A单相逆变电源设计
单相全桥电压型逆变电路
单相全桥电压型逆变电路单相全桥电压型逆变电路是一种常用的电力电子变换器,它能将直流电源转换为交流电源,广泛应用于各种电力供应系统和电力调节系统中。
本文将对单相全桥电压型逆变电路的工作原理、优缺点以及应用领域进行详细介绍。
一、工作原理单相全桥电压型逆变电路由四个开关管和相应的控制电路组成。
开关管分别为Q1、Q2、Q3和Q4,通过适当的控制,可以实现对开关管的导通和关断。
在工作过程中,当Q1和Q4导通,Q2和Q3关断时,直流电源的正极连接到电路的A相,负极连接到电路的B 相,此时输出的是正半周的交流电压。
当Q1和Q4关断,Q2和Q3导通时,正负极的连接情况反转,输出的是负半周的交流电压。
通过不断交替导通和关断,可以在输出端获得一段完整的交流电压波形。
二、优缺点单相全桥电压型逆变电路具有以下优点:1. 输出电压稳定:由于采用全桥结构,能够有效地消除直流电源的波动和噪声,输出电压稳定可靠。
2. 输出功率大:全桥结构能够充分利用电源能量,输出功率相对较大。
3. 输出电压可调:通过控制开关管的导通和关断时间,可以实现对输出电压的调节,满足不同需求。
4. 抗干扰能力强:逆变电路可有效抑制外界干扰信号,提高系统的抗干扰能力。
然而,单相全桥电压型逆变电路也存在一些缺点:1. 成本较高:由于需要四个开关管,控制电路和保护电路等,相对于其他逆变电路而言,成本较高。
2. 效率较低:由于开关管的导通和关断需要一定的时间,逆变过程中会产生一定的开关损耗,导致转换效率有所降低。
三、应用领域单相全桥电压型逆变电路具有广泛的应用领域,包括但不限于以下几个方面:1. 电力供应系统:逆变电路可以将直流电源转换为交流电源,用于电力供应系统中的电压和频率调节,满足不同负载的需求。
2. 电动机控制:逆变电路可将直流电源转换为交流电源,用于电动机的控制和驱动,实现电机的速度调节和方向控制等功能。
3. 新能源应用:逆变电路可以将太阳能、风能等新能源转换为交流电源,供应给家庭、工厂等用电设备。
单相逆变器的软件编程设计
单相逆变器的软件编程设计摘要逆变电源技术是电力电子技术的重要组成部分。
逆变电源是一种采用开关方式的电能变换装置, 它从交流或直流输人获得稳压、稳频的交流输出。
衡量逆变电源性能高低的主要指标是输出电压的品质,输出电压品质由以下特性来衡量: 稳压特性、稳频特性、波形特性、动态特性、电压调制特性。
逆变电源之所以能得到广泛应用,是因为它能实现以下功能:逆变电源能将直流电转换为交流电;变频,逆变电源能将市电转换为用户所需频率的交流电;变相,逆变电源能将单相交流电转换为三相交流电, 也能将二相交流电转换为单相交流电。
逆变电源出现于电力电子技术飞速发展的20世纪60年代,逆变电源的发展是和电力电子器件的发展联系在一起的,器件的发展带动着逆变电源的发展。
最初的逆变电源采用晶闸管(SCR)作为逆变器的开关器件,称为可控硅逆变电源。
随着半导体技术和变流技术的发展,自关断的电力电子器件脱颖而出,相继出现了电力晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极型晶体管(IGBT)等等。
自关断器件在逆变器中的应用大大提高了逆变电源的性能。
由于自关断器件的使用,使得开关频率得以提高,从而逆变桥输出电压中低次谐波的频率比较高,使输出滤波器的尺寸得以减小,而且对非线性负载的适应性得以提高。
近十年来发展起来的新型电源控制技术,目前仍在不断地完善和发展之中,使逆变电源的性能有了质的飞跃。
本次是基于MOSFET管构建的逆变器软件编程设计,使用的核心器件为单片机AT89S52及功率驱动集成芯片IR2110。
本课题使用单片机AT89S52通过编程产生50Hz的准正弦方波,为逆变器提供输出功率信号,去推动MOS功率管。
本次设计采用的电路拓扑为单相全桥逆变电路,用两片IR2110驱动全桥电路,每片分别驱动上下MOSFET,其耐压为500V。
IR2110用于驱动全桥逆变器用以控制MOSFET的通断,在IR2110的外围电路使用二极管和齐纳二极管防止MOSFET 的同时导通而击穿。
逆变器电源设计要求
逆变器电源设计要求逆变器作为一种将直流电转换为交流电的设备,在现代电力电子系统中占有举足轻重的地位。
其设计涉及多个领域的知识,包括电力电子技术、自动控制理论、电磁兼容设计等。
本文将从逆变器的基本工作原理出发,深入探讨逆变器电源设计的各项要求,以期为读者提供一个全面而深入的设计指导。
一、逆变器的基本原理逆变器的基本原理是通过一系列的半导体开关器件(如IGBT、MOSFET等)的导通与关断,将直流电源转换为交流电源。
其输出波形可以是方波、修正波或正弦波,具体取决于控制策略和设计目标。
逆变器的工作效率、输出波形质量以及可靠性是衡量其性能的重要指标。
二、逆变器电源设计的主要要求1. 输出电压和频率的稳定性逆变器应能在各种负载条件下保持输出电压和频率的稳定。
