钢结构厂房的吊车梁如何设计
32t吊车门式刚架轻钢厂房的结构设计
32t吊车门式刚架轻钢厂房的结构设计导言本文重点介绍了某管桩有限公司带32t吊车门式刚架轻钢厂房的刚架和吊车梁的设计,屋面和柱间支撑的设计,檩条及和墙梁的设计。
同时对本工程设计中几个主要问题的处理,也进行了较详细的讨论和介绍,可供同类工程设计时参考。
工程概况某管桩公司生产车间位于河北,厂房长度为6×23=138m,宽度为24+21=45m,屋面坡度为8%,双屋脊,建筑面积为6400㎡,其中:24m跨有32/5t桥式吊车一台,20t/5t桥式吊车二台,21m跨有10t桥式吊车一台,5t单梁桥式吊车一台(以上吊车工作级别均为A5),牛腿标高6.900,柱顶标高11.500,屋面为角驰Ⅱ暗扣式单层压型钢板+75厚吸音保温棉+不锈钢丝网,墙面为单层压型钢板。
本工程建筑结构安全等级为二级,设计使用年限为50年,屋面活荷载对于刚架构件,其受荷水平投影面积大于60㎡,取为0.3kN/㎡,雪荷载为0.45kN/㎡,故取较大值为0.45kN/㎡;屋面活荷载对于檁条,屋面板等局部构件取值则为0.5kN/㎡;基本风压为0.45kN/㎡,地面粗糙度类别为B类;抗震设防烈度为6度。
刚架构件材质采用Q345B;吊车梁因其工作较频繁,需要进行疲劳验算,而最低日平均温度为-6℃,要求所选钢材应具有0℃冲击韧性的合格保证,故吊车梁材质采用Q345C,其它檩条,墙梁,支撑材质采用Q235B。
计算软件采用PKPM的STS软件。
刚架和吊车梁的设计考虑制作安装简便,刚架柱,梁均采用实腹式焊接H型钢,门式刚架用STS 软件进行分析计算时,对屋面活荷载考虑其各跨的不利布置,对吊车的竖向及水平荷载,当参于组合的吊车台数为2台时,对其进行折减,折减系数取为0.9。
由于桥式吊车起重量为32t,已超出《门式刚架轻型房屋钢结构技术规范》(下称轻钢规范)的适用范围,故刚架柱采用《钢结构设计规范》(下称钢结构规范)验算,由于吊车梁可作为柱子的侧向支承点,故下柱平面外计算长度取为7.5m 即基础面至牛腿面的长度,上柱平面外计算长度取为4.6,即牛腿面至柱顶的长度;而对于屋面变截面梁,由于钢结构规范只能用等效截面来验算,会存在一定误差,所以屋面变截面梁的强度和稳定仍按轻钢规范来验算,其平面外计算长度取为两屋面隅撑之间的距离,对于屋面变截面梁的挠度则按钢结构规范从严控制。
钢结构厂房的吊车梁如何设计
吊车梁系统结构的组成吊车梁设计吊车梁一般是简支的(构造简单施工方便对支座沉降不敏感)常见的形式有:型钢梁(1)、组合工字型梁(2)、箱形梁(3)、吊车桁架(4)等。
吊车梁所受荷载永久荷载(竖向)动力荷载,其方向有横向、水平向,特点是反复作用,容易引起疲劳破坏。
因此,对钢材的要求较高,除了对抗拉强度、伸长率、屈服点等常规要求外,要保证冲击韧性合格。
吊车梁结构系统的组成1、吊车梁2、制动梁或者制动桁架吊车梁的荷载吊车梁直接承受三个方向的荷载:竖向荷载(系统自重和重物)、横向水平荷载(刹车力及卡轨力)和纵向水平荷载(刹车力)。
吊车梁设计不考虑纵向水平荷载,按照双向受弯设计。
竖向荷载、横向水平荷载、纵向水平荷载。
竖向荷载包括吊车及其重物、吊车梁自重。
吊车经过轨道接头处时发生撞击,对梁产生动力效应。
设计时采取加大轮压的方法加以考虑。
横向水平荷载由卡轨力产生(轨道不平顺),产生横向水平力。
