动能定理及其应用
高考物理复习-动能定理及其应用
长度为πR、不可伸长的轻细绳,一端固定在圆柱体最高点P处,另一端
系一个小球,小球位于P点右侧同一水平高度的Q点时,绳刚好拉直,将
小球从Q点由静止释放,当与圆柱体未接触部分的细绳竖直时,小球的
速度大小为(重力加速度为g,不计空气阻力)
√A. 2ห้องสมุดไป่ตู้πgR
B. 2πgR
C. 21+πgR
D.2 gR
小球下落的高度为 h=πR-π2R+R=π+2 2R,小球下落过程中,根据 动能定理有 mgh=12mv2,综上有 v= π+2gR,故选 A.
从A到B过程,据动能定理可得 (F-μmg)xAB=12mvB2 解得小物块到达B点时速度的大小为 vB=4 5 m/s
(2)小物块运动到D点时,轨道对小物块作用力的 大小. 答案 150 N
从B到D过程,据动能定理可得 -mg·2R=12mvD2-12mvB2 在D点由牛顿第二定律可得 FN+mg=mvRD2 联立解得小物块运动到D点时,轨道对小物块作用力的大小为FN= 150 N.
好为0.已知π取3.14,重力加速度g取10 m/s2,在这一过程中摩擦力做功为
A.66.6 J C.210.6 J
√B.-66.6 J
D.-210.6 J
1 2 3 4 5 6 7 8 9 10 11
小圆环到达 B 点时对细杆的压力恰好为 0,则 mg=mvr2,拉力 F 沿 圆的切线方向,圆环由 A 到 B 的过程根据动能定理有 F·24πr-mgr+ Wf=12mv2,代入数据得摩擦力做功为 Wf=-66.6 J,故选 B.
D.物体运动的时间
物体做匀速直线运动时,受力平衡,拉力 F0 与 滑动摩擦力 Ff 大小相等,物体与水平面间的动 摩擦因数为 μ=mFg0 =0.35,A 正确; 减速过程由动能定理得 WF+Wf=0-12mv2,根据 F-x 图像中图线与 x 轴围成的面积可以估算力 F 对物体做的功 WF,而 Wf=-μmgx,由 此可求得合力对物体所做的功及物体做匀速运动时的速度 v,B、C 正确; 因为物体做变加速运动,所以运动时间无法求出,D错误.
动能定理及应用实例
动能定理及应用实例动能定理是物理学中的一个重要定理,它描述了物体的动能与外力做功之间的关系。
本文将介绍动能定理的基本原理,并通过应用实例来进一步说明其在实际问题中的应用。
一、动能定理的基本原理动能定理是基于牛顿第二定律和功的定义得出的。
牛顿第二定律表明,物体受到的合力等于物体的质量乘以加速度,即F=ma。
功的定义是力在物体运动方向上的投影乘以物体在该方向上的位移,即W=Fs。
根据物体的质量、速度和加速度的关系——v=at,以及速度和位移的关系——s=vt,我们可以推导出动能定理的表达式:E_k = 0.5mv^2 = Fs。
动能定理说明了物体的动能与外力做功之间存在着直接的关系。
当一个物体受到外力作用时,外力对物体做功,改变了物体的动能,使其增加或减小。
二、应用实例1. 汽车刹车示例假设一个汽车以恒定速度行驶,在某一时刻司机突然踩下刹车。
刹车时,汽车受到刹车系统提供的逆向力,这个力与汽车的速度方向相反。
根据动能定理,刹车系统所做的反向功将减小汽车的动能。
由于动能减小,汽车的速度也会相应降低。
2. 自由下落示例考虑一个物体自由下落的情况,只受到重力的作用。
重力对物体产生向下的力,与物体的下落方向一致。
根据动能定理,重力所做的功将增加物体的动能。
由于物体在下落过程中速度不断增加,它的动能也会不断增加。
三、结论与意义动能定理揭示了物体的动能与外力做功之间的关系,说明了动能变化的原因。
通过应用实例,我们可以更好地理解动能定理在实际问题中的应用。
对于机械能守恒的情况,即只有重力做功或只有切向力做功的情况,动能定理可以派生出更简洁的形式。
在工程学和物理学中,动能定理的应用非常广泛。
例如,在力学、运动学和工程力学领域,动能定理被广泛用于分析和解决各种实际问题。
总而言之,动能定理是物体的动能与外力做功之间关系的描述,通过理论推导和实际应用实例的分析,我们可以更好地理解和应用这一重要的物理定理。
动能定理的应用举例
动能定理的应用举例动能定理是物理学中的一个重要定理,它描述了物体的动能与应用力之间的关系。
本文将通过几个实际的例子来说明动能定理的应用,帮助读者更好地理解和应用这一定理。
例子1:汽车碰撞实验假设有两辆汽车,质量分别为m1和m2,初速度分别为v1和v2,它们相向而行,在某一时刻发生碰撞。
根据动能定理,碰撞前后的总动能应该守恒,即:1/2 * m1 * v1^2 + 1/2 * m2 * v2^2 = 1/2 * m1 * v1'^2 + 1/2 * m2 *v2'^2其中,v1'和v2'分别是碰撞后两辆汽车的速度。
通过这个方程,我们可以计算出碰撞后汽车的速度。
例子2:弹簧振动考虑一个质量为m的物体连接在一个弹簧上,弹簧的劲度系数为k。
当物体受力向右移动时,它的速度随时间增加,根据动能定理,我们可以得到:1/2 * m * v^2 = 1/2 * k * x^2其中,v是物体的速度,x是物体的位移。
这个方程描述了物体的动能和弹簧的弹性势能之间的关系。
例子3:自由落体当一个物体自由落体下落时,它的动能也在不断变化。
根据动能定理,物体的动能变化等于外力对物体做功。
在自由落体时,只有重力对物体做功,而重力的大小与物体的质量和下落高度有关。
因此可以得到动能变化的表达式:ΔK = m * g * h其中,ΔK代表动能的变化量,m是物体的质量,g是重力加速度,h是下落的高度。
通过以上三个例子,我们可以看到动能定理的应用范围非常广泛。
无论是碰撞实验、弹簧振动还是自由落体,动能定理都能帮助我们理解物理现象,并进行相关计算。
在实际生活中,我们也可以运用动能定理来解决一些问题,例如交通事故的分析和能量转化的计算等。
总结起来,动能定理是物理学中一个非常重要的定理,它描述了物体的动能与作用力之间的关系。
通过这一定理,我们可以理解和解释各种物理现象,并应用于实际问题的计算中。
希望通过本文的介绍,读者对动能定理有了更深入的理解和应用。
动能定理的应用实例
动能定理的应用实例在物理学中,动能定理是一个非常重要的概念,它描述了力对物体做功与物体动能变化之间的关系。
动能定理的表达式为:合力对物体所做的功等于物体动能的变化,即 W 合=ΔEk 。
这个定理在解决很多实际问题中发挥着关键作用,下面我们就来看看一些具体的应用实例。
先来说说汽车的加速过程。
当汽车发动机的牵引力推动汽车前进时,牵引力对汽车做功。
假设一辆汽车的质量为 m ,牵引力为 F ,汽车在牵引力作用下行驶的距离为 s ,初速度为 v₁,末速度为 v₂。
根据动能定理,牵引力做的功 W = Fs 等于汽车动能的变化,即 1/2mv₂²1/2mv₁²。
通过这个定理,我们可以计算出汽车达到一定速度所需的牵引力或者行驶一定距离时速度的变化。
再看一个物体在斜面上运动的例子。
一个质量为 m 的物体从斜面顶端由静止开始下滑,斜面的高度为 h ,长度为 l ,斜面的倾角为θ ,物体与斜面之间的动摩擦因数为μ 。
在这个过程中,重力对物体做功mgh ,摩擦力对物体做功μmgcosθ·l 。
根据动能定理,重力做的功与摩擦力做的功之和等于物体动能的变化。
因为物体初速度为 0 ,所以末动能 1/2mv²就等于重力做的功减去摩擦力做的功,从而可以求出物体滑到底端时的速度 v 。
在体育运动中,动能定理也有广泛的应用。
比如跳高运动员。
运动员起跳时,腿部肌肉发力做功,使运动员获得一定的初速度。
在上升过程中,只有重力做功。
根据动能定理,运动员起跳时肌肉做功等于运动员到达最高点时的重力势能增加量和动能减少量之和。
通过对这个过程的分析,教练可以根据运动员的身体素质和技术特点,制定更科学的训练方案,以提高运动员的跳高成绩。
还有篮球投篮的过程。
当运动员投篮时,手臂对篮球做功,使篮球获得初速度。
篮球在空中飞行的过程中,受到重力和空气阻力的作用。
根据动能定理,手臂做功等于篮球在空中飞行过程中动能和势能的变化量之和。
动能定理及其应用
动能定理及其应用引言:动能定理是物理学中的一项重要理论,它描述了物体的动能与力的关系。
动能定理不仅在理论物理学领域具有广泛的应用,还在实际生活中发挥着重要的作用。
本文将探讨动能定理的基本原理,并介绍其在不同领域中的应用。
一、动能定理的原理动能定理是基于牛顿第二定律和功的定义推导得出的。
根据牛顿第二定律,力的作用将改变物体的加速度。
而根据功的定义,力对物体所做的功等于力与物体位移的乘积。
结合这两个定律,可以得出动能定理的基本公式:物体的动能等于力对物体所做的功。
二、动能定理在机械工程中的应用在机械工程中,动能定理有着广泛的应用。
例如,在机械设备的设计和优化中,动能定理可以用来分析和评估物体的运动状态和能量转换的效率。
