控制的单相逆变电源系统设计LC滤波电路
基于PWM逆变器的LC滤波器
第 5期
俞杨威 ,等 : 基于 PWM 逆变器的 LC滤波器
・51・
因此 ,滤波器设计目标包括 : ① 输出电压的谐波含量 小; ② 滤波参数和体积小 ; ③ 滤波器的阻频特性好 ; ④ 滤波系统消耗的功率小 。根据以上原则 , 即可 对滤波器的特性进行分析 。 LC 滤波器的传递函数为 :
U o ( s) = U i ( s) 1 s +
ω1 —基波角频率 ;ωm —m 次谐波角频率 ; Is — 式中 电感电流的基波有效值 ; ^ Im s —m 次电感电流的谐波
^ 有效值 ; U o —电容电压的基波有效值 ; U m 次电 mo —
容电压的谐波有效值 。 对于 PWM逆变器的输出电压而言 , 谐波分量相 对于基波来说非常小 , 因而式 ( 2 ) 可以简化为 : 2 2 ( 3) Q ≈ ω1 L Is +ω1 CU o ωL = LC 滤波器的截止角频率 :
参考文献 ( Reference) :
[1] 伍家驹 ,章义国 ,任吉林 ,等 . 单相 PWM 逆变器的滤波
3 设计实例
本研究针对单相 PWM 逆变电源进行了滤波器 参数设计 , 逆变器参数如下 :输出电压 U o = 240 V , 容量 6 kVA , 输出基波频率 f1 = 50 H z, 载波频率 fs = 20 kH z。 逆变器主电路拓扑 , 如图 1 所示 , 控制电 路用数字控制实现 。 综合考虑滤波器输出电压 THD、 系统的动态响 应以及体积 、 重量等因素 , 选取截止频率 fL = 0. 1 fs = 2 kHz,结合式 ( 11) , 选取 :L = 700 μH; C = 10 μF。 此时 , 滤波器传递函数为 :
1
LC ( 4)
lc滤波电路工作原理
LC滤波电路是一种常见的电子电路,用于消除信号中的噪音或者选择特定频率的信号。
它由一个电感(L)和一个电容(C)组成,具有较好的滤波效果。
在本文中,我将详细介绍LC滤波电路的工作原理。
LC滤波电路的工作原理基于电感和电容对不同频率信号的阻抗特性。
根据频率不同,电感和电容对信号的阻抗会呈现出不同的变化。
这种阻抗变化可以用来选择或者排除特定频率的信号。
首先,我们来看电感的特性。
电感是由线圈或者导线卷成的螺旋形结构,当电流通过时,会产生磁场。
根据法拉第电磁感应定律,电感与电流的变化率成正比。
换句话说,电感对频率较低的信号具有较低的阻抗,而对频率较高的信号则具有较高的阻抗。
接下来,我们来看电容的特性。
电容由两个导体板之间的绝缘材料隔开,当电压施加在电容上时,导体板上会积累电荷。
根据库仑定律,电容与电压的变化率成正比。
因此,电容对于频率较高的信号具有较低的阻抗,而对于频率较低的信号则具有较高的阻抗。
基于电感和电容的阻抗特性,我们可以构建LC滤波电路。
在一个简单的LC滤波电路中,电感和电容串联连接,形成一个带通滤波器。
当输入信号通过电感和电容时,会根据其频率选择性地通过或者被阻断。
当输入信号的频率较低时,电感的低阻抗会使得信号通过,并且电容的高阻抗不会对信号产生太大的影响。
因此,低频信号可以顺利通过LC滤波电路。
当输入信号的频率较高时,电感的高阻抗会阻止信号通过,并且电容的低阻抗会将信号短路到地。
因此,高频信号被LC滤波电路有效地滤除。
需要注意的是,LC滤波电路只能选择或者排除特定频率范围内的信号。
当频率超出这个范围时,LC滤波电路的效果会减弱。
为了提高滤波效果,可以将多个LC滤波电路串联或并联使用,形成更复杂的滤波器。
此外,LC滤波电路还可以用于消除信号中的噪音。
噪音通常是由于干扰源引入的高频信号。
通过选择适当的电感和电容数值,可以滤除噪音信号,使得输出信号更加清晰。
总结起来,LC滤波电路是一种基于电感和电容阻抗特性的滤波器。
IGBT单相桥式无源逆变电路设计
IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种常用于将直流电转换成交流电的电路。
在没有任何主动元件的控制下,通过合适的电路设计可以实现直流到交流的转换。
本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路组成以及相关参数的计算。
一、IGBT单相桥式无源逆变电路的设计原理IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关元件,同时结合了MOSFET和BJT的优点,具有低开关损耗、高开关速度等特点。
单相桥式无源逆变电路是由四个IGBT和四个二极管组成的桥式整流电路,它可以将直流电源的电压转换成交流电,供给交流电动机等负载使用。
桥式无源逆变电路的工作原理是通过控制IGBT的导通和关断时间来生成脉冲调制信号,进而控制IGBT的输出电压波形。
通过合理的波形控制,可以实现直流到交流的转换。
二、IGBT单相桥式无源逆变电路的电路组成1.IGBT模块:IGBT模块由四个IGBT和四个二极管组成,承担了整流和逆变的功能。
2.LC滤波网络:LC滤波网络由电感器和电容器组成,用于平滑逆变后的脉冲信号,使其更接近于纯正弦波。
3.电源:电源为IGBT单相桥式无源逆变电路提供直流信号,可以采用整流桥或直流电源等形式。
4.纯电阻负载:纯电阻负载是指无感性和无容性的负载,用于测试和验证逆变电路的输出波形。
三、IGBT单相桥式无源逆变电路参数的计算1.IGBT参数的计算:IGBT的参数包括额定电压、额定电流、功率损耗等。
根据所需的载波频率、输入电压和输出功率等参数进行计算。
2.LC滤波网络参数的计算:根据所需的输出频率和负载电流等参数,计算出电感器和电容器的数值。
3.电源参数的计算:根据所需的输入电压、输出功率和效率等参数,选择合适的电源。
四、总结IGBT单相桥式无源逆变电路是一种常用的电路,用于将直流电转换成交流电供给负载使用。
本文介绍了该电路的设计原理、电路组成以及相关参数的计算方法。
基于stm32单片机的单相有源逆变电路的设计
基于stm32单片机的单相有源逆变电路的设计
基于STM32单片机的单相有源逆变电路的设计可以分为以下
几个步骤:
1. 选择逆变拓扑结构:根据需求选择合适的逆变拓扑结构,常见的有全桥逆变、半桥逆变等。
在选择时要考虑电路的效率、功率损耗、成本等因素。
2. 选择电源电压:确定输入电压范围,根据电源电压的不同,选择合适的电源处理电路,如滤波电路、电压稳压电路等。
3. 设计控制电路:使用STM32单片机作为控制器,设计相应
的控制电路。
该电路主要用于监测输入电压、输出电流、温度等参数,并实现对逆变桥开关管的控制,从而控制输出电压和输出频率。
4. 选择DC/AC逆变器模块:根据需要选择合适的逆变器模块,该模块通常由IGBT、二极管等组成,用于将直流电转换为交
流电。
5. 完善保护电路:设计逆变电路时,还需要考虑电路的过流、过压、过温等保护措施,以保证电路的安全可靠运行。
6. PCB设计和布局:将电路进行PCB设计和布局,使得电路
结构紧凑、布局合理,可控制电磁干扰。
7. 软件编程:使用STM32单片机的软件开发工具进行编程,
实现控制电路的功能和保护措施。
8. 调试和测试:对设计的逆变电路进行调试和测试,验证电路的性能和功能是否符合设计要求。
以上是基于STM32单片机的单相有源逆变电路的一个基本设计流程,具体的设计还需要根据实际需求进行调整和优化。
单相逆变电路工作原理
单相逆变电路工作原理单相逆变电路是一种可以将直流电转换为交流电的电路。
其工作原理主要是通过控制开关器件的通断状态,使得直流输入得以转换为交流输出。
下面将详细介绍单相逆变电路的工作原理。
一、单相逆变电路的基本结构单相逆变电路通常由整流桥、滤波电路和逆变桥组成。
整流桥用于将交流输入转换为直流输出,然后经过滤波电路进行滤波处理,最终输入到逆变桥中进行逆变处理,将直流电转换为交流电输出。