吊车荷载计算荷载规范规定,吊车横向水平荷载标准值应取横行小车重力g与额定起重量的重力Q之和乘以下列百分数:软钩吊车:Q≤100kN时取20%Q=150~500kN时取10%Q≥750kN时,取8%硬钩吊车:取20%GB50017规定,重级工作制(工作级别为A6~A8)吊车梁,由于吊车摆动引起的作用于每个轮压处的水平力标准值为:吊车梁的内力计算计算吊车梁的内力时,由于吊车荷载为移动荷载,首先应按结构力学中影响线的方法确定各内力所需吊车荷载的最不利位置,再按此求出吊车梁的最大弯矩及其相应的剪力、支座处最大剪力、以及横向水平荷载作用下在水平方向所产生的最大弯矩。
计算吊车梁的强度、稳定和变形时,按两台吊车考虑;疲劳和变形的计算,采用吊车荷载的标准值,不考虑动力系数。
1、移动荷载作用下的计算,首先根据影响线方法确定荷载的最不利位置;2、其次,求出吊车梁的最大弯矩及相应剪力、支座处最大剪力,横向水平荷载作用下的最大弯矩3、进行强度和稳定计算时,一般按两台吊车的最不利荷载考虑;疲劳计算时则按一台最大吊车考虑。
工业厂房现浇钢筋混凝土连续吊车梁的实用计算与设计
工业厂房现浇钢筋混凝土连续吊车梁的实用计算与设计引言:工业厂房建设中,连续吊车梁是常见的结构形式之一、为了确保该结构的安全性和稳定性,需要进行实用计算和设计。
本文将介绍工业厂房现浇钢筋混凝土连续吊车梁的实用计算与设计方法。
一、计算方法:1.确定载荷:根据厂房使用情况和设计要求,确定连续吊车梁的设计载荷。
包括动载荷和静载荷两部分。
动载荷包括吊车和物料的重量,静载荷包括自重和附加荷载。
2.确定梁的跨度:根据场地情况和功能需求,确定连续吊车梁的跨度。
跨度越大,梁的自重和吊车荷载会增大,需要更强的结构承载能力。
3.计算弯矩和剪力:根据连续梁的跨度和载荷,计算处于不同位置的弯矩和剪力。
可以使用弯矩和剪力图来直观地表示不同位置的受力情况。
4.设计截面尺寸:根据计算得到的弯矩和剪力,选择适当的截面形式,并确定其尺寸。
常见的截面形式包括矩形截面和T型截面。
根据截面的尺寸,计算梁的受拉钢筋和受压混凝土的截面面积。
5.设计配筋:根据梁的截面尺寸和受力情况,计算受拉钢筋和受压混凝土的配筋面积。
根据设计规范的要求,确定钢筋的布置方式和间距。
6.检查与优化:对设计结果进行检查,确保满足结构安全性和稳定性的要求。
如果需要,对结构进行优化,以提高其经济性和施工性。
二、设计要点:1.选择适当的材料:梁的材料选择要根据设计要求和使用环境来确定。
常用的材料有钢筋混凝土、钢结构等。
根据不同的材料选择合适的计算方法和设计规范。
2.考虑施工工艺:在设计连续吊车梁时,要考虑到施工工艺的需要。
合理确定各个部位的配筋和连接方式,以方便施工和加固。
3.考虑现场布置:在设计连续吊车梁时,还要考虑到现场的布置。
合理安排梁的位置和高度,以适应不同设备和工艺的需求。
4.考虑动载荷和静载荷:在设计连续吊车梁时,要充分考虑动载荷和静载荷的作用。
合理选择材料和截面尺寸,以满足各种载荷组合下的结构要求。
结论:工业厂房现浇钢筋混凝土连续吊车梁的实用计算与设计需要根据设计要求、材料选择、施工工艺和动静载荷等因素进行综合考虑。
钢结构设计吊车梁的设计PPT教案
➢2.带制动梁的吊车梁:
当吊车额定起重量和 吊车梁跨度再大时, 常在吊车梁的上翼缘 平面内设置制动梁或 制动桁架,用于承受 横向水平荷载
竖向荷载
吊车梁
横向水平荷载 制动梁
第5页/共19页
➢3.带制动桁架的吊车梁: 竖向荷载 吊车梁
横向水平荷载 制动桁架
L≥12m(A6~A8) L≥18m(A1~A5) 增设辅助桁架、水平支撑
u M kyl2 l
10EIy1 2200
Mkx—竖向荷载标准值作用下梁的最大弯矩, Mky—跨内一台起重量最大吊车横向水平荷载
标准值作用下所产生的最大弯矩,
Iy1——制动结构截面对形心轴y1的毛截面惯性矩。 对制动桁架应考虑腹杆第变14形页/的共1影9页响,Iyl乘以0.7的折减系数。
4.4疲劳验算
第11页/共19页