通过计算物体受到的力和位移的乘积,可以得出物体的动能变化情况,进而对机械系统进行合理的设计和改进。
三、动能定理在运动学中的应用在运动学中,运用动能定理可以推导出物体在不同条件下的运动规律。
例如,根据动能定理可以推导出机械系统的动力学方程,并通过求解这些方程,可以预测物体的运动轨迹和速度变化等。
这对于研究运动学问题和进行科学实验具有重要意义。
四、动能定理在能源领域中的应用动能定理在能源领域中也有着重要的应用。
例如,通过应用动能定理,可以计算出流体在流动过程中的动能变化,帮助研究人员优化水力发电站的设计和运行效率。
此外,动能定理还可以用来分析和评估其他能源转换装置,如风力发电机和光伏发电板等。
五、动能定理在体育运动中的应用动能定理在体育运动中也具有广泛的应用。
例如,在跳高比赛中,运动员需要将自身的动能转化为势能,从而跳过跳杆。
通过运用动能定理,可以帮助运动员合理调整起跳速度和身体姿势,从而获得更好的跳远成绩。
同样,在其他运动项目中,运用动能定理也可以帮助运动员优化运动技巧和能量利用,提高竞技成绩。
结论:动能定理作为物理学的基本理论之一,不仅在理论物理学中有着广泛的应用,还在实际生活中发挥着重要的作用。
“动能定理”含义的理解及其生活的应用
“动能定理”含义的理解及其生活的应用动能定理是物理学中的一个基本定理,它描述了物体的动能与其速度之间的关系。
具体地说,动能定理指出,一个物体的动能等于其速度平方的一半乘以其质量,即:K = 1/2mv²其中,K表示动能,m表示物体的质量,v表示物体的速度。
这个公式告诉我们,物体的动能与其速度的平方成正比,与其质量成正比。
动能定理的意义非常重要,在物理学、机械工程、交通运输等领域都有广泛的应用。
下面我们来介绍一些动能定理在生活中的应用。
1. 刹车距离的计算在汽车的行驶过程中,如果突然要停车,刹车就成为了至关重要的关键。
当汽车行驶速度越快时,刹车所需要的距离也越长,因此,为了保证行车安全,刹车距离必须得到科学的计算和控制。
在这个过程中,动能定理就发挥了重要的作用。
根据动能定理,汽车在刹车时释放掉的动能与其刹车前的动能之差,就是刹车所需要消耗的能量,这个能量可以用来计算刹车距离。
2. 对撞实验的分析在粒子物理学中,对撞实验被广泛应用,通过对撞前后粒子的动能变化来研究微观粒子间的相互作用。
在对撞过程中,由于相互作用的力,粒子的动能会发生变化,这时候动能定理就成为了分析对撞结果的重要工具。
可以利用动能定理计算出粒子的动能变化,从而得出粒子的质量、速度等信息。
3. 跳伞运动员的跳跃高度计算当跳伞运动员从飞机上跳下时,因为重力作用,运动员会逐渐加速,同时由于空气阻力的存在,他的速度也会逐渐趋向极限。
根据动能定理,运动员的动能来自于其势能,而势能则与距离高度相关。
因此,可以用动能定理来计算跳伞运动员在不同高度的初始动能,从而判断其跳跃高度。
4. 物体的机械能转化物体的机械能是指动能和势能的总和,如果做功的力不做功,物体的机械能会保持不变。
由于动能定理和势能公式的存在,我们可以很方便地计算物体在不同过程中的机械能,从而分析其能量转化过程。
例如,在一个弹簧系统中,如果我们知道弹簧实际上是如何工作的,那么我们可以通过计算势能和动能的变化来分析弹簧工作时的能量转化。
“动能定理”含义的理解及其生活的应用
“动能定理”含义的理解及其生活的应用动能定理是物理学中的一个基本定理,它描述了物体的动能与物体所受力量之间的关系。
根据动能定理,物体的动能的变化等于物体受力做功的大小。
动能定理的数学表达式为:动能的变化 = 功 = 做功的力× 物体移动的距离在这个公式中,动能的变化是一个物体动能的正负变化,正变化代表动能增加,负变化代表动能减少;做功的力是物体所受的外力;物体移动的距离是外力作用方向上物体移动的距离。
动能定理告诉我们,如果一个物体受到一个力作用,并且沿该力的方向移动了一定距离,那么它的动能将会发生变化。
动能定理的生活应用非常广泛。
下面我们来看几个例子:1. 撞击运动中的应用:当两个物体碰撞时,动能定理可以帮助我们计算碰撞后物体的速度变化。
在汽车碰撞中,我们可以通过测量碰撞前后两车的变形程度来估算车辆碰撞时的速度,从而判断碰撞对人体的伤害程度。
2. 运动器械的设计:在设计运动器械时,我们需要考虑它的动能变化情况。
在设计过山车的过程中,我们需要计算车辆在不同路段的动能变化情况,以确保车辆在高速下行时不会出现危险情况。
3. 能源利用优化:动能定理可以帮助我们优化能源利用。
在交通运输领域,我们可以通过合理安排交通信号灯的时间来减少车辆在起步和停车过程中的能量消耗,从而提高交通效率和节约能源。
4. 运动训练中的应用:动能定理在运动训练中也有着重要的应用。
在跑步运动中,我们可以通过合理调整步幅和步频以及改变地势等来控制身体的动能变化,以提高跑步效率。
通过学习和应用动能定理,我们可以更好地理解物体的运动规律,并且能够在生活中应用这一定理来解决问题。
无论是在日常生活中还是在科学研究中,动能定理都起到了重要的作用,为人们提供了关于运动和能量转化的深刻理解。
动能定理及其应用
动能定理及其应用一、动能1.定义:物体由于运动而具有的能叫动能.2.公式:E k=12m v2.3.单位:焦耳,1 J=1 N·m=1 kg·m2/s2.4.矢标性:动能是标量,只有正值.5.状态量:动能是状态量,因为v是瞬时速度.二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W=12m v22-12m v12或W=Ek2-E k1.3.物理意义:合外力做的功是物体动能变化的量度.■判一判记一记(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.()(2)动能不变的物体一定处于平衡状态.()(3)如果物体所受的合外力为零,那么合外力对物体做的功一定为零.()(4)物体在合外力作用下做变速运动时,动能一定变化.()(5)物体的动能不变,所受的合外力必定为零.()(6)物体的合外力对物体做的功为零,物体初、末状态的动能一定相同.()(7)做自由落体运动的物体,动能与下落距离的平方成正比.()对动能定理的理解及基本应用1.[动能定理的理解](多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增加到v2时,上升高度为H,则在这个过程中,下列说法或表达式正确的是()A.对物体,动能定理的表达式为W F N=12m v22,其中WF N为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W F N-mgH=12m v22-12m v12D.对电梯,其所受合力做功为12M v22-12M v12答案:CD2.[动能定理的简单应用](2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功答案:A3.[动能定理求解变力做功](2019·吉林长春模拟)如图所示,竖直平面内放一直角杆MON,OM水平,ON竖直且光滑,用不可伸长的轻绳相连的两小球A和B分别套在OM和ON杆上,B球的质量为2 kg,在作用于A球的水平力F的作用下,A、B均处于静止状态,此时OA=0.3 m,OB=0.4 m,改变水平力F的大小,使A球向右加速运动,已知A球向右运动0.1 m时速度大小为3 m/s,则在此过程中绳的拉力对B球所做的功为(g取10 m/s2)()A.11 J B.16 J C.18 J D.9 J答案:C4.质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图所示。
动能定理及应用方法
动能定理及应用方法动能定理是物理学中的一个重要定理,它描述了物体的动能与物体所受力的关系。
动能定理的表达形式可以用以下公式表示:W = ΔKE = KE_f - KE_i其中,W代表物体所受的净外力所做的功,ΔKE表示物体动能的变化量,KE_f 表示最终的动能,KE_i表示初始的动能。
动能定理的本质是能量守恒的体现,即物体所受的外力所做的功等于物体动能的变化量。
根据动能定理,我们可以推导出许多实际问题的解决方法。
下面我将介绍动能定理的应用方法。
1. 物体在匀速直线运动过程中的动能定理应用在匀速直线运动过程中,物体的动能不发生改变。
根据动能定理可知,净外力所做的功等于零。
因此,可以通过计算净外力所做的功,来求解物体的平均力和物体所受的外力。
2. 物体在自由落体过程中的动能定理应用在自由落体过程中,物体的初始速度为零,最终速度为v,根据动能定理可以求解物体所受的重力和所做的功。
例如,当一个物体从高处自由下落时,我们可以利用动能定理来计算它在下落过程中的最终速度和落地时的动能。