这要求设计人员合理选择逆变器的拓扑结构、开关器件以及控制策略,确保在负载变化时,输出电压和频率的波动范围在允许的范围内。
2. 高效率逆变器作为电力转换设备,其效率直接影响到整个系统的能耗。
因此,提高逆变器的效率是电源设计的重要目标之一。
这可以通过优化电路拓扑、减小开关损耗、提高散热性能等方法实现。
3. 输出波形质量逆变器的输出波形质量对负载的运行性能有重要影响。
对于某些对电源波形要求较高的负载(如电机、通信设备等),逆变器应能提供接近正弦波的输出波形。
这要求设计人员采用先进的PWM控制策略和谐波抑制技术,以减小输出波形的谐波失真。
4. 电磁兼容性逆变器在工作过程中会产生一定的电磁干扰(EMI),可能对周围的电子设备造成干扰。
因此,逆变器电源设计应考虑电磁兼容性,采取必要的屏蔽和滤波措施,降低EMI的发射水平。
5. 保护功能逆变器应具备完善的保护功能,包括过流保护、过压保护、欠压保护、过热保护等。
这些保护功能可以在逆变器出现故障时及时切断电源,保护负载和逆变器本身免受损坏。
6. 可靠性逆变器作为关键电力转换设备,其可靠性对整个系统的稳定运行至关重要。
因此,在逆变器电源设计过程中,应注重选用高品质的元器件、优化电路设计、提高散热性能等方面的工作,以提高逆变器的整体可靠性。
单相并网逆变器总体设计
机械电气工程学院本科毕业设计(文)题目:院(系):专业:学号:姓名:指导教师:完成日期:石河子大学毕业设计(论文)任务书学院:科技学院系级教学单位:电气工程及其自动化学号2007185326学生姓名白喆杨专业班级电气07题目题目名称电力负荷预测模型与算法研究题目性质1.理工类:工程设计();工程技术实验研究型();理论研究型(√ );计算机软件型();综合型()。
2.管理类();3.外语类();4.艺术类()。
题目类型 1.毕业设计(√ ) 2.论文()题目来源科研课题()生产实际()自选题目(√ )主要内容1、逆变电源并网工作的研究2、滤波器在电路中的作用3、并网控制方法的研究4、采用LCL滤波器的并网过程仿真研究基本要求1.掌握并网工作的基本原理;2.给出电路设计的具体方案;3.学习matlab仿真软件;4. 绘制A0图纸一张,论文一本。
参考资料1、电力电子技术电工技术学报等期刊杂志2、三相电压型整流器的LCL滤波器分析与设计电力电子3、新能源并网发电的控制研究电力系统保护与控制4、DC-DC逆变技术及其应用陈道炼机械工业出版社周次1~3周4~8周9~10周11~14周15~18周应完成的内容查阅相关的中文资料,熟悉控制方法的工作原理,翻译一篇英文资料主电路的确定,参数设计控制方案的确定,控制电路的设计系统仿真研究撰写论文,答辩指导教师:鲁敏职称:讲师2011年3月5日系级教学单位审批:年月日摘要随着“绿色环保”概念的提出,以解决电力紧张,环境污染等问题为目的的新能源利用方案得到了迅速的推广,这使得研究可再生能源回馈电网技术具有了十分重要的现实意义。
如何可靠地、高质量地向电网输送功率是一个重要的问题,因此在可再生能源并网发电系统中起电能变换作用的逆变器成为了研究的一个热点。
本文以全桥逆变器为对象,详细论述了基于双电流环控制的逆变器并网系统的工作原理,推导了控制方程。
内环通过控制LCL滤波中的电容电流,外环控制滤波后的网侧电流。
单相桥式整流逆变电路的设计及仿真..
辽宁工业大学电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真院(系):电气工程学院专业班级:自动化111班学号: *********学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 1103020 学生姓名 专业班级课程设计(论文)题目单相桥式整流/逆变电路的设计及仿真课程设计(论文)任务 课题完成的功能、设计任务及要求、技术参数 实现功能整流电路是将交流电能变成直流电供给直流用电设备,在生产实际中,用于电阻加热炉、电解、电镀中,这类负载属于电阻类负载。
逆变电路是把直流电变成交流电。
逆变电路应用广泛,在各种直流电源中广泛使用。
设计任务及要求 1、确定系统设计方案,各器件的选型 2、设计主电路、控制电路、保护电路; 3、各参数的计算;4、建立仿真模型,验证设计结果。
5、撰写、打印设计说明书一份;设计说明书应在4000字以上。
技术参数整流电路:单相电网220V ,输出电压0~100V ,电阻性负载,,R=20欧姆 逆变电路:单相全桥无源逆变,输出功率200W ,输出电压100Hz 方波 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析及系统方案确定(2天)3、 主电路、控制电路等设计(1天)4、 各参数计算(1天)5、 仿真分析与研究(3天)6、 撰写、打印设计说明书(1天)答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要整流电路是把交流电转换为直流电的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