3.带制动桁架的吊车梁
轴力 N1=My/b1
My—横向水平荷载产生 的最大弯矩设计值。
局部弯矩 My=Td/3 A点最不利,其压应力的合应力:
Mx Wnx
M
' y
Wn'y
N1 An
f
An—吊车梁上翼缘及腹板15tw的净截 面面积 之和。
第12页/共19页
4.2整体稳定验算
设有制动结构的吊车梁,侧向弯曲刚 度很大 ,整体 稳定得 到保证 ,不需 验算。 加强上 翼缘的 吊车梁 ,应按 下式验 算其整 体稳定 。
T 1.4g(Q Q') / n
Q —吊车额定起重量
Q--横行小车重量
n --桥式吊车的总轮数
g —重力加速度
—规定的百分数。见教材P40。
按上述百分数算得的横向水平荷载应等分于两边 轨道,并分别由轨道上的两车轮平均传至轨顶,方
钢结构厂房吊车梁设计
钢结构厂房吊车梁设计在钢结构厂房的设计中,吊车梁是一个至关重要的组成部分。
它承担着吊车在运行过程中产生的垂直和水平荷载,并将这些荷载传递给厂房的柱和基础,对整个厂房结构的安全性和稳定性起着关键作用。
接下来,让我们详细探讨一下钢结构厂房吊车梁的设计。
吊车梁所承受的荷载主要包括吊车的自重、吊重、运行时的冲击荷载以及横向和纵向的水平荷载等。
这些荷载的组合和取值需要根据相关的规范和标准进行准确计算,以确保吊车梁在使用过程中具有足够的强度和刚度。
在设计吊车梁时,首先要合理选择其截面形式。
常见的截面形式有工字型钢梁、箱型梁等。
工字型钢梁制造简单、施工方便,在中小跨度的吊车梁中应用广泛;箱型梁的抗扭性能较好,适用于跨度较大或对梁的抗扭要求较高的情况。
材料的选择也是设计中的重要环节。
一般选用高强度的钢材,如Q355 或 Q390 等。
钢材的质量和性能直接影响到吊车梁的承载能力和耐久性。
吊车梁的强度计算包括正应力、剪应力和局部承压应力的计算。
正应力要考虑弯矩的作用,剪应力则与剪力有关,局部承压应力主要出现在吊车轨道与梁的接触部位。
同时,还需要进行整体稳定性和局部稳定性的验算,以防止梁在受力过程中发生失稳现象。
除了强度和稳定性,吊车梁的刚度同样不容忽视。
过大的变形会影响吊车的正常运行和厂房结构的安全性。
通常通过控制吊车梁的挠度来保证其刚度要求,挠度限值应符合相关规范的规定。
在连接设计方面,吊车梁与柱的连接通常采用高强螺栓连接或焊接。
连接节点的设计要保证传力明确、可靠,并且便于施工和维护。
吊车梁之间的拼接也需要精心设计,以确保拼接部位的强度和刚度不低于梁的其他部位。
吊车梁的疲劳问题也是需要特别关注的。
由于吊车的频繁运行,吊车梁会承受反复的荷载作用,容易产生疲劳损伤。
因此,在设计中要对吊车梁的疲劳性能进行验算,并采取相应的构造措施来提高其抗疲劳能力,比如采用合理的焊缝形式、减少应力集中等。
为了提高吊车梁的耐久性,还需要进行防腐和防火处理。
某地跨度15米轻钢结构单层厂房带吊车结构设计图纸
钢结构设计 吊车梁
7
吊车的横向水平荷载
计算公式:
T
Q
(规定百分数)
(Q
Q1)g n
式中的“规定百分数”为:
软钩吊车 Q≤10t时 12%
Q=15~20t时 10%
Q≥75t时 8%
硬钩吊车
20%
Q为吊车的额定起重量(t);Q1为桥式吊车上的横行小车 重量(t),厂家的产品样本或设计手册上可查到;n为桥式 吊车的总轮数,例如四轮吊车n=4,八轮吊车n=8;g为重
浙江大学钢结构研究室
17
挠度验算
吊车梁的竖向挠度应满足下式要求:v
M xkl 2 10EIx
vT
式中:Mxk为由自重和不考虑动力系数的一台最大起 重量的吊车竖向荷载标准值所产生的最大弯矩,容
许挠度 vT 可查规范得。
此外,冶金工厂或类似车间中设有工作级别为A7、 A8级吊车的车间,其跨间每侧吊车梁或吊车桁架的