3. 物体在斜面上滑动过程中的动能定理应用当物体在斜面上滑动时,重力分解成平行于斜面的分力和垂直于斜面的分力。
根据动能定理,我们可以求解物体所受的合外力、动能的变化量以及最终速度。
特别地,当斜面的摩擦系数已知时,可以通过动能定理求解出物体所受的摩擦力。
4. 物体碰撞过程中的动能定理应用在物体碰撞过程中,动能定理可以用来计算碰撞前后物体的动能变化量。
例如,当两个物体发生弹性碰撞时,可以利用动能定理来计算碰撞前后物体的动能变化量,并由此判断碰撞的性质。
5. 动能定理在机械能守恒问题中的应用当物体只受保守力的作用,且机械能守恒时,动能定理可以与势能定理相结合,用来解决问题。
例如,在弹簧振子的运动中,可以利用动能定理和势能定理来计算振子在弹簧势能和动能之间的转化。
总之,动能定理在解决各种实际问题时起到了重要的作用。
通过运用动能定理,我们可以计算物体所受的外力、物体的运动状态以及能量的转化等。
动能定理及应用
第2讲 动能定理及应用一、动能1.定义:物体由于运动而具有的能.2.公式:E k =12m v 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2.4.标矢性:动能是标量,动能与速度方向无关.5.动能的变化:物体末动能与初动能之差,即ΔE k =12m v 22-12m v 12.二、动能定理1.内容:在一个过程中合力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W =ΔE k =E k2-E k1=12m v 22-12m v 12.3.物理意义:合力的功是物体动能变化的量度.4.适用条件:(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.如图1所示,物块沿粗糙斜面下滑至水平面;小球由内壁粗糙的圆弧轨道底端运动至顶端(轨道半径为R ).图1对物块有W G +W f1+W f2=12m v 2-12m v 02对小球有-2mgR +W f =12m v 2-12m v 02自测1 (多选)关于动能定理的表达式W =E k2-E k1,下列说法正确的是( ) A.公式中的W 为不包含重力的其他力做的总功B.公式中的W为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功C.公式中的E k2-E k1为动能的增量,当W>0时动能增加,当W<0时,动能减少D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功答案BC自测2关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是()A.合外力为零,则合外力做功一定为零B.合外力做功为零,则合外力一定为零C.合外力做功越多,则动能一定越大D.动能不变,则物体所受合外力一定为零答案 A命题点一对动能定理的理解1.动能定理表明了“三个关系”(1)数量关系:合外力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合外力做的功.(2)因果关系:合外力做功是引起物体动能变化的原因.(3)量纲关系:单位相同,国际单位都是焦耳.2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题.当然动能定理也就不存在分量的表达式.例1(多选)如图2所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离.在此过程中()图2A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功等于A的动能的增量C.A对B的摩擦力所做的功等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和答案BD解析A物体所受的合外力等于B对A的摩擦力,对A物体运用动能定理,则有B对A的摩擦力所做的功等于A的动能的增量,B正确.A对B的摩擦力与B对A的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A在B上滑动,A、B相对地的位移不相等,故二者做功不相等,C错误.对B应用动能定理W F-W f=ΔE k B,W F=ΔE k B+W f,即外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和,D正确.根据功能关系可知,外力F做的功等于A和B动能的增量与产生的内能之和,故A错误.变式1(多选)质量为m的物体在水平力F的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v,再前进一段距离使物体的速度增大为2v,则()A.第二过程的速度增量等于第一过程的速度增量B.第二过程的动能增量是第一过程动能增量的3倍C.第二过程合外力做的功等于第一过程合外力做的功D.第二过程合外力做的功等于第一过程合外力做功的2倍答案AB命题点二动能定理的基本应用1.应用流程2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)应用动能定理的关键在于准确分析研究对象的受力情况及运动情况,可以画出运动过程的草图,借助草图理解物理过程之间的关系.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理.(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验.例2 (多选)(2016·全国卷Ⅲ·20)如图3所示,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )图3A.a =2(mgR -W )mRB.a =2mgR -WmRC.N =3mgR -2W RD.N =2(mgR -W )R答案 AC解析 质点P 下滑过程中,重力和摩擦力做功,根据动能定理可得mgR -W =12m v 2,根据公式a =v 2R ,联立可得a =2(mgR -W )mR ,A 正确,B 错误;在最低点重力和支持力的合力充当向心力,根据牛顿第二定律可得,N -mg =ma ,代入可得,N =3mgR -2W R ,C 正确,D 错误.例3 (2017·上海单科·19)如图4所示,与水平面夹角θ=37°的斜面和半径R =0.4 m 的光滑圆轨道相切于B 点,且固定于竖直平面内.滑块从斜面上的A 点由静止释放,经B 点后沿圆轨道运动,通过最高点C 时轨道对滑块的弹力为零.已知滑块与斜面间动摩擦因数μ=0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图4(1)滑块在C 点的速度大小v C ; (2)滑块在B 点的速度大小v B ; (3)A 、B 两点间的高度差h .答案 (1)2 m/s (2)4.29 m/s (3)1.38 m解析 (1)对C 点,滑块竖直方向所受合力提供向心力mg =m v C 2Rv C =gR =2 m/s(2)对B →C 过程,由动能定理得-mgR (1+cos 37°)=12m v C 2-12m v B 2v B =v C 2+2gR (1+cos 37°)≈4.29 m/s(3)滑块在A →B 的过程,由动能定理得mgh -μmg cos 37°·h sin 37°=12m v B 2-0代入数据解得h ≈1.38 m变式2 (2016·天津理综·10)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图5所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m ,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,取g =10 m/s 2.图5(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大.答案 (1)144 N (2)12.5 m解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax ① 由牛顿第二定律有mg Hx-F f =ma② 联立①②式,代入数据解得F f =144 N③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得 mgh +W =12m v C 2-12m v B 2④ 设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg =m v C 2R⑤ 由题意和牛顿第三定律知F N =6mg⑥联立④⑤⑥式,代入数据解得R =12.5 m. 