c =14.3N/mm 2,钢筋用HRB335级,f y =f ’y =300N/mm 2,550.0=b ξ,柱的计算长度m l 0.30=,已知受压钢筋2'402mm A s =(),求:受拉钢筋截面面积A s 。

解:⑴求e i 、η、e mm N M e 3001060010180360=⨯⨯== mm e a 20=mm e e e a i 320203000=+=+=0.1415.2106006003003.145.05.031>=⨯⨯⨯⨯==N A f c ζ 取0.11=ζ0.1,155600300020=<==ζh l 03.10.10.15560320140011)(140011221200=⨯⨯⨯⨯+=+=ζζηh l h e i03.1=ηmm a h e e s i 59040260032003.12=-+⨯=-+=η (2)判别大小偏压 mm h mm e i 1685603.03.06.32932003.10=⨯=>=⨯=η为大偏压mm a h e e s i 6.6940260032003.12/''=+-⨯=+-=η (3)求A s由()'0''0'12s s y f c a h A f x h x b f Ne -+⎪⎭⎫ ⎝⎛-=α 即)40560(402300)5.0560(3003.140.1590106003-⨯⨯+-⨯⨯⨯⨯=⨯⨯x x整理得:06.135********=+-x x解得 mm x 7.9811=(舍去),mm x 3.1382=由于x 满足条件:0'2h x a b s ξ<< 由s y s y c A f A f bx f a N -+=''1 得2min 23''1360600300002.07.379402300106003.1383003.140.1mm bh mm A f f A f Nbx f A s y y s y c s =⨯⨯=>=+⨯-⨯⨯⨯=+-=ρα 选用受拉钢筋,2402mm A s =2。

(矩形不对称配筋大偏压)已知一偏心受压柱的轴向力设计值N = 400KN,弯矩M = 180KN·m,截面尺寸m mm h b 500300⨯=⨯,mm a a s s 40'==,计算长度l 0 = 6.5m, 混凝土等级为C30,f c =14.3N/mm 2,钢筋为HRB335,, 2'/300mm N f f y y ==,采用不对称配筋,求钢筋截面面积。

解:(1)求e i 、η、e mm N M e 4501040010180360=⨯⨯==有因为mm mm h 207.163050030<== 取=a e mm 20mm e e e a i 470204500=+=+=0.1681.2104005003003.145.05.031>=⨯⨯⨯⨯==N A f c ζ 0.11=ζ0.112.10.10.146047014001311400110.11513500/650022120020>=⨯⨯⨯+=⎪⎭⎫ ⎝⎛+==<==ζζηζh l h e h l i ,所以,12.1=ηmm a h e e s i 4.73640250047012.12=-+⨯=-+=η (2)判别大小偏压 mm h mm e i 1384603.03.04.52647012.10=⨯=>=⨯=η按大偏心受压计算。

(3)计算's A 和s A 550.00033.010230018.0151=⨯⨯+=+=u s yb E f εβξ 550.0==b ξξ则()())40460(300)550.05.01(550.04603003.140.14.736104005.0123'0'201'<-⨯⨯-⨯⨯⨯⨯⨯-⨯⨯=---=s y b b c s a h f bh f Ne A ξξα 按构造配筋 2'min '300500300002.0mm bh A s =⨯⨯==ρ由公式=Ne ()'0''s s y a h A f -()ξξα5.01201-+bh f c 推得 341.04603003.140.1)40460(300300104.736400211)(21123201'0''=⨯⨯⨯-⨯⨯-⨯⨯⨯--=----=bh f a h A f Ne c s s y αξ 23''018.120930030030030010400341.04603003.140.1mm f f A f Nbh f A y y s y b c s =⨯+⨯-⨯⨯⨯⨯=+-=ξα 故受拉钢筋取,A s = 1256mm 2 受压钢筋取,='s A 402mm 2 3. (矩形不对称配筋大偏压)已知偏心受压柱的截面尺寸为mm mm h b 400300⨯=⨯,混凝土为C25级,f c =11.9N/mm 2 , 纵筋为HRB335级钢,2'/300mm N f f y y ==,轴向力N ,在截面长边方向的偏心距mm e o 200=。

距轴向力较近的一侧配置416纵向钢筋2804'mm A S =,另一侧配置220纵向钢筋2628mm A S =,,35'mm a a s s ==柱的计算长度l 0 = 5m 。

求柱的承载力N 。

解:(1)求界限偏心距ob eC25级混凝土,,/9.112mm N f c =HRB335级钢筋 查表得550.0=b ξ,mm h o 365=。

由于A ’s 及A s 已经给定,故相对界限偏心距00/h e b 为定值,os y s y o b c s s y s y o b b c b b o ob h A f A f h b f a a h A f A f h h h b f a h N M h e )()2)((5.0)(5.0''1''010-+-++-==ξξξ 365)6283008043003653009.11550.0(2330)628804(300)365550.0400(3653009.11550.0⨯⨯-⨯+⨯⨯⨯⨯+⨯+⨯-⨯⨯⨯⨯= =0.506ob i i a ob e e mm e mm e mm e >=+===⨯=,22020200,20,185365506.0属大偏心受压。

(2)求偏心距增大系数η0.11=ζ155.12400/5000/<==h l o ,故0.12=ζ,185.10.10.1)5.12(365/2201400112=⨯⨯⨯+=η (3)求受压区高度x 及轴向力设计值N 。

相关文档
最新文档