不大,在设计吊车梁时一般不需考虑。 ) 吊车梁上的永久荷载 吊车梁走道活荷载,(标准值2kN,可适当等
效地并入竖向轮压)
2020年7月1日
浙江大学钢结构研究室
5
2020年7月1日
浙江大学钢结构研究室
6
吊车的竖向荷载
吊车最大轮压标准值 : Pkmax(吊车的厂家的产品样 本或设计手册上均可查到 )
重级工作制计算制动结构水平挠度,考虑1台最大重 级工作制吊车。
荷载最不利位置按绝对最大弯矩和弯矩、剪力影响 线原理确定。
2020年7月1日
浙江大学钢结构研究室
11
最大弯矩计算 最大剪力计算
2020年7月1日
浙江大学钢结构研究室
12
吊车梁的验算
强度验算 整体稳定验算 局部稳定验算 疲劳验算 挠度验算
吊车梁设计(钢结构)
2.1吊车梁系统的组成2.2吊车梁上的荷载2.3吊车梁内力计算2.4吊车梁截面验算(4)其他荷载(2)吊车横向水平荷载(1)吊车竖向荷载(3)吊车纵向水平荷载(1)简支吊车梁(2)连续吊车梁2.4.2强度计算2.4.1一般规定2.4.3腹板及横向加劲肋强度补充计算2.4.4整体稳定计算2.4.5刚度计算2.4.6疲劳计算122.5吊车梁连接计算及构造要求2.5.4其它构造要求2.5.1梁腹板与翼缘板连接2.5.2支座加劲肋与腹板、翼缘板连接2.5.3吊车梁与柱的连接2.7 车挡2.6吊车轨道3横行小车吊车梁柱吊车桥架4吊车是厂房中常见的起重设备,按照吊车的利用次数和荷载大小,国家标准《起重机设计规范》(GB3811)将其分为八个工作级别,称为A1~A8。
工作制等级轻级中级重级特重级工作级别A1~A3A4、A5A6、A7A8工作制等级和工作级别的对应关系许多文献习惯将吊车以轻、中、重和特重四个工作制等级来划分,它们之间的对应关系如下:5《起重机设计规范》GB3811-1983附录A6●吊车梁(或吊车桁架)●制动结构●辅助桁架●支撑1-吊车梁;2-制动梁;3-制动桁架;4-辅助桁架;5-水平支撑;6-垂直支撑吊车梁及制动结构的组成组成:7吊车梁类型:按计算简图:●简支梁●连续梁按构造:●焊接梁●高强度螺栓桁架梁●栓-焊梁按构件类型:●实腹梁●型钢截面●焊接工字形截面●箱形截面●上行式直接支承吊车桁架:●上行式间接支承吊车桁架:吊车轨道直接铺设在桁架上弦上桁架梁上弦放置节点间短梁,以承受吊车荷载●吊车桁架8制动结构:●制动梁●制动桁架●承受横向水平荷载,保证吊车梁的整体稳定●可作为人行走道和检修平台作用:宽度:●应依吊车起重量﹑柱宽以及刚度要求确定。
●一般不小于0.75m 。
●宽度≤1.2m 时,常用制动梁●宽度>1.2m 时,宜采用制动桁架制动结构选用:对于硬钩吊车的吊车梁,其动力作用较大,均宜采用制动梁。
带有大吨位吊车的重型钢结构工业厂房设计
带有大吨位吊车的重型钢结构工业厂房设计摘要:随着中国经济的腾飞,中小企业的壮大,对大吨位吊车重型钢结构厂房的需求日益增长。
本文结合具体工程介绍了大吨位吊车钢结构工业厂房的结构选型,格构柱设计,吊车梁制动系统设计。
关键词:大吨位,吊车,钢结构,工业厂房1 引言20世纪90年代以前,我国国内绝大多数单层工业厂房钢结构都采用大型预制钢筋混凝土屋面板,墙体材料也基本上是混凝土板,围护结构本身很重,承重结构构件非常粗大。
之后,随着单层钢结构工业厂房体系的迅速发展,许多厂房建筑都采用了变截面H形焊接构件组成的门式刚架。
重型工业厂房钢结构一般由檩条、天窗架、屋架、托架、柱、吊车梁或制动桁架、各种支撑及墙架构件等组成[1]。
2 工程概况湖北某机床生产厂房,生产大型机床,建筑面积5218m2,由主跨和辅跨组成。