命题点三 动能定理与图象问题的结合1.解决物理图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. (2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量. 2.图象所围“面积”的意义(1)v -t 图象:由公式x =v t 可知,v -t 图线与坐标轴围成的面积表示物体的位移. (2)a -t 图象:由公式Δv =at 可知,a -t 图线与坐标轴围成的面积表示物体速度的变化量. (3)F -x 图象:由公式W =Fx 可知,F -x 图线与坐标轴围成的面积表示力所做的功. (4)P -t 图象:由公式W =Pt 可知,P -t 图线与坐标轴围成的面积表示力所做的功.例4 如图6甲所示,在倾角为30°的足够长的光滑斜面AB 的A 处连接一粗糙水平面OA ,OA 长为4 m.有一质量为m 的滑块,从O 处由静止开始受一水平向右的力F 作用.F 只在水平面上按图乙所示的规律变化.滑块与OA 间的动摩擦因数μ=0.25,g 取10 m/s 2,试求:图6(1)滑块运动到A 处的速度大小;(2)不计滑块在A 处的速率变化,滑块冲上斜面AB 的长度是多少? 答案 (1)5 2 m/s (2)5 m解析 (1)由题图乙知,在前2 m 内,F 1=2mg ,做正功,在第3 m 内,F 2=-0.5mg ,做负功,在第4 m 内,F 3=0.滑动摩擦力F f =-μmg =-0.25mg ,始终做负功,对于滑块在OA 上运动的全过程,由动能定理得 F 1x 1+F 2x 2+F f x =12m v A 2-0代入数据,解得v A =5 2 m/s.(2)对于滑块冲上斜面的过程,由动能定理得-mgL sin 30°=0-12m v A 2解得L =5 m所以滑块冲上斜面AB 的长度L =5 m.变式3 (多选)质量为m 的物体放在水平面上,它与水平面间的动摩擦因数为μ,重力加速度为g .用水平力拉物体,运动一段时间后撤去此力,最终物体停止运动.物体运动的v -t 图象如图7所示.下列说法正确的是( )图7A.水平拉力大小为F =m v 0t 0B.物体在3t 0时间内位移大小为32v 0t 0C.在0~3t 0时间内水平拉力做的功为12m v 02D.在0~3t 0时间内物体克服摩擦力做功的平均功率为12μmg v 0答案 BD解析 根据v -t 图象和牛顿第二定律可知F -μmg =m v 0t 0,故选项A 错误;由v -t 图象与坐标轴所围面积可知,在3t 0时间内的位移为x =12·3t 0·v 0=32v 0t 0,所以选项B 正确;由动能定理可知W -μmgx =0,故水平拉力做的功W =32μmg v 0t 0,又F f =μmg =m v 02t 0,则W =34m v 02,选项C 错误;0~3t 0时间内克服摩擦力做功的平均功率为P =W f 3t 0=12μmg v 0,所以选项D 正确.变式4 (2018·湖北黄石调研)用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图8所示.下列说法正确的是( )图8A.0~6 s 内物体先向正方向运动,后向负方向运动B.0~6 s 内物体在4 s 时的速度最大C.物体在2~4 s 时的速度不变D.0~4 s 内合力对物体做的功等于0~6 s 内合力对物体做的功 答案 D解析 物体6 s 末的速度v 6=12×(2+5)×2 m/s -12×1×2 m/s =6 m/s ,则0~6 s 内物体一直向正方向运动,A 项错误;由题图可知物体在5 s 末速度最大,为v m =12×(2+5)×2 m/s =7 m/s ,B 项错误;由题图可知物体在2~4 s 内加速度不变,做匀加速直线运动,速度变大,C 项错误;在0~4 s 内合力对物体做的功由动能定理可知:W 合4=12m v 42-0,又v 4=12×(2+4)×2 m/s =6 m/s ,得W 合4=36 J ,0~6 s 内合力对物体做的功由动能定理可知: W 合6=12m v 62-0,又v 6=6 m/s ,得W 合6=36 J.则W 合4=W 合6,D 项正确.命题点四 动能定理在多过程问题中的应用例5 (2017·河北唐山模拟)如图9所示,装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度x =5 m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30 m 、h 2=1.35 m.现让质量为m 的小滑块(可视为质点)自A 点由静止释放.已知小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图9(1)小滑块第一次到达D 点时的速度大小; (2)小滑块第一次与第二次通过C 点的时间间隔; (3)小滑块最终停止的位置距B 点的距离. 答案 (1)3 m/s (2)2 s (3)1.4 m解析 (1)小滑块从A →B →C →D 过程中:由动能定理得mg (h 1-h 2)-μmgx =12m v D 2-0.代入数据,解得v D =3 m/s. (2)小滑块从A →B →C 过程中: 由动能定理得mgh 1-μmgx =12m v C 2.代入数据,解得v C =6 m/s.小滑块沿CD 段上滑的加速度大小a =g sin θ=6 m/s 2. 小滑块沿CD 段上滑到最高点的时间t 1=v Ca =1 s.由对称性可知小滑块从最高点滑回C 点的时间t 2=t 1=1 s. 故小滑块第一次与第二次通过C 点的时间间隔t =t 1+t 2=2 s.(3)设小滑块在水平轨道上运动的总路程为x 总,对小滑块运动全过程应用动能定理. 有mgh 1=μmgx 总.代入数据,解得x 总=8.6 m ,故小滑块最终停止的位置距B 点的距离为:2x -x 总=1.4 m. 变式5 (2015·福建理综·21)如图10所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点.一质量为m 的滑块在小车上从A 点由静止开始沿轨道滑下,重力加速度为g .图10(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车.已知滑块质量m =M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m ; ②滑块从B 到C 运动过程中,小车的位移大小s . 答案 (1)3mg ,方向竖直向下 (2)①gR 3 ②13L 解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒,则mgR =12m v B 2滑块在B 点处,由牛顿第二定律知 F N -mg =m v B 2R解得F N =3mg 由牛顿第三定律知滑块对小车的压力F N ′=3mg ,方向竖直向下.(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒得, mgR =12M v m 2+12m (2v m )2解得v m =gR3②设滑块运动到C 点时,小车速度大小为v C , 由功能关系知,mgR -μmgL =12M v C 2+12m (2v C )2设滑块从B 运动到C 过程中,小车运动的加速度大小为a , 由牛顿第二定律μmg =Ma 由运动学规律v C 2-v m 2=-2as 解得s =13L1.(多选)(2017·山师大附中模拟)质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则( ) A.质量大的物体滑行的距离大 B.质量小的物体滑行的距离大 C.它们滑行的距离一样大D.它们克服摩擦力所做的功一样多 答案 BD解析 根据动能定理-μmg ·s =0-E k0,所以质量小的物体滑行的距离大,并且它们克服摩擦力所做的功在数值上都等于初动能的大小,B 、D 选项正确.2.一个质量为25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.g 取10 m/s 2,关于力对小孩做的功,以下结果正确的是( ) A.合外力做功50 J B.阻力做功500 J C.重力做功500 J D.支持力做功50 J答案 A3.(2016·全国卷Ⅲ·16)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( ) A.s t 2 B.3s 2t 2 C.4s t 2 D.8s t 2 答案 A解析 动能变为原来的9倍,则质点的速度变为原来的3倍,即v =3v 0,由s =12(v 0+v )t 和a=v -v 0t 得a =s t2,故A 项正确.4.