逆变电路是把直流电变成交流电的电路,与整流电路相对应。
无源逆变电路则是将交流侧直接和负载连接的电路。
此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。
单相逆变器设计范文
单相逆变器设计范文首先,单相逆变器的设计需要考虑以下几个方面:输出电压波形、输出功率、效率和保护措施。
1.输出电压波形:单相逆变器的输出电压波形应尽可能接近正弦波,以保证输出电能的质量。
常见的设计方法包括:方波逆变器、脉宽调制(PWM)逆变器和多脉泽调制(MPPT)逆变器。
其中,PWM逆变器是最常用的设计方法,通过高频开关器件的开关控制实现。
2.输出功率:逆变器的输出功率决定了其应用范围。
在设计单相逆变器时,需根据具体需求选择适当的功率等级。
输出功率主要受限于逆变器的开关器件和电路拓扑结构。
常用的逆变器拓扑结构有单相桥式逆变器、双半桥逆变器、全桥逆变器等。
选择适合的拓扑结构能提高逆变器的功率密度和转换效率。
3.效率:逆变器的效率对于能量转换非常重要,可以通过优化设计和控制算法来提高效率。
有效的设计方法包括:降低开关器件的导通和开通损耗、降低电路的额定电流和电压降以减少传导损耗等。
此外,合理的散热设计和抑制电磁干扰也能提高逆变器的效率。
4.保护措施:逆变器的保护措施是确保其正常运行和安全性的重要组成部分。
常见的保护措施包括:过电流保护、过温保护、短路保护、过压保护等。
通过添加适当的保护电路和控制算法,可以有效防止逆变器受损或损坏。
设计单相逆变器需要一定的电力电子知识和设计经验。
下面提供一个基本的单相逆变器设计流程作为参考:1.确定输出功率和电压:根据应用需求确定单相逆变器的输出功率和电压等级。
2.选择逆变器拓扑结构:选择适合的逆变器拓扑结构,并进行电路分析和计算。
常见的逆变器拓扑结构包括全桥逆变器和单相桥式逆变器。
3.选择开关器件:根据输出功率和电压确定合适的开关器件,如功率MOSFET、IGBT等。
考虑开关器件的导通和开通特性,以及损耗和成本等因素。
4.控制电路设计:设计适当的控制电路和算法,实现逆变器的开关控制。
常见的控制方法包括PWM调制、电流控制和电压控制等。
5.散热设计:根据逆变器的功率密度和工作条件设计散热系统,确保逆变器在长时间工作时的温度控制和散热效果。
单相半桥无源逆变电路的设计
单相半桥无源逆变电路的设计单相半桥无源逆变电路的基本原理是通过两个开关管交替导通和关断,实现直流电压到交流电压的转换。
在导通状态下,直流电源的正极连接到负载,并通过开关管将电流传递给负载。
在关断状态下,通过电感和电容等元件,将磁能和电能转换为交流电压输出。
通过两个开关管交替导通和关断,实现正负半周的交流电压输出。
单相半桥无源逆变电路主要由两个开关管、两个磁元件(电感、变压器等)和两个电容组成。
开关管的导通和关断通过控制电路实现,可以使用晶闸管、MOSFET或IGBT等开关元件。
磁元件用于储存磁能,将直流电能转换为交流电能。
电容则用于储存电能,平滑输出的交流电压波形。
接下来,我们将详细介绍单相半桥无源逆变电路的设计步骤。
1.确定电源和负载要求:根据具体应用需求,确定输入直流电压和输出交流电压的额定值。
2.选择开关管和控制电路:根据负载要求和工作条件,选择合适的开关管和控制电路。
考虑开关管的导通电流和耐受电压,以及控制电路的驱动能力和稳定性。
3.选择磁元件:根据负载要求和电源容量,选择合适的磁元件。
磁元件的参数包括电感值、饱和电流和损耗等。
4.选择电容:根据负载要求和输出电压纹波范围,选择合适的电容。
电容的参数包括容值、工作电压和损耗等。
5.设计控制电路:根据开关管的驱动方式,设计合适的控制电路。
常见的控制方式包括触发电路、斩波电路和保护电路等。
6.进行电路仿真:使用电路仿真软件,验证和优化设计的单相半桥无源逆变电路。
通过仿真结果,可以评估电路的性能和稳定性。
7.制作原型电路:根据设计结果,制作原型电路进行实际测试。
根据测试结果,对电路进行调整和优化。
8.优化电路参数:根据原型电路的测试结果,对电路参数进行调整和优化。
可以通过更换元件、调整电路连接方式等方法,改善电路性能。
9.进行电路性能测试:对优化后的单相半桥无源逆变电路进行性能测试。
测试项目包括输出波形、效率、稳定性和保护性能等。
10.进行传感器的选型与设计:根据实际要求,选择合适的传感器,并设计传感器的接口和驱动电路。
单相全桥逆变器电路图 单相桥式逆变器的工作原理和波形图详解
单相全桥逆变器电路图单相桥式逆变器的工作原理和波形图详解
一、单相全桥(逆变器)是什么?