檐口标高14.1m,主跨跨度28.2m,牛腿标高9.3m,设有三台吊车,其中起重量100t一台,工作制为A3,25t两台,工作制为A5。
辅跨跨度24.2m,檐口标高11.1m,牛腿标高6.8m,设有两台其中起重量25吨的吊车,工作制为A5。
按工艺要求,柱距设为7m。
受地形所限,平面呈L形,纵向主跨较长,辅跨较短,形成了l0榀两跨不等高排架和7榀单跨排架。
按7度抗震设防,地基情况琵好,采用柱下独立基础。
平面、剖面布置如图1、2所示。
图1 钢架平面图图2 钢架剖面布置图3 结构选型按照传统的设计方法,重型、中型厂房结构形式可选钢筋混凝土排架或钢排架。
由于工艺要求,柱距7m最适合布置工位和设备。
如采用非标柱距的钢筋混凝土排架结构,会造成很大的设计工作量,而且施工周期长,是建设方所不能承受的。
钢结构易于加工,适合非标柱距的厂房。
如采用钢屋架(屋面梁)、钢柱分离的排架结构,用钢量会很大,而且整体性不好。
在方案讨论过程中,提出过12m柱距的想法,和工艺布置也能较好的吻合。
12m柱距的优势在于减少了刚架数量和基础数量,加工量减少,施工速度加快。
轻、重型单层工业厂房钢结构设计区别与联系
计算力及吊车台数组合表
表4-5
内力分析
竖向荷载全部由吊车梁承受; 横向水平制动力由制动结构承受;
纵向水平制动力由吊车梁支座下翼缘与柱子的连接来承受并传递;
吊车梁的上翼缘需考虑竖向和横向水平荷载共同作用产生的内力。 在选择和验算吊车梁的截面前,必须算出吊车梁的绝对最大 弯矩以及相同轮位下制动结构的弯矩和剪力。
(4)疲劳强度验算
(5)翼缘和腹板局部稳定验算 翼缘自由外伸宽度b与其厚度t的比值
b 250 235 11.4 15 12.4 t 22 345
腹板高厚比
hw 1600 235 114 170 140 t 1.4 10 345
lz f
1.11.35 1.4 324000 4.8mm 2 150 5 20 50 1.0 310
选用腹板:1600×14
(3)翼缘尺寸
A1 Wx hwtw 22879000 1600 14 10566mm2 hw 6 1600 6
试用500×22
(4)截面几何特征
毛截面几何特性
1 I x 50 2.2 81.1 2 1.4 1603 12 1924853 104 mm 4
2
1924853 Wx 23417 103 mm3 82.2
净截面几何特性
制动梁的截面特性(毛截面和净截面) 4.承载能力和刚度验算 (1)强度验算
(3)刚度验算
1)竖向挠度计算
(4)疲劳计算
M p max -M p min α f Δσ α f y Δσ 2106 (4-41) Inx
M p max、M pmin、 Δσ2106 ---疲劳验算处截面的最大、最小弯矩;
浅析带壁行吊车的钢结构厂房结构设计
浅析带壁行吊车的钢结构厂房结构设计作者:张波来源:《城市建设理论研究》2012年第31期[摘要]本文分析了某电气隔离开关装配车间使用的壁行吊车的运行特点,解决了在现有计算条件下带壁行吊车的刚架计算模型,并对分离式壁行吊车梁的设计要点和变形控制要求进行介绍[关键词]壁行吊车,分离式壁行吊车梁,刚架计算模型中图分类号:TU391 文献标识码:A 文章编号:一、工程概况某电气隔离开关装配车间位于河南省某市高新技术开发区内,为单层门式刚架钢结构厂房。
该厂房沿横向5跨24米共120米,纵向210米,柱距7.5米;五跨均有两台5t单梁吊,局部还设有2吨壁行吊车。
刚架剖面见图1:二、壁行吊车特点壁行吊车是一种在冶炼、铸造、重型金工等厂房中配合大吨位吊车使用的可移动悬臂吊车,它与常用的梁式或桥式吊车不同,沿厂房纵向运行时仅与一排柱子相连,共有上下三条轨道,在吊车悬臂方向还设有电动葫芦可以移动起吊重物。