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时的速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A.mgh -12m v 2-12m v 02B.-12m v 2-12m v 02-mghC.mgh +12m v 02-12m v 2D.mgh +12m v 2-12m v 02答案 C解析 对物块从h 高处竖直上抛到落地的过程,根据动能定理可得mgh -W f =12m v 2-12m v 02,解得W f =mgh +12m v 02-12m v 2,选项C 正确.5.静止在粗糙水平面上的物块在水平向右的拉力作用下做直线运动,t =4 s 时停下,其v -t 图象如图1所示,已知物块与水平面间的动摩擦因数处处相同,则下列判断正确的是( )图1A.整个过程中拉力做的功等于物块克服摩擦力做的功B.整个过程中拉力做的功等于零C.t =2 s 时刻拉力的瞬时功率在整个过程中最大D.t =1 s 到t =3 s 这段时间内拉力不做功 答案 A6.(多选)质量为1 kg 的物体静止在水平粗糙的地面上,在一水平外力F 的作用下运动,如图2甲所示,外力F 对物体所做的功、物体克服摩擦力F f 做的功W 与物体位移x 的关系如图乙所示,重力加速度g 取10 m/s 2.下列分析正确的是( )图2A.物体与地面之间的动摩擦因数为0.2B.物体运动的位移为13 mC.物体在前3 m 运动过程中的加速度为3 m/s 2D.x =9 m 时,物体的速度为3 2 m/s 答案 ACD解析 由W f =F f x 对应题图乙可知,物体与地面之间的滑动摩擦力F f =2 N ,由F f =μmg 可得μ=0.2,A 正确;由W F =Fx 对应题图乙可知,前3 m 内,拉力F 1=5 N ,物体在前3 m 内的加速度a 1=F 1-F f m =3 m/s 2,C 正确;由动能定理得:W F -F f x =12m v 2,可得:x =9 m 时,物体的速度为v =3 2 m/s ,D 正确;物体的最大位移x m =W FF f=13.5 m ,B 错误.7.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图3所示,重力加速度g 取10 m/s 2,则此物体( )图3A.在位移x=9 m时的速度是3 3 m/sB.在位移x=9 m时的速度是3 m/sC.在OA段运动的加速度是2.5 m/s2D.在OA段运动的加速度是1.5 m/s2答案BD8.(多选)(2018·河南安阳质检)一质量为2 kg的物体,在水平恒定拉力的作用下以一定的初速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图4中给出了拉力随位移变化的关系图象.已知重力加速度g取10 m/s2,由此可知()图4A.物体与水平面间的动摩擦因数为0.35B.减速过程中拉力对物体所做的功约为12 JC.匀速运动时的速度约为6 m/sD.减速运动的时间约为1.7 s答案ABC9.(多选)如图5所示,竖直平面内有一个半径为R的半圆形轨道OQP,其中Q是半圆形轨道的中点,半圆形轨道与水平轨道OE在O点相切,质量为m的小球沿水平轨道运动,通过O 点后进入半圆形轨道,恰好能够通过最高点P,然后落到水平轨道上,不计一切摩擦阻力,下列说法正确的是(g为重力加速度)()图5A.小球落地时的动能为52mgRB.小球落地点离O 点的距离为2RC.小球运动到半圆形轨道最高点P 时,向心力恰好为零D.小球到达Q 点的速度大小为3gR 答案 ABD10.(多选)太阳能汽车是靠太阳能来驱动的汽车.当太阳光照射到汽车上方的光电板时,光电板中产生的电流经电动机带动汽车前进.设汽车在平直的公路上由静止开始匀加速行驶,经过时间t ,速度为v 时达到额定功率,并保持不变.之后汽车又继续前进了距离s ,达到最大速度v max .设汽车质量为m ,运动过程中所受阻力恒为F f ,则下列说法正确的是( ) A.汽车的额定功率为F f v maxB.汽车匀加速运动过程中,克服阻力做功为F f v tC.汽车从静止开始到速度达到最大值的过程中,克服摩擦力所做的功为12m v max 2-12m v 2D.汽车从静止开始到速度达到最大值的过程中,合力所做的功为12m v max 2答案 AD11.(2017·全国卷Ⅱ·24)为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s 0和s 1(s 1<s 0)处分别设置一个挡板和一面小旗,如图6所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1.重力加速度为g .求:图6(1)冰球与冰面之间的动摩擦因数; (2)满足训练要求的运动员的最小加速度.答案 (1)v 20-v 212gs 0 (2)s 1(v 0+v 1)22s 2解析 (1)设冰球的质量为m ,冰球与冰面之间的动摩擦因数为μ,由动能定理得-μmgs 0=12m v 21-12m v 2①解得μ=v 20-v 212gs 0②(2)冰球到达挡板时,满足训练要求的运动员中,刚好到达小旗处的运动员的加速度最小.设这种情况下,冰球和运动员的加速度大小分别为a 1和a 2,所用的时间为t .由运动学公式得 v 02-v 12=2a 1s 0③ v 0-v 1=a 1t④ s 1=12a 2t 2⑤联立③④⑤式得 a 2=s 1(v 1+v 0)22s 2⑥12.如图7所示,装置ABCDE 固定在水平地面上,AB 段为倾角θ=53°的斜面,BC 段为半径R =2 m 的圆弧轨道,两者相切于B 点,A 点离地面的高度为H =4 m.一质量为m =1 kg 的小球从A 点由静止释放后沿着斜面AB 下滑,当进入圆弧轨道BC 时,由于BC 段是用特殊材料制成的,导致小球在BC 段运动的速率保持不变.最后,小球从最低点C 水平抛出,落地速率为v =7 m/s.已知小球与斜面AB 之间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,不计空气阻力,求:图7(1)小球从B 点运动到C 点克服阻力所做的功; (2)B 点到水平地面的高度; (3)小球运动到C 点时的速度大小. 答案 (1)8 J (2)2 m (3)5 m/s解析 (1)设小球从B 到C 克服阻力做功为W BC ,由动能定理mgR (1-cos θ)-W BC =0. 代入数据解得W BC =8 J.(2)设小球在AB 段克服阻力做功为W AB ,B 点到地面高度为h ,则W AB =μmg AB cos θ, 而AB =H -hsin θ.对于小球从A 点到落地的整个过程,由动能定理 mgH -W AB -W BC =12m v 2.联立解得h =2 m.(3)设小球在C 点的速度为v C ,对于小球从C 点到落地的过程,由动能定理 mg ·CD =12m v 2-12m v C 2CD =h -R (1-cos θ) 联立解得v C =5 m/s.。
动能定理的应用
动能定理的应用动能定理是物理学中的一个重要定理,它描述了物体运动的动能和力的关系。
本文将探讨动能定理的应用,包括在机械工程、航空航天、交通运输和体育运动等领域的实际运用。
一、机械工程中的应用动能定理在机械工程领域具有广泛的应用。
以汽车制造为例,通过动能定理我们可以计算汽车在不同速度下的动能,从而评估汽车的性能。
此外,动能定理还可以应用于机器的动力学分析和设计中,帮助工程师优化机器的运行效率。
二、航空航天中的应用在航空航天工程中,动能定理在飞行器的设计和控制中起着重要作用。
例如,通过动能定理可以计算飞机在起飞和降落过程中所需的最小速度,这对飞行安全至关重要。
此外,动能定理还可以用于计算火箭的离地速度,帮助航天工程师设计和控制火箭的发射。
三、交通运输中的应用交通运输领域也可以应用动能定理进行分析和优化。
以高速列车为例,通过动能定理可以计算列车在不同速度下所具有的动能,从而评估列车的动力性能。
此外,动能定理还可以用于计算汽车刹车距离和轮船的制动距离,有助于提高交通运输的安全性。
四、体育运动中的应用动能定理在体育运动中也有广泛的应用。
以田径运动为例,通过动能定理可以计算运动员在起跑和冲刺过程中所具有的动能,从而帮助运动员提高速度和成绩。
此外,动能定理还可以用于计算篮球或足球运动中球的运动轨迹,帮助教练和运动员制定更加有效的战术。