单相全桥逆变器基本上是电压源逆变器,单相全桥逆变器的(电源电路)图下图所示。
为了简单,没有标出SCR触发电路和换向电路。
单相全桥逆变器采用2线直流(电源)、4个续流(二极管)和4个(可控硅)。
T1和可T2同时导通,其频率为f=1/T。
同样,T3 和T4同时开启。
(T1和T2 )和(T3和T4)的相位差有180℃。
单相全桥逆变器
二、单相全桥逆变器电路工作原理
单相全桥逆变器的工作分为4种模式:模式℃:(t1
模式℃(t1
模式II (T/2
模式III(t2
三、单相全桥逆变波形
这里S1、S2、S3、S4也就是T1、T2、T3、T4。
1、当负载为:负载为R、L、RL
1)纯(电感负载)L 负载:
电流Io 关于t 轴对称,因此直流分量= 0,并且电流从最小峰值电流(-Ip) 到最大峰值电流(+Ip) 呈线性。
在这种情况下:D1 和D2在0
负载为R、L、RL
2、当负载为纯阻性负载
输出电压(U0)和输出电流(I0)波形如下:
Ig1和Ig2为门脉冲,用于接通S1、S2和S3、S4。
对于阻性负载,在0
负载为纯阻性负载
3、任何负载的输出电压(U0)波形
负载的输出电压(U0)波形
对于任何类型的负载,输出电压波形将保持相同,但电流波形取决于负载的性质。
输出电压波形是半波对称的,因此不存在所有偶次谐波。
四、单相全桥逆变优点
电路中无电压波动
适合高输入电压
高效节能
功率器件的额定电流等于负载电流。
实验51-DC-AC SPWM单相全桥逆变电路设计及研究
实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。
SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。
要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。
除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。
脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。
目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。
前者主要用于模拟控制中,后者适用数字控制。
本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。
对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。
具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。
由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。
图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。
本实验中程序采用DSP 控制方式,载波频率固定为10KHZ ,调制波频率为50HZ 频率。
逆变电源设计
逆变电源设计摘要:本系统是根据无源逆变的实用原理,采用单相全桥逆变电路工作方式,实现把直流电源(12v)转换成交流电源(320V,50HZ),并对负载进行供电。
达到的性能要求就是转换出稳定的工频电源.设计的基本要求在一些交通运载、野外测控、可移动武器装备、工程修理车等设备中都配有不同规格的电源。
通常这些设备工作空间狭小,环境恶劣,干扰大。
因此对电源的设计要求也很高,除了具有良好的电气性能外,还必须具备体积小、重量轻、成本低、可靠性高、抗干扰强等特点。
针对某种移动设备的特定要求,研制了一种简单实用的车载正弦波逆变电源,采用SPWM 工作模式,以最简单的硬件配置和最通用的器件构成整个电路。
实验证明,该电源具有电路简单、成本低、可靠性高等特点,满足了实际要求。
车载逆变器(电源转换器、Power Inverter )是一种能够将DC12V 直流电转换为和市电相同的AC220V 交流电,供一般电器使用,是一种方便的车用电源转换器。
车载电源逆变器在国外市场受到普遍欢迎。
在国外因汽车的普及率较高,外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。
中国进入WTO 后,国内市场私人交通工具越来越多,因此,车载逆变器电源作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。
通过点烟器输出的车载逆变器可以是20W 、40W 、80W 、120W 直到150W ,功率规格的。
再大一些功率逆变电源200W,300W,400W,500W,600W,700W,800W,1000W,1500W 要通过连接线接到电瓶上。
设计汽车逆变电源,提出了一种低成本的方波逆变电源的基本原理及制作方法;介绍了驱动电路芯片SG3524 和IR2110 的使用;设计驱动和保护电路;给出输出电压波形的实验结果。
本文阐述了要求非常高的车载电源的设计及实验过程中的一些特殊问题的解决措施,提出了一些新颖的观点。
单相正弦波逆变电源设计原理
单相正弦波逆变电源设计原理+电路+程序目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)14.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)5.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)21.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。
满载时输出功率大于100W,效率不小于80%,具备过流保护和负载短路保护等功能。