壁行吊车梁根据吊车吨位及吊车梁的跨度可选用分离式或整体式。
当吊车起重量较小,吊车梁跨度不大时,可选用分离式,共有上下两道吊车梁:吊车上梁可选用焊接“H”、“T”型组合截面,有一水平轨道,承受上水平轮压;吊车下梁为竖向、水平组合梁,可选用焊接“十”型组合截面,有一竖向轨道和水平轨道,承受竖向轮压和下水平轮压,下梁的横向加劲肋将竖向、水平梁相连,提高其整体稳定性及抗扭刚度。
吊车上梁和下梁提供的抗倾覆弯矩足以保证吊车沿轨道顺利运行。
当吊车起重量较大,吊车梁跨度大(如大于12米)且采用分离式上下梁挠度满足不了要求时可采用整体式,只有一道吊车梁,通常经济性较差。
图2为隔离开关装配车间所使用的2吨壁行吊车简图,悬臂长度8.500,吊高6.5米。
因吊车起重量小,吊车梁跨度7.5m,选用分离式吊车梁。
三、刚架分析时考虑壁行吊车荷载的计算模型隔离开关装配车间的刚架分析程序用的是中国建筑科学研究院研发的PKPM(2007年8月网络版)系列之STS(钢结构计算机辅助设计软件),如何考虑壁行吊车对刚架分析的影响是应首先解决的问题。
吊车梁及制动结构的设计要点
吊车梁及制动结构的设计要点摘要:文章结合钢吊车梁及制动结构设计的经验,论述在钢吊车梁及制动结构设计过程中应注意的重点问题。
关键词:钢吊车梁;制动结构;设计要点一、研究背景吊车梁是工业厂房的重要组成部分,属于厂房内的重要构件,吊车梁出现问题很可能造成重大的工程事故。
现今的工程绝大部分均采用钢结构吊车梁。
本文通过理论同时结合本人设计过的一些重型汽车工业厂房钢吊车梁及制动结构的经验,论述在钢吊车梁及制动结构设计过程中应注意的几个重点。
二、钢吊车梁及制动系统设计要点1.关于吊车梁计算的荷载取值:《建筑结构荷载规范》中规定吊车横向水平荷载标准值是根据小车重量和额定起重量之和乘以不同的百分数确定的,但在《钢结构设计标准》中规定,验算重级工作制吊车梁及制动结构的强度、稳定性及连接的强度时,应考虑吊车摆动引起的水平力,并给出了计算公式,并且与《荷载规范》中的水平力不同时考虑,此时应取其中大值进行计算,当遇到重级别工作制吊车梁设计时应引起注意。
《荷载规范》中规定动力系数的取法,但并不是所有计算中都要乘动力系数,《钢结构设计标准》中规定只有在计算强度和稳定性时,动力荷载设计值应乘以动力系数;在计算疲劳和变形时,动力荷载标准值不乘动力系数。
《钢结构设计标准》中规定计算吊车梁及其制动结构的疲劳和挠度时,吊车荷载应按作用在跨间内荷载效应最大的一台吊车确定,而在计算强度和稳定时,一般按两台最大吊车的最不利组合考虑;并且只有在重级工作制吊车梁和重级、中级工作制吊车桁架才进行疲劳验算。
在选取吊车的最大轮压时,一定要注意吊车的形式。
例如50T桥式吊车在不同的吊车样本中轮子数量是不一致的。
有些样本中轮子的数量为4个,有些样本中轮子数量则为8个。
如果将8轮式吊车的最大轮压值当作4轮式吊车的荷载用于计算吊车梁,将会造成荷载取值严重偏小。
所以我们在进行最大轮压的取值时,样本不应作为我们取值的唯一依据,而应当通过吊车起重量吊车自重等主要参数估算最大轮压是否与样本接近。
钢结构厂房吊车梁设计
钢结构厂房吊车梁设计引言钢结构厂房吊车梁设计是在钢结构厂房建设中非常重要的一环。
吊车梁作为厂房运输和搬运设备的重要组成部分,其设计合理与否直接影响到厂房运行效率和安全性。
本文将介绍钢结构厂房吊车梁设计的关键要点和注意事项。
设计标准在进行钢结构厂房吊车梁设计时,需要遵循一系列的设计标准和规范。
常用的设计标准包括GB/T 706-2016《热轧钢型钢尺寸、形状、重量和允许偏差》以及GB 50017-2017《钢结构设计规范》等。