综上所述,动能定理在机械工程、航空航天、交通运输和体育运动等领域都有着广泛的应用。
它不仅帮助工程师和科学家进行设计和分析,还能够促进技术的发展和运动成绩的提高。
随着科学技术的进步,动能定理的应用将会越来越广泛,为各行各业带来更多的创新和突破。
“动能定理”含义的理解及其生活的应用
“动能定理”含义的理解及其生活的应用“动能定理”是物理学中的一个重要定理,是描述物体运动的能量变化的规律。
简单来说,动能定理是指一个物体的动能的变化等于物体所受外力做功的大小。
根据动能定理,一个物体的动能变化等于物体所受外力做功的大小,即动能的增加等于所受到的外力所做的正功,而动能的减少等于所受到的外力所做的负功。
动能定理的数学表达式为:K2 - K1 = W,其中K2为物体的末动能,K1为物体的初动能,W为物体所受外力所做的功。
在日常生活中,动能定理有着许多应用。
以下是一些常见的例子:1. 抛掷运动:当我们抛掷一个物体时,抛出的物体会具有初速度。
根据动能定理,物体的动能变化等于所受到的外力所做的功,即动能的增加等于所受到的外力所做的正功。
在抛掷运动中,外力所做的功通常为重力对物体的负功,因此物体的动能会减小。
这也解释了为什么抛出的物体在空中逐渐失去高度和速度,最终落地停止运动。
2. 车辆制动:当我们开车行驶时,车辆具有一定的动能。
当需要制动减速或停车时,刹车产生的摩擦力会对车辆进行负功,减少车辆的动能。
根据动能定理,车辆的动能减少等于制动摩擦力所做的功,因此制动力越大,车辆的运动速度减少得越快。
3. 体育运动:在体育运动中,运动员的动能变化也可以通过动能定理来解释。
在进行跳远时,运动员在腾空过程中动能会减少,而在着地时动能会增加。
通过控制跳远的速度和姿势,运动员可以利用动能定理来最大程度地发挥自己的跳远能力。
动能定理是物理学中一个重要的规律,能够描述物体运动的能量变化。
在生活中,我们可以通过应用动能定理来解释和理解许多日常现象和运动过程,提高我们对物体运动的认识和理解。
动能定理的应用
动能定理的应用动能定理是力学中的重要定理之一,它提供了描述物体运动的动能和力的关系。
动能定理指出,物体的动能变化量等于作用于物体的合外力对其所做的功。
在实际生活和科学研究中,动能定理有着广泛的应用。
本文将探讨动能定理在运动学、工程以及体育运动中的具体应用。
一、运动学中的应用在运动学研究中,动能定理可以帮助我们计算物体的速度和位移。
根据动能定理,我们可以通过测量物体的质量和能量的变化来确定物体的速度。
例如,在实验室中,当一个小球从一定高度自由落下时,我们可以测量它在不同位置上的动能,然后利用动能定理推断出它的速度。
此外,动能定理还可以帮助我们计算物体的位移。
当我们知道物体的初始速度、加速度和时间时,通过结合运动学公式和动能定理,可以计算出物体的位移。
二、工程中的应用在工程领域,动能定理在设计和分析多种机械系统中起着重要的作用。
例如,在汽车碰撞测试中,动能定理被用来评估汽车碰撞的力和能量。
通过测量汽车的质量、速度和撞击后的能量变化,工程师可以评估碰撞对乘客的影响,进而改进汽车的设计,提高安全性能。
此外,动能定理还可以应用于工程机械的运行与设计中。
例如,当我们需要设计一个能够加速物体的机械装置时,可以根据动能定理计算出所需的能量,从而确定合适的动力系统。
三、体育运动中的应用动能定理在体育运动中也有很多应用。
例如,在田径运动中,动能定理可以帮助我们理解运动员的力量和速度。
当一个投掷者投掷铅球时,他所施加的力将使得铅球获得动能,并决定了铅球的速度和飞行距离。
运动员可以通过调整投掷力度和技术来最大化动能的转化,从而达到更远的投掷距离。
类似地,在其他体育项目中,动能定理也可以用来分析运动员的动作和能量转化。
例如,足球运动中的踢球动作,击球运动中的击球力度等。
综上所述,动能定理在运动学、工程以及体育运动中都有着广泛的应用。
通过应用动能定理,我们可以计算物体的速度和位移,评估碰撞和冲击的力和能量,设计工程机械以及分析体育运动中的动作和能量转化。
动能定理及相关应用
动能定理及相关应用动能定理是力学中的基本定理之一,它描述了物体的动能与物体受力和位移的关系。
本文将介绍动能定理的概念、公式推导以及其在实际应用中的意义和重要性。
一、动能定理的概念与公式推导动能定理是描述物体动能变化的物理定理,它可以用数学公式表达为:物体的动能变化量等于物体所受合外力进行的功。
假设物体的质量为m,初始速度为v₁,末速度为v₂,物体在受力F作用下发生位移s。
根据牛顿第二定律F=ma,可以得出物体所受合外力F=ma。
根据功的定义,可以得出物体所受合外力所进行的功为W=Fs,而动能的定义是E=1/2mv²。
因此根据动能变化的定义可以得出:ΔE=1/2mv₂²-1/2mv₁²=W二、动能定理的应用1. 物体速度与动能的关系从动能定理的公式可以看出,物体的动能变化量与物体速度的平方成正比。
这意味着当物体的速度增加时,其动能也会增加。
例如,在汽车行驶过程中,当车辆的速度增加时,其动能也会相应增加,这就是为什么车辆在高速行驶时需要更长的制动距离来停下的原因。
2. 动能定理与工作定理的关系动能定理与工作定理都是描述物体动能变化的定理。
两者的区别在于,动能定理强调了物体所受力所进行的功与动能的关系,而工作定理强调了物体所受力通过位移所做的功与动能的关系。
两者可以相互转化和推导,从不同角度理解和描述物体的运动规律。
3. 动能定理在机械能守恒中的应用根据动能定理,如果物体所受的合外力为零,则物体的动能保持不变,即动能守恒。
这在机械能守恒中起着重要作用。
例如,在自由落体运动中,物体只受重力作用,而重力所进行的功是负值,因此根据动能定理可以得出物体的动能会增加,即下落过程中的动能转化为势能。
4. 动能定理在运动学分析中的应用动能定理可以用于运动学分析,通过计算物体所受的合外力和物体的位移,可以推导出物体的速度和位置的关系。
例如,在弹性碰撞中,根据动能定理可以计算出物体在碰撞过程中的速度变化。
动能定理的应用
汽车的燃油效率与加速性能有关。根据动能定理,如果汽车能够快速加速,那么它需要消耗较少的能量 来克服阻力。因此,加速性能好的汽车通常具有较高的燃油效率。
滑板运动
01
滑板运动
在滑板运动中,滑板在斜坡上向下滚动时,动能增加。根 据动能定理,滑板克服摩擦力和重力所做的功等于动能的 增加量。
02 03
详细描述
在火箭推进实验中,我们可以利用动能定理来研究火箭推进过程中动能的转化和守恒。通过测量火箭 喷气速度和火箭质量的变化,我们可以计算出火箭喷气过程中所做的功,并根据动能定理研究火箭动 能的转化和守恒。
04
CATALOGUE
动能定理在工程中的应用
车辆设计
车辆性能优化
利用动能定理,工程师可以对车辆的动力系统进行优化,提高车 辆的加速性能和行驶效率。
落体实验
总结词
验证动能定理在自由落体运动中的适用性。
详细描述
在落体实验中,我们可以利用动能定理来计算物体下落过程中动能的变化。通过测量物体下落的高度和物体的质 量,我们可以计算出重力所做的功,并根据动能定理计算出动能的变化,从而验证动能定理的正确性。
火箭推进实验
总结词
研究火箭推进过程中动能的转化和守恒。
02
CATALOGUE
动能定理在生活中的应用
汽车加速
汽车加速
当汽车加速行驶时,动能增加,而汽车克服阻力所做的功等于动能的增加量。根据动能定理,如果汽车在平直路面上 行驶,空气阻力可以忽略不计,那么汽车的牵引力所做的功等于汽车动能的增加量。
加速性能
汽车的加速性能可以通过比较不同车型的加速度来评估。根据动能定理,加速度与汽车的初速度、末速度和动能的增 量有关。因此,加速性能好的汽车具有较大的牵引力和较低的阻力系数。
动能定理及其应用(上课用)
【例 4】如图 7 所示,倾角为 37°的粗糙斜面 AB 底端与半径 R=0.4 m 的光滑半圆轨道 BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直 径且处于竖直方向,A、C 两点等高.质量 m =1 kg 的滑块从 A 点由静止开始下滑,恰能滑 到与 O 点等高的 D 点,g 取 10 m/s2,sin 37° =0.6,cos 37°=0.8. (1)求滑块与斜面间的动摩擦因数μ; (2)若使滑块能到达 C 点,求滑块从 A 点沿斜面 滑下时的初速度 v0 的最小值;
总结升华
图象所围“面积”的意义
(1)v-t 图:由公式 x=vt 可知,v-t 图线与坐标轴围成的面积表示物体的位移。
(2)a-t 图:由公式 Δv=at 可知,a-t 图线与坐标轴围成的面积表示物体速度的
变化量。
(3)F-x 图:由公式 W=Fx 可知,F-x 图线与坐标轴围成的面积表示力所做的
Δv1=0.50 m/s. 同理可得前2 s内速度变化Δv2=1.5 m/s. 且Δv2=v2-v0得v2=1.5 m/s.