逆变桥由交叉连接的晶闸管或MOSFET器件组成,通过控制这些开关器件的通断状态,可以实现交流输出的频率和幅值调节,从而实现对输出电压的控制。
二、单相逆变电路的工作原理1. 整流桥工作原理当交流电源输入时,整流桥中的晶闸管或二极管将正负半周的交流电转换为相同方向的直流电。
在正半周时,D1和D2导通,而D3和D4截止;在负半周时,D3和D4导通,而D1和D2截止。
这样就可以得到一个相对稳定的直流电输出。
2. 滤波电路工作原理滤波电路主要由电容器和电感器构成,其作用是将整流输出中的脉动电流进行平滑处理,以得到更稳定的直流电输出。
电容器可以对电流进行储存和释放,从而减小输出波动;电感器则可以对电流进行滞后作用,进一步平滑输出。
3. 逆变桥工作原理逆变桥由晶闸管或MOSFET器件构成,这些开关器件可以通过控制电压信号的施加来实现其通断状态的控制。
通过逆变桥可以实现对输出电压幅值和频率的调节,进而得到不同频率和幅值的交流电输出。
当逆变桥中的晶闸管或MOSFET导通时,相应的输出端就会出现相反的电压,从而实现了电流的反向流动,进而实现了直流到交流的转换。
三、单相逆变电路的应用单相逆变电路广泛应用于各种场合,如UPS电源、太阳能逆变器、变频空调等。
UPS电源主要用于对电力电子的变流和逆变功能,以实现电网与电池之间的双向转换,确保电力系统的稳定可靠;太阳能逆变器则主要用于将太阳能电池板产生的直流电转换为交流电,从而供给家庭或工业用电;而变频空调则利用逆变技术实现对电机速度的调节,从而实现对空调压缩机的能耗控制。
SPWM逆变电源LC滤波器的研究与设计
以得 到 比较标 准 的 正 弦波 形 输 出 。S P WM 逆 变 器 输 出滤 波 ห้องสมุดไป่ตู้
多采用 L C低 通 滤 波 器 ,设 计 L C滤 波 器 时 .首 先 要 确 定 L C 滤波器的截止频率 , 滤 除 逆 变 器 输 出 电 压 中高 于 截 止 频 率 的 大 多 数低 次谐 波 :其 次 考虑 负 载 在 L C滤 波 器通 带 内 对输 出 的 衰 耗 以及 谐 波 在 基 波 中 的含 量 . 以确 定 适 合 于 所 设 定 截 止 频率 的负载 ; 最 后 考 虑 负 载 与 滤 波 器 输 出功 率 的关 系 , 使 滤
目前 逆变 技 术 主要 采 用 S P WM 控 制 方 式 . 由于 S P WM 调 制 会 在 逆 变 器 的输 出 电压 中 产 生 较 多 和 载 波 有 关 的 谐 波 分 量 ,所 以必 须 在 逆 变 器 的输 出侧 加 低 通 滤 波器 来 滤 除 谐 波 ,
波分量 , 这 些 谐 波 分 量 的频 率 和 幅 值 影 响 着 S P WM 逆 变 电 路 的输 出 , 所 以要分 析计算各 次谐波含量 , 并 设 计 滤 波 器 对 谐
张立广 。刘 正 中
( 西t _ r - 业 大学 电子 信 息 工程 学 院 , 陕 西 西安 7 1 0 0 3 2 ) 摘 要 :为 了使 基 于 S P WM 的 逆 变 器输 出较 好 的 正 弦 波 形 , 针对 S P WM 逆 变 器的 谐 波 特 点 , 采用单级 L C低 通 交 流 输 出滤 波 网络 。 为 使 滤 波 器 传 送 较 多 的有 功功 率 , 而返 回 逆 变 器 的无 功 功 率较 少 , 同 时将 特 定 次谐 波含 量 控 制 在 设 定 的
基于LCL滤波的单相并网逆变器的设计