基本原则钢结构厂房吊车梁设计应遵循以下基本原则: 1. 承载能力:吊车梁的设计应满足工作负荷要求,确保吊车梁能够承受预定的荷载和工作条件。
2. 稳定性:吊车梁的结构应具有足够的稳定性,以防止发生塌落或损坏的情况。
3. 经济性:吊车梁的设计应尽可能节约钢材使用,降低成本,但不能影响结构的安全和稳定性。
吊车梁类型选择根据厂房的具体需求和使用情况,可以选择不同类型的吊车梁。
常见的吊车梁类型包括: - 单梁吊车:适用于跨度较小(通常小于30m)的厂房,结构简单,安装方便。
- 双梁吊车:适用于跨度较大(通常大于30m)的厂房,具有较好的稳定性和承载能力。
- 悬臂式吊车:适用于需要在厂房外进行搬运操作的场景,可以实现吊车梁在悬臂端的工作。
选择吊车梁类型时需要考虑以下因素: - 吊车梁的跨度:根据厂房的实际情况,选择合适的吊车梁跨度,以满足工作需求。
- 吊车梁的工作负荷:根据厂房运输和搬运的需求,确定吊车梁的工作负荷等级。
- 吊车梁的工作速度:根据搬运物料的要求,确定吊车梁的工作速度。
- 吊车梁的高度限制:根据厂房天花板的高度,确定吊车梁的高度限制。
吊车梁荷载计算在进行吊车梁设计时,需要进行荷载计算以确保吊车梁的结构稳定。
吊车梁的荷载计算包括静态荷载和动态荷载两部分。
静态荷载计算包括自重、搬运物料的重量以及设备和附件的重量等。
动态荷载计算则考虑吊车梁在运行过程中产生的冲击荷载和振动荷载。
钢结构厂房吊车梁设计
吊车梁设计3.3.1设计资料P 轮压P图3-1 吊车轮压示意图吊车总重量:8.84吨,最大轮压:74.95kN ,最小轮压:19.23kN 。
3.3.2吊车荷载计算吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=⋅⋅=⨯⨯=横向荷载设计值 0.10()0.108.849.81.4 3.032QQ g H kN n γ⋅+⨯⨯==⨯=3.3.3内力计算3.3.3.1吊车梁中最大弯矩及相应的剪力如图位置时弯矩最大A图2-2 C 点最大弯矩Mmax 相应的截面位置考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为:222.max274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ⎛⎫∑- ⎪⎡⎤⨯⨯-⎝⎭==⨯=⋅⎢⎥⎦⎣2max ()2110.18(30.125)2 1.0387.07.5cw lP a V kN l β-⨯⨯-==⨯=∑3.3.3.2吊车梁的最大剪力如图位置的剪力最大图2-3 A 点受到剪力最大时截面的位置3.51.03110.18(1)179.606A R kN =⨯⨯+=,max 179.69V kN =。
3.3.3.3水平方向最大弯矩max 3.3312.688.6110.18c H H M M kN m P ==⨯=⋅。
3.3.4截面选择3.3.4.1梁高初选允许最小高度由刚度条件决定,按允许挠度值(500lv =)规定的最小高度为:6min 0.6[][]0.6600050020010360lh f l mm v-≥=⨯⨯⨯⨯=。
由经验公式估算梁所需要的截面抵抗矩633max 1.2 1.2312.68101876.0810200M W mm f ⨯⨯===⨯梁的经济高度为:300563.34h mm ==。
钢结构吊车梁cad设计构造详图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吊车梁系统结构的组成
吊车梁设计
吊车梁一般是简支的(构造简单施工方便对支座沉降不敏感)
常见的形式有:型钢梁(1)、组合工字型梁(2)、箱形梁(3)、吊车桁架(4)等。