(3)由 a -t 图象可知 11~30 s 内速率最大,其速率等于 0~ 11 s 内 a -t 图线下的面积 vm=10 m/s.此时电梯做匀速直线运 动,拉力 F 等于重力为 mg.则有
A.物体与水平面间的动摩擦因数约为 0.35 B.减速过程中拉力对物体所做的功约为 13 J C.匀速运动时的速度约为 6 m/s D.减速运动的时间约为 1.7 s
(1)F-s 图象的面积表示什么? 提示:F 做的功。 (2)开始物体在粗糙水平面上匀速运动,F 和摩擦力大小关系如何?
提示:大小相等,是平衡力。
【解析】 (1)由a t图象可知,电梯拉力最大为F1时对应的加速度a1=1 m/s2,拉力最小为F2时对应的加速度a2=-1 m/s2.
动能定理的原理和应用
动能定理的原理和应用一、动能定理的原理动能定理是物理学中的一个重要定理,它描述了物体的动能与作用在物体上的净力之间的关系。
动能定理可以用来分析物体在运动过程中的能量转化和能量变化情况。
动能定理的核心原理是:物体的动能的变化率等于作用在物体上的净力乘以物体在该力下移动的距离。
动能定理的数学表示如下:W = ΔK其中,W表示净力所做的功,ΔK表示物体动能的变化。
二、动能定理的应用动能定理在物理学中有着广泛的应用,下面将介绍一些常见的应用场景。
1. 车辆碰撞分析动能定理可以用来分析车辆碰撞的力量和能量变化情况。
通过对碰撞之前和之后车辆的动能变化进行计算,可以推断碰撞的严重程度和造成的损伤情况。
这对于交通事故的调查和事故重建非常重要。
2. 物体自由下落当一个物体从高处自由下落时,可以利用动能定理计算物体的速度和落地时的动能。
这在物理实验和工程设计中经常用到。
3. 弹性碰撞动能定理也可以应用于弹性碰撞的分析。
在弹性碰撞中,物体的动能会发生变化,而动能定理可以帮助我们计算碰撞前后物体的速度和动能变化情况。
4. 机械能守恒动能定理与机械能守恒定律密切相关。
机械能守恒定律指出,在没有外力做功的情况下,物体的机械能(动能和势能之和)保持不变。
动能定理可以帮助我们理解物体机械能的变化和转化情况,从而应用于机械系统的分析和优化设计。
三、总结动能定理是物理学中的一个重要定理,它描述了物体的动能与作用在物体上的净力之间的关系。
动能定理可以用于分析物体在不同情况下的能量变化和转化。
它的应用场景广泛,包括车辆碰撞分析、物体自由下落、弹性碰撞和机械能守恒等方面。
掌握了动能定理的原理和应用,有助于我们深入理解物理学中的能量概念,并能在实际问题中进行定量分析。
动能定理的应用实例
动能定理的应用实例动能定理是经典力学中的一个重要定理,它用于描述物体的运动状态和能量变化之间的关系。
本文将探讨动能定理在不同领域的应用实例,并分析其实际意义和影响。
一、机械运动学中的动能定理应用动能定理表明,物体的动能等于外力对物体所做的功。
在机械运动学中,我们可以通过动能定理来分析物体在受力作用下的运动情况。
例如,考虑一个滑块沿着光滑水平面上的轨道运动,初始速度为0。
如果有一个恒定的力在滑块上施加,我们可以利用动能定理求解滑块在不同时间点的速度。
根据动能定理,滑块的动能等于外力对滑块所做的功。
如果我们知道了外力的大小和滑块的质量,可以得到滑块在不同时间点的速度。
这个应用实例帮助我们理解力对物体运动的影响,也可以用于设计和优化机械装置。
二、汽车碰撞中的动能定理应用动能定理在汽车碰撞领域也有重要的应用。
当两辆汽车发生碰撞时,动能定理可以帮助我们分析碰撞前后的速度变化和能量转化。
假设有两辆汽车,质量分别为m1和m2,初始速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。
根据动能定理可得:1/2m1v1^2 + 1/2m2v2^2 = 1/2m1v1'^2 + 1/2m2v2'^2利用动能定理,我们可以求解出碰撞后两辆汽车的速度。
这个应用实例对汽车碰撞研究和安全设计具有重要意义,有助于减少交通事故对人身伤害的影响。
三、粒子物理学中的动能定理应用动能定理在粒子物理学中也有广泛应用。
粒子物理学研究微观粒子的性质和相互作用,动能定理可以帮助我们理解粒子之间的相互转换和能量守恒。
例如,在希格斯玻色子的研究中,科学家使用动能定理来分析粒子的运动和衰变过程。
通过测量粒子的动能,科学家可以推断其它性质,如质量和衰变方式。
这个应用实例有助于揭示物质的微观结构和基本粒子的行为。
结语本文介绍了动能定理在不同领域的应用实例,包括机械运动学、汽车碰撞和粒子物理学。
通过应用动能定理,我们可以更好地理解物体运动和能量转化的规律,并为相关领域的研究和实践提供指导。
动能定理的应用
动能定理的应用动能定理是物理学中的一个重要定理,它描述了物体动能的变化与力的做功之间的关系。
本文将探讨动能定理在不同领域的应用,并阐述其在解决实际问题中的重要性。
一、机械领域中的应用在机械领域中,动能定理常常用于分析物体的运动状态和能量转化过程。
例如,当一个物体在恒定力的作用下沿直线运动时,可以利用动能定理计算物体在某一时刻的速度。
假设一个物体的质量为m,初速度为v1,末速度为v2,力的大小为F,物体在这一过程中所做的功W可以表示为:W = (1/2) * m * (v2^2 - v1^2)由动能定理得知,功与动能的变化有着直接的关系。
因此,我们可以利用此公式计算物体在不同速度下的能量转化情况,从而预测物体的运动状态以及所需的施力大小。
二、热力学领域中的应用在热力学领域中,动能定理的应用更为广泛。
在理想气体的绝热过程中,动能定理可以用来推导绝热指数与气体性质之间的关系。
绝热指数可以反映气体分子的热运动情况,它与气体的压强、温度和体积有关。
通过应用动能定理,我们可以得到绝热指数γ与气体内能U之间的关系式:γ = (Cp/Cv)其中,Cp表示气体在定压条件下的摩尔热容,Cv表示气体在定容条件下的摩尔热容。
该关系式对于研究理想气体的热力学性质具有重要意义,有助于我们深入理解气体的热力学行为。
三、光学领域中的应用在光学领域中,动能定理可以用于分析光的衍射和干涉现象。
例如,当光通过一个狭缝进行衍射时,可以利用动能定理计算光的衍射角度和干涉条纹的位置。
假设入射光的波长为λ,狭缝的宽度为d,衍射角度为θ,我们可以利用动能定理推导得到以下关系:sin(θ) = λ / d这个关系式被广泛应用于光的干涉与衍射实验中,帮助我们理解和解释光的行为。
综上所述,动能定理在机械、热力学和光学等领域中都有重要的应用。