1.2总体设计方案1.2.1设计思路题目要求设计一个车载通信设备用单相正弦波逆变电源,输出电压波形为正弦波。
设计中主电路采用电气隔离、DC-DC-AC的技术,控制部分采用SPWM(正弦脉宽调制)技术,利用对逆变原件电力MOSFET的驱动脉冲控制,使输出获得交流正弦波的稳压电源。
1.2.2方案论证与比较⑴ DC-DC变换器的方案论证与选择方案一:推挽式DC-DC变换器。
毕业设计—便携式DCAC逆变电源设计
毕业设计—便携式DCAC逆变电源设计一、引言逆变电源是将直流电能转换为交流电能的一种电子设备,广泛应用于无线通信、家用电器和电子产品等领域。
传统的逆变电源通常采用大型变压器和独立的整流和逆变电路,体积大、效率低。
为了满足现代化生活的需求,便携式逆变电源的设计变得越来越重要。
本文旨在设计一种便携式的直流-交流逆变电源,具有小巧轻便、高效率和良好的负载适应性等特点。
二、设计原理本设计主要采用的是基于全桥拓扑的逆变电路,输入电源为一个稳定的直流电压,输出电源为一个稳定的交流电压。
1.全桥逆变器原理全桥逆变器的基本原理是将直流电能转换为交流电能。
它由四个开关管组成,它们根据逆变器的工作方式交替打开和关闭,以便将直流电流交替流过变压器的不同侧。
2.控制电路控制电路对开关管的开关时间进行控制,以保证逆变器工作的稳定性。
常见的控制电路有PWM控制和SPWM控制。
PWM控制的原理是通过调整开关管的开关频率来控制输出电压的幅值,同时通过调节占空比来控制输出电压的频率。
SPWM控制则是调整开关管的开关频率和占空比来控制输出电压的波形。
3.滤波电路滤波电路用于滤除逆变过程中产生的高频噪声和谐波,保证输出电压的稳定性和平滑性。
三、设计步骤1.确定输入和输出参数根据实际需求,确定输入电压、输出电压和输出频率等参数。
2.选择开关管和变压器根据输出功率和电流要求,选择适合的开关管和变压器。
3.设计控制电路根据所选定的控制电路,设计和搭建控制电路,并进行实验测试。
4.设计滤波电路根据所选定的滤波电路,进行电路设计和实验测试,确保输出电压的稳定性和平滑性。
5.优化电路和布局优化电路和布局,减小电路的尺寸和体积,提高整体效率和稳定性。
四、实施计划1.设计电路的原理图和PCB布局图,并进行调试和测试。
2.确定电路的参数和性能指标,并进行性能测试。
3.优化电路和布局,减小尺寸和体积。
4.编写设计报告,并撰写毕业论文。
五、预期结果与意义本设计将设计一种小巧轻便、高效率和负载适应性好的便携式逆变电源。
逆变电源设计讲解
逆变电源设计讲解逆变电源是将直流电转化为交流电的一种电源设计。
它的主要功能是将低电压直流电转化为高电压交流电,以供给各种电子设备使用。
逆变电源广泛应用于家用电器、工业自动化设备、电子通信设备等领域。
逆变电源的设计基本上由以下几个部分组成:直流输入电路、DC-DC变换电路、高频大功率开关电源、滤波电路、逆变输出电路等。
首先是直流输入电路。
它主要由整流桥、滤波电容和电感组成。
整流桥将交流电转换为直流电,并使用滤波电容和电感来充分滤除电源中的纹波,使电源输出的直流电尽可能地平滑。
接下来是DC-DC变换电路。
它主要由升压变换器和降压变换器组成。
升压变换器将低电压直流电转换为高电压直流电,而降压变换器则将高电压直流电转换为低电压直流电。
通过这两个变换器的配合,我们可以实现不同电压等级的输出。
然后是高频大功率开关电源。
它主要由高频大功率开关管、驱动电路和负载电感组成。
高频大功率开关管在高频下进行开关动作,通过驱动电路控制其开关状态。
在这个过程中,负载电感将输入电源的电流平滑。
这种设计可以大大提高电源的效率和稳定性。
接下来是滤波电路。
它主要由输出滤波电感和滤波电容组成。
输出滤波电感用于滤除输出电源的纹波,而滤波电容则进一步平滑输出的直流电,减小输出电压的波动。
这样可以确保输出电源的稳定性和可靠性。
最后是逆变输出电路。
它主要由逆变器和输出滤波电路组成。
逆变器将高电压直流电转换为交流电,并通过输出滤波电路平滑输出的交流电。
这样,我们可以获取到所需的交流电供给各种电子设备使用。
在逆变电源的设计过程中,需要考虑到输入电压的稳定性、输出电压的精度和负载容量等因素。
此外,还需要考虑保护电路的设计,以确保电源的安全可靠。
总之,逆变电源是一种将直流电转化为交流电的电源设计。
它由直流输入电路、DC-DC变换电路、高频大功率开关电源、滤波电路和逆变输出电路等组成。
逆变电源广泛应用于各种电子设备中,提供稳定可靠的交流电供给。
在设计过程中,需要考虑到输入电压、输出电压、负载容量和保护电路等因素,以确保电源的性能和安全性。
逆变电源设计
逆变电源设计
逆变电源是将直流电源转换成交流电源的装置,可以通过
以下步骤进行逆变电源的设计:
1. 确定输出功率和电压要求:根据具体的应用需求,确定
逆变电源的输出功率和输出电压。
2. 选择逆变电路拓扑:根据输出功率和电压要求,选择合
适的逆变电路拓扑,常见的逆变电路包括全桥逆变、半桥
逆变、单臂逆变等。
3. 选择逆变器元件:根据所选择的逆变电路拓扑,选择逆
变器的元件,包括开关管、变压器、电容器、滤波电感等。
确保元件能够承受所需的功率和电压。
4. 计算和设计控制电路:设计逆变器的控制电路,可以采
用脉宽调制(PWM)控制方法。
通过计算和设计控制电路,实现输出电压和频率的稳定控制。
5. 进行电路布局和布线:根据所选择的逆变电路和控制电路,进行电路布局和布线。
确保电路的布线合理、电源线
和信号线分离,并考虑到电磁干扰和噪声的抑制。
6. 进行逆变电源的仿真和调试:使用电路仿真工具对设计
的逆变电源进行仿真,检验电路性能和稳定性。
根据仿真
结果进行调试和优化,确保逆变电源的性能和可靠性。
7. 进行实际电路搭建和测试:根据设计的逆变电路图和布局,进行实际电路的搭建和连接。
进行逆变电源的实验测试,包括输入电压和输出功率的稳定性、效率等指标的测试。