吊车梁所受荷载
永久荷载(竖向)
动力荷载,其方向有横向、水平向,特点是反复作用,容易引起疲劳破坏。
因此,对钢材的要求较高,除了对抗拉强度、伸长率、屈服点等常规要求外,要保证冲击韧性合格。
吊车梁结构系统的组成
1、吊车梁
2、制动梁或者制动桁架
吊车梁的荷载
吊车梁直接承受三个方向的荷载:竖向荷载(系统自重和重物)、横向水平荷载(刹车力及卡轨力)和纵向水平荷载(刹车力)。
吊车梁设计不考虑纵向水平荷载,按照双向受弯设计。
竖向荷载、横向水平荷载、纵向水平荷载。
竖向荷载包括吊车及其重物、吊车梁自重。
吊车经过轨道接头处时发生撞击,对梁产生动力效应。
设计时采取加大轮压的方法加以考虑。
横向水平荷载由卡轨力产生(轨道不平顺),产生横向水平力。
吊车荷载计算
荷载规范规定,吊车横向水平荷载标准值应取横行小车重力g与额定起重量的重力Q之和乘
以下列百分数:
软钩吊车:Q≤100kN时取20%
Q=150~500kN时取10%
Q≥750kN时,取8%
硬钩吊车:取20%
GB50017规定,重级工作制(工作级别为A6~A8)吊车梁,由于吊车摆动引起的作用于每
个轮压处的水平力标准值为:
吊车梁的内力计算
计算吊车梁的内力时,由于吊车荷载为移动荷载,
首先应按结构力学中影响线的方法确定各内力所需吊车荷载的最不利位置,
再按此求出吊车梁的最大弯矩及其相应的剪力、支座处最大剪力、以及横向水平荷载作用下在水平方向所产生的最大弯矩。
计算吊车梁的强度、稳定和变形时,按两台吊车考虑;
疲劳和变形的计算,采用吊车荷载的标准值,不考虑动力系数。
1、移动荷载作用下的计算,首先根据影响线方法确定荷载的最不利位置;
2、其次,求出吊车梁的最大弯矩及相应剪力、支座处最大剪力,横向水平荷载作用下的最大弯矩
3、进行强度和稳定计算时,一般按两台吊车的最不利荷载考虑;疲劳计算时则按一台最大吊车考虑。
吊车梁的截面验算
截面设计
求出吊车梁最不利的内力之后,根据第5章组合梁截面选择的方法试选吊车梁截面.
截面验算
截面验算时,假定竖向荷载由吊车梁承受,横向水平荷载由加强的吊车梁上翼缘、制动梁或制动桁架承受,并忽略横向水平荷载所产生的偏心作用。
整体稳定验算
连有制动结构的吊车梁,侧向弯曲刚度很大,整体稳定得到保证不需验算。
加强上翼缘的吊车梁整体稳定公式:
刚度验算
验算吊车梁的刚度时,应按效应最大的一台吊车的荷载标准值计算,且不乘动力系数。
吊车梁竖向挠度近似计算公式
翼缘与腹板连接焊缝
上翼缘焊缝除承受水平剪应力外还承受由吊车轮压引起的竖向应力;下翼缘焊缝仅受翼缘和腹板间的水平剪应力。
对于重级工作制吊车梁,上翼缘与腹板的连接应采用图7.91所示焊透的T型连接焊缝焊缝质量不低于二级此时不必验算焊缝强度。
腹板的局部稳定验算
吊车梁腹板除承受弯矩产生的正应力和剪应力外,尚承受吊车最大垂直轮压传来的局部压应力。
腹板局部稳定的计算方法见受弯构件一章。
疲劳验算
按照第二章进行疲劳验算,验算时采用一台起重量最大吊车的荷载标准值。
验算部位:受拉翼缘的连接焊缝处、受拉区加劲肋的端部、受拉翼缘与支撑连接处的主体金属、连接的角焊缝。
当吊车梁位于设有柱间支撑的框架柱上时,下翼缘与吊车平台间应另加连接板用焊缝或高强度螺栓连接,按承受吊车纵向水平荷载和山墙传来的风力进行计算。
吊车梁上翼缘与柱的连接应能传递全部支座处的水平反力。
墙梁类型
厂房维护墙分为砌体自承重墙、大型混凝土墙板、轻型墙皮三大类。
墙梁结构的布置
厂房柱间距大于12m时,柱间设置墙架柱,墙架柱间距为6m;在墙面的上沿、下沿及窗框的上沿、下沿处设置一道墙梁;在墙梁上设置拉条减少墙梁的竖向挠度在最上层墙梁处设斜拉条,墙梁可根据柱距大小做成简支梁或连续梁。