它不仅可以帮助我们分析物体的运动状态和能量转化情况,还可以解释和预测物质及能量的行为。
因此,深入理解和应用动能定理对于探索自然界的规律和解决实际问题具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,只有正值。
5.动能是状态量,动能的变化量是⑩
量。
1.关于物体的动能,下列说法中正确的是( ) A.物体速度变化,其动能一定变化 B.物体所受的合外力不为零,其动能一定变化 C.物体的动能变化,其运动状态一定发生改变 D.物体的速度变化越大,其动能一定变化也越大 【解析】 A选项中若速度的方向变化而大小不变,则其动能不变 化,故A错。B选项中物体受合外力不为零;只要速度大小不变, 其动能就不变化,如匀速圆周运动中,物体合外力不为零,但速 度大小始终不变,动能不变。C选项中,物体动能变化,其速度 一定发生变化,故运动状态改变,C选项正确。D选项中,
【解题切点】 求解功的方法①定义,②动能定理,③能量转化。
【解析】 对物体 m 应用动能定理:WFN-mgH=12mv2, 故 WFN=mgH+12mv2,A、B 均错;以电梯和物体整体 为研究对象应用动能定理,钢索拉力做的功, WF 拉=(M+m)gH+12(M+m)v2,故 C 错误;由动能定理知, 合力对电梯 M 做的功应等于电梯动能的变化12Mv2, 故 D 正确。
如图所示,质量为M=0.2 kg的木块放在水平台面上,台 面比水平地面高出h=0.20 m,木块离台的右端L=1.7 m。质量为 m=0.10M的子弹以v0=180 m/s的速度水平射向木块,当子弹以 v=90 m/s 的速度水平射出时,木块的速度为v1=9 m/s(此过程作用 时间极短,可认为木块的位移为零)。若木块落到水平地面时的落 地点到台面右端的水平距离为l=1.6 m,求: (1)木块对子弹所做的功W1和子弹对木块所做的功W2; (2)木块与台面间的动摩擦因数μ。
【答案】 D
• 1.质量为m的小球被系在轻绳一端,在竖直平面内做 半径为R的圆周运动,如图所示,运动过程中小球受 到空气阻力的作用。设某一时刻小球通过轨道的最低 点,此时绳子的张力为7mg,在此后小球继续做圆周 运动,经过半个圆周恰好能通过最高点,则在此过程 中小球克服空气阻力所做的功是( )
A. 14mgR C. 12mgR
车速为10 m/s,g取10 m/s2,则下坡过程中阻力所做的功为 ( )
A.-4 000 J
B.-3 800 J
C.-5 000 J
D.-4 200 J
【解析】 对人和车组成的系统,下坡过程中合外力的功等于动能的 变化量。mgh+Wf= 12mv2-21mv20 ,得Wf=-3 800 J。
【答案】 B
(1) 动能定理既适用于直线运动,也适用于⑮ 曲线运动
(2) 既适用于恒力做功,也适用于⑯ 变力做功 (3)力可以是各种性质的力,既可以同时作用, 也可以⑰ 不同时作用
2.人骑自行车下坡,坡长l=500 m,坡高h=8 m,人和车总质量
为100 kg,下坡时初速度为4 m/s,人不踏车的情况下,到达坡底时
【答案】 C
动能定理的应用
• 1.应用动能定理的基本步骤 • ①选取研究对象,明确它的运动过程。 • ②分析研究对象的受力情况和各力的做功情况,然后
求受哪各些个力 → 各力是否做功 → 做正功还是负功 → 做多少功 • 外力做功的代数和。
• ③明确物体在过程的始末状态的动能Ek1和Ek2。 • ④列出动能定理的方程W合=Ek2-Ek1及其他必要的解
2.应用动能定理应该注意的问题 ①明确研究对象和研究过程,找出始、末状态的速度情况。 ②要对物体进行正确的受力分析(包括重力、弹力等),明确各力 做功的大小及正、负情况。 ③有些力在运动过程中不是始终存在的,若物体运动过程中包 含几个物理过程,物体运动状态、受力情况等均发生变化,则 在考虑外力做功时,必须根据不同情况,分别对待。 ④若物体运动过程中包含几个不同的物理过程,解题时,可以 分段考虑,也可视为一个整体过程,根据动能定理求解。
物体速度变化若仅由方向变化引起时,其动能可能不变,如匀速 圆周运动中,速度变化,但动能始终不变,故D错。 【答案】 C
二、动能定理
内容 表达式 对定理的理解
适用条件
合外力对物体所做的功等于物体⑪ 动能变化
W=ΔEk=⑫
1 2m
v22-12mv21
W>0,物体的动能⑬ 增加 W<0,物体的动能⑭ 减少 W=0,物体的动能不变
B. 13mgR D.mgR
【解析】 小球通过最低点时,设绳的张力为 FT,则 FT-mg=mRv21,
即 6mg=mRv21这时
mg=mRv22
②
小球从最低点到最高点的过程中,由动能定理得
-mg·2R- Wf=12mv22-12mv21。
③
由①②③式解得
Wf= 3mgR-2mgR-12mgR= 12mgR。
对动能定理的理解
1.动能定理的计算式为标量式,计算外力对物体做的总功时, 应明确各个力所做功的正负,然后求所有外力做功的代数和; 求动能变化时,应明确动能没有负值,动能的变化为末动能减 初动能。 2.位移和速度必须是相对于同一个参考系的,一般以地面为 参考系。 3.动能定理应用广泛,直线运动、曲线运动、恒力做功、变 力做功、同时做功、分段做功各种情况均适用。 4.动能定理既适用于一个持续的过程,也适用于分段过程。
• 5.动能定理公式中等号的意义 • 等号表明合力做的功与物体动能的变化间的三个关系。 • (1)数量相等,即通过计算物体动能的变化,求合力的
功,进 • 而求得某一力的功。 • (2)单位相同,都是焦耳。 • (3)因果关系,合外力做功是物体动能变化的原因。
如右图所示,电梯质量为 M,地板上放置一质量为 m 的物体。钢索拉电梯由静止开始向上加速运动, 当上升高度为 H 时,速度达到 v,则( ) A.地板对物体的支持力做的功等于12mv2 B.地板对物体的支持力做的功等于 mgH C.钢索的拉力做的功等于12Mv2+MgH D.合力对电梯 M 做的功等于12Mv2
第二节 动能定理及其应用
一、动能
1.定义:物体由于① 运动 而具有的能叫做动能。物体的动能跟
物 速度
质量
速度
质量
体的② 和③ 都有关系,物体的④ 越大,⑤ 越大,
它的动能就越大。 12mv2
2.公式:Ek=⑥
。相同
焦耳
标量
3.单位:与功的单位⑦ ,在国际单位制中都是⑧ 。
过程
4.矢标性:动能是⑨