8. 优化和改进:根据实际测试结果和需求,进行逆变电源
的优化和改进。
可以调整控制电路参数、更换元件等方式,提高逆变电源的性能和稳定性。
请注意,在设计逆变电源时要充分考虑安全性和电磁兼容
性等因素,合理选择元件和控制方案,并按照相关标准要
求进行设计和测试。
单相正弦逆变电路
全国大学生电子设计竞赛——2014年模拟电子系统设计邀请赛设计报告竞赛题:A题参赛队编号:004一、题目要求1.任务设计并制作输出正弦交流电压U o有效值为10V、额定输出电流I o有效值为1A 的单相逆变电源,负载为阻性;输入直流电压U I =15V。
结构框图如图1 所示。
图 1 电路整体结构图2.要求(1)U I=15V、I o=1A 条件下,输出电压U o=10±0.2V,频率f o=50±0.5Hz,输出正弦波无明显失真。
(2)U I=15V、I o=1A 条件下,尽量提高逆变电源效率。
(3)U I=15V、I o在0.1A~1A 范围内变化,负载调整率S I≤1%。
(4)输出频率可步进调整,步进值不大于5Hz,频率调整范围不小于20~100Hz。
(5)具有输出过流保护功能,I o≥1.5A 时动作;且故障排除后能够自动恢复。
(6)其他发挥。
(7)设计报告。
二、系统方案1.全桥设计方案图 2 全桥设计电路原理图全桥设计采用专用MOS管驱动器UCC27211和N沟MOS管CSD19536KCS,具有频率高,效率高,控制简单,电压较大等特点,是理想的全桥驱动电路。
核心电路如图2所示。
三、理论分析与计算整体设计方案电路图中的SPWM波为正弦调制的方波,正弦脉宽调制(SPWM)是一种调制方式,其基本内容为:1. 基波:一般为低频率(相对于载波)的正弦波,如逆变电源中的50/60/400Hz 正弦波信号,D类功放中20 20-20kHz 的音频信号等。
2. 载波:一般为高频率(相对于基波)的线性三角波或锯齿波。
3. 载波比:载波频率和基波频率的比值我们成为载波比。
4.LC 滤波:主要是通过LC 的滤波作用把一系列按正弦规律变化的脉冲还原成正弦波。
图 3 SPWM波原理图如图所示:输出电压半周期内,器件通、断各3次(不包括0和π),共6个开关时刻可控。
为减少谐波并简化控制,要尽量使波形对称;首先,为消除偶次谐波,使波形正负两半周期镜像对称,即 u (ω t ) =− u (ω t+ π ) 其次,为消除谐波中余弦项,应使波形在正半周期内前后1/4 周期以π/2为轴线对称; u(ωt )= u(π−ω t ) 同时满足上两式的波形称为四分之一周期对称波形,用傅里叶级数表示为:一般在输出电压半周期内,器件通、断各 k次,考虑到PWM 波四分之一周期对称, k个开关时刻可控,除用一个自由度控制基波幅值外,可消去 k-1个频率的特定谐波。
48--220单相逆变器仿真设计
单相逆变器仿真研究1 概述随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。
现如今,逆变器的应用非常广泛,在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,就需要逆变。
另外,交流电机调速变频器、UPS、感应加热电源等使用广泛的电力电子装置,都是以逆变电路为核心。
本文以单相DC-AC 逆变器为研究对象,设计了一种基于全桥式结构的SPWM 逆变器。
以TI 公司低功耗16 位单片机MSP30FX169 为核心,根据反馈的电压或电流信号对PWM 波形作出调整,进行可靠的双闭环控制,逆变部分采用MSP430 数字化SPWM 控制技术,以尽可能减少谐波。
为降低开关损耗,防止产生噪声,将开关频率设置为20KHZ。
系统具有短路保护,输入过压和过流保护功能,针对开关管,还完善了抑制浪涌电流,开断缓冲和关断缓冲等功能。
设计的硬件电路主要包括全桥式逆变主电路、控制电路、驱动电路、取样电路、保护电路等。
重点分析了SPWM 控制算法,并给出了软件实现SPWM 波形的过程。
采用无差拍控制和传统的PI 控制方法相结合的复合控制方法,既利用了无差拍控制的快速动态响应特性,又利用了PI 控制具有强的鲁棒性,据此设计的控制器能够使逆变器的输出电压很好地跟踪正弦波,在电容性整流负载下输出电压也具有很好的正弦性,在MATLAB/SIMULINK 下建立了电源系统的仿真模型,完成了控制器的参数设计,并给出电源在不同负载下和主电路滤波器参数变化下的输出电压仿真波形,证明了本方案设计的逆变器能够得到优质的正弦交流电。
2 方案论证2.1 主回路拓扑结构方案选择逆变电源主电路结构的选取应该遵循以下几个原则:选用尽量少的开关器件,这样可以提高系统的可靠性,并且降低成本;尽量减少逆变电源中的电容值、电感值,和减少电容电感元件在逆变电源中的数量,这样可以减小整个逆变电源设备的体积,提高其可靠性,同时也应该降低设备的成本;电路拓扑结构应该有利于逆变电源最终输出电压中谐波的消除,输出电压频率及幅值的调节。
a单相逆变电源设计(1)
题目:18KVA 单相逆变器设计与仿真院系:电气与电子工程学院专业年级:电气工程及其自动化2010级姓名:郑海强学号: 24同组同学:钟祥锣王敢方骞2013年11月20号单相逆变器设计一.设计的内容及要求0.8 1.0,滞后方案简述将直流电变成交流电的电路叫做逆变电路。
根据交流侧接在电网和负载相接可分为有源逆变和无源逆变,所以本次设计的逆变器设计为无源逆变。
换流是实现逆变的基础。
通过控制开关器件的开通和关断,来控制电流通过的支路这是实现换流的方法。
直流侧是电压源的为电压型逆变器,直流侧是电流源的为电流型逆变器,综上本次设计为电压型无源逆变器。
三.主电路原理图及主要参数设计主电路原理图如图1所示图 1输出电路和负载计算负载侧参数设计计算负载侧的电路结构图如图2所示,根据图2相关经计算结果如下:图2 负载侧电路结构图 1. 负载电阻最小值:cos ϕ=时,R=2o V /23300/(1810)5oP ;cos ϕ=时,R=2o V /(o P ⨯23cos )300/(18100.8) 6.252. 负载电感最小值:'L ='L Z /(2f π)=(2100)=H μ3. 滤波电容:取滤波电容的容抗等于负载电感感抗的2倍,则:C =1/(2πf c Z )=1/(2⨯π10032)=F μ取电容为100F μ,将10个10F μ的AC 电容进行并联,c()Z 实=1/(2πf C )=1/6(210010010)=4.滤波电抗L 的计算选取主开关器件工作频率K f =N ⨯O f=32100=3200Hz 由于移相原因,输出线电压的开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率'f =1/(2)=K f /6=则:L = 1/(42π2'f C )= 1/(4⨯2π⨯2533⨯100610-⨯)=880H μ实选用 L=900uH由此 特征阻抗 逆变电路输出电压900/1003T Z L C1. 滤波电路输入端电压(无变压器时)逆变电路的输出与后续电路的连接电路如图3所示,有图3可以得到如下的计算结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:18KVA 单相逆变器设计与仿真院系:电气与电子工程学院专业年级:电气工程及其自动化2010级姓名:郑海强学号: 24同组同学:钟祥锣王敢方骞2013年11月20号单相逆变器设计一.设计的内容及要求0.8 1.0,滞后方案简述将直流电变成交流电的电路叫做逆变电路。
根据交流侧接在电网和负载相接可分为有源逆变和无源逆变,所以本次设计的逆变器设计为无源逆变。
换流是实现逆变的基础。
通过控制开关器件的开通和关断,来控制电流通过的支路这是实现换流的方法。
直流侧是电压源的为电压型逆变器,直流侧是电流源的为电流型逆变器,综上本次设计为电压型无源逆变器。
三.主电路原理图及主要参数设计主电路原理图如图1所示图 1输出电路和负载计算负载侧参数设计计算负载侧的电路结构图如图2所示,根据图2相关经计算结果如下:图2 负载侧电路结构图 1. 负载电阻最小值:cos ϕ=时,R=2o V /23300/(1810)5oP ;cos ϕ=时,R=2o V /(o P ⨯23cos )300/(18100.8) 6.252. 负载电感最小值:'L ='L Z /(2f π)=(2100)=H μ3. 滤波电容:取滤波电容的容抗等于负载电感感抗的2倍,则:C =1/(2πf c Z )=1/(2⨯π10032)=F μ取电容为100F μ,将10个10F μ的AC 电容进行并联,c()Z 实=1/(2πf C )=1/6(210010010)=4.滤波电抗L 的计算选取主开关器件工作频率K f =N ⨯O f=32100=3200Hz 由于移相原因,输出线电压的开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率'f =1/(2π)=K f /6=则:L = 1/(42π2'f C )= 1/(4⨯2π⨯2533⨯100610-⨯)=880H μ实选用 L=900uH由此 特征阻抗 逆变电路输出电压900/1003T Z L C1. 滤波电路输入端电压(无变压器时)逆变电路的输出与后续电路的连接电路如图3所示,有图3可以得到如下的计算结果。
oLCI iu Ou L图3 逆变电路输出电路 图4空载时的矢量图 空载时: 空载时的矢量图如图4所示,由图4可得:30018.915.9o L Cu I AZ 622100900100.5652()L o Z f L18.90.565210.7LL Lu I Z V 。
300 1.5298.5i o Lu u u V这说明空载时输出电路是升压的。
额定负载时:额定负载时,当cos 1.0和cos =0.8ϕ的矢量图分别如图5 和图6所示。
L I iu θRou Lu CI iu L u o u RI θLu L I CI L C I I '-L I '图5 cos1.0时的矢量图 图6 cos =0.8ϕ时的矢量图cos1.0:11115tantan tan 17.5115.9oCCZ RRZ 2222300530015.962.9LR CI I I A0.565262.935.6L L Lu Z I V,2230035.62cos 9017.530035.6286.16iu V 。
这说明cos 1.0ϕ=时,即使满载,输出电路也是升压的。
cos =0.8ϕ:30030030030017.288.315.3LCL C I I AZ Z ,117.28tan19.79300 6.25o,2222'(300/6.25)17.2851.01L RL CI I I I A,0.565251.0128.83LL Lu Z I V,220030028.832cos 9019.7930028.83309.65iu V,负载最重时本设计中,负载最重为过载150%时,功率因数最低为,此时:300300 1.53003001.535.358.315.9L C L C I I AZ Z ,135.35tan 26.15 1.53006.25o,2222' 1.5300/6.2535.3536.34LRL CI I I I A,0.565236.3420.54L L L u Z I V,312.33iu V,可见输出电路此时降压比较严重。
2. 逆变电路输出正弦电压计算单相桥式电路输出电压为:0.708uE。
考虑要保留“死区”间隔(图7所示)以及开关器件导通时有压降,因而输出电压实际只能达到:0.708setuK E mV。
其中:2m ;K 为“死区”间隔引起的压降系数:T TKT, 则: 156.25 5.00.968156.25K本设计中取3CEsetV V,则:0.7080.96832uE ,考虑整流滤波电路的压降后,实际取为:350E V 。
则三相逆变电路输出线电压为:0.7080.6835032235.7uV实际取为:240uV。
TT图7 死区“间隔”示意图逆变电路和输出电路之间的电压匹配:逆变电路和输出电路之间的电压匹配采用电源变压器,其结构简图如图8所示。
由前面的计算可知输出电路输入端最高电压312.333iu V,逆变电路输出线电压240u ,在逆变电路和输出电路之间加入电源变压器。
设变压器的变比为:1N ,原副方各参数的矢量图如图9所示:以副方输出电压o u 为基准矢量,变压器原方电压m ou Nu ,付方电流o I 如图示(滞后),原方电流1/L o I I N。
:1ou图8 电压匹配电路图由22111122L O L I LI ,可得:2211OL IL L N LI ,21L N L 和221111L L L O OLu L I N LI N L I NN LI Nu ,由矢量图可得:ABiuNu ,2400.7684312.333AB iu Nu ,考虑变压器内阻和激磁等原因,调整变比N 和原方电流:0.75331.02N。
故,取实际的变比为,1111.03~1.05 1.03~1.05 1.03~1.050.7533L O O I I I N1188.71.04122.460.7533L I A长11137.21.04189.420.7533L I A短。
将电感折算到原边得:22610.753390010510.7L N LH开关器件的选取1 电流参数:开关器件中电流有效值:122.46TI A 长,189.42TI A短开关器件中电流峰值:12171.18TP L I I A长长122189.42267.8TP L I I A短短在连续情况下安全裕量选为2,则:22173.18346.36TTP II A长,在过载情况下安全裕量选为,则:1.5 1.5267.8401.7T TP I I A短变压器和交流电抗器设计计算在实际加工制造前还进行各种机械结构参数的计算,为制造提供依据。
主要是变压器的额定功率、初级线圈电流、铁心的截面积、各线圈的匝数、线圈所用导线的直径和核算铁心窗口面积等几方面。
1.计算变压器的额定功率:变压器输出功率为: 2223()18I VA kVA P U (单相为15kVA ),输入功率为: 111()P U I VA 那么1P 可按下式求得近似值:211818.94()0.95P P kVA变压器的额定功率:1218+18.9418.47()22P P PkVA2、计算电流(1I)311118.94101.186.8()240P I K A U 32221810=60()300P I A U ,式中K 一般选~。
3、计算变压器铁心净截面积及粗截面积铁心净截面积:321.318.4710176.67()SCK P cm式中系数K 一般选在 ~ 之间。
由于硅钢片之间的绝缘和空隙,实际铁心截面积略大于计算值,应为:2176.67192.04()0.92CCK P SC SCcm K K 式中一般0.89CK ;冷轧硅钢带的0.92CK 。
根据算出的SC 求硅钢片中间舌宽 a 国家规范可查手册得到选择 a=120mm 。
铁心叠厚b 的计算100192.04100160()120SC bmm a取160b mm ,1601.333120ba在1~2之间。
窗高系数hz a 取为,所以2.3 2.3120276()h a mm 。
4、计算各线圈的匝数:确定每伏匝数(O N ) 由84.4410()m C EfNB S V 可得8100.098(/)4.4410013000176.67ON N E匝伏经过计算得初级:112400.09823.53()O N U N 匝 实际取为56匝。
次级:22(1.05~1.1) 1.13000.09832.34()O N U N 匝 实际取为90匝。
5、计算各线圈导线直径导线电流:2()4Id js j A4 1.13()I Id mm jj 原边:1186.834.72()2.5p I s mm j,副边:226024()2.5I s mm j6、校核铁心窗口面积变压器线圈绕在框架上,每层线圈之间一般均有绝缘层。
线圈厚度、绝缘层厚度和框架厚度的总和应小于选用铁心窗口宽度 原副边导线带绝缘尺寸大概为24.857.40mm ⨯和24.368.40mm ⨯。
原边每层匝数:1276221347.40 1.05m ; 副边每层匝数:227622129.88.40 1.05m ;四:控制系统和辅助电路设计逆变部分的控制系统设计逆变部分采用的控制策略是数字PID和重复控制相结合的综合控制策略。
数字PID控制用于保证较快的动态响应,重复控制用于保证输出电压的波形质量。
其控制框图如图12所示。
那么该控制系统将兼具良好的稳态和动态性能,通过控制参数的合理设计,就可以满足设计指标要求。
图9 逆变部分控制系统框图1、重复控制器的设计重复控制器控制框图如图12 所示C图10 重复控制器控制框图周期延迟正反馈环节对逆变器输出电压的误差进行逐工频周期的累加。
补偿器C(z)的作用是抵消二阶LC 滤波器的谐振峰值,使重复控制系统稳定。
C(z)的表示形式为: ()()k r C z K z S z 式中,r K ——重复控制器的增益,kz ——超前环节,()S z ——滤波器滤波器()S z 是为了抑制系统的高频干扰,削除被控对象的谐振峰值,使其在谐振点处有较大的幅值衰减,且具有零相移、零增益特性。
因此滤波器()S z 可以由二阶低通滤波器1()S z 和零相移陷波器2()S z 组成。
2数字PID 控制器设计数字PID 控制器的控制原理基本上与模拟PID 控制相同。
数字PID 控制正弦波逆变电源系统的原理如图10 所示。
为了改善系统的稳态和动态特性,系统中用了前馈补偿。