基于LCL滤波的单相并网逆变器的设计张朝霞;文传博【摘要】并网逆变器作为发电系统和电网连接的核心装置,直接影响整个并网发电系统的性能,已成为国内外研究的热点.以单相全桥逆变器为研究对象,为更好地减小入网电流的总谐波失真,采用LCL型滤波器,具有更好的高频谐波抑制能力.控制策略使用双电流闭环控制,推导了控制方程,内环控制LCL滤波器中的电容电流,外环控制滤波后的电网侧电流,此控制方法使系统的稳定性和动态性能都得到了很好改善.设计了各元件的取值规则,建立了系统仿真模型,通过Matlab/Simulink仿真,证明了建立的单相并网逆变器可成功实现并网运行.【期刊名称】《上海电机学院学报》【年(卷),期】2019(022)002【总页数】6页(P83-88)【关键词】并网逆变器;滤波器;谐波抑制;双电流环控制【作者】张朝霞;文传博【作者单位】上海电机学院电气学院,上海 201306;上海电机学院电气学院,上海201306【正文语种】中文【中图分类】TM464光伏发电和风力发电等新能源并网是能源可持续发展战略的重要问题。
许多国家都积极研发光伏发电、风力发电等新能源并网发电系统[1-4]。
目前,常用的新能源回馈电网的方案为:先把新能源转化成电能;再把电能调节成满足全桥逆变器所需的直流电压;最后由全桥逆变器将新能源回馈到交流电网。
在整个并网系统中,最核心的环节是逆变器,使用正弦脉宽调制逆变技术(Sinusoidal Pulse Width Modulation, SPWM)。
这种方案采用了较多模拟环节,且其控制方法也比较落后,就使得并网逆变装置的并网效果不那么理想,使其应用受到限制。
针对并网逆变器技术的探索越来越多,面对以往控制技术的不足,人们提出了很多研究方向。
文献[5]将高速的数字信号处理(Digital Signal Processing, DSP)应用到并网逆变器的控制之中,使用数字控制与模拟控制结合实现理想的控制效果;文献[6]根据各系统情况的不同,采用不同的逆变器拓扑结构,如单相、三相、隔离等,且各结构之间可以进行组合,形成各种不同的形式,来满足更多的需求。
单相并网逆变器总体设计
机械电气工程学院本科毕业设计(文)题目:院(系):专业:学号:姓名:指导教师:完成日期:石河子大学毕业设计(论文)任务书学院:科技学院系级教学单位:电气工程及其自动化学号2007185326学生姓名白喆杨专业班级电气07题目题目名称电力负荷预测模型与算法研究题目性质1.理工类:工程设计();工程技术实验研究型();理论研究型(√ );计算机软件型();综合型()。
2.管理类();3.外语类();4.艺术类()。
题目类型 1.毕业设计(√ ) 2.论文()题目来源科研课题()生产实际()自选题目(√ )主要内容1、逆变电源并网工作的研究2、滤波器在电路中的作用3、并网控制方法的研究4、采用LCL滤波器的并网过程仿真研究基本要求1.掌握并网工作的基本原理;2.给出电路设计的具体方案;3.学习matlab仿真软件;4. 绘制A0图纸一张,论文一本。
参考资料1、电力电子技术电工技术学报等期刊杂志2、三相电压型整流器的LCL滤波器分析与设计电力电子3、新能源并网发电的控制研究电力系统保护与控制4、DC-DC逆变技术及其应用陈道炼机械工业出版社周次1~3周4~8周9~10周11~14周15~18周应完成的内容查阅相关的中文资料,熟悉控制方法的工作原理,翻译一篇英文资料主电路的确定,参数设计控制方案的确定,控制电路的设计系统仿真研究撰写论文,答辩指导教师:鲁敏职称:讲师2011年3月5日系级教学单位审批:年月日摘要随着“绿色环保”概念的提出,以解决电力紧张,环境污染等问题为目的的新能源利用方案得到了迅速的推广,这使得研究可再生能源回馈电网技术具有了十分重要的现实意义。
如何可靠地、高质量地向电网输送功率是一个重要的问题,因此在可再生能源并网发电系统中起电能变换作用的逆变器成为了研究的一个热点。
本文以全桥逆变器为对象,详细论述了基于双电流环控制的逆变器并网系统的工作原理,推导了控制方程。
内环通过控制LCL滤波中的电容电流,外环控制滤波后的网侧电流。
单相逆变器工作原理
单相逆变器工作原理
单相逆变器是一种将直流电转换为交流电的电力转换设备。
其工作原理如下:
1. 输入电源:单相逆变器通常由直流电源供电,例如电池、太阳能电池板等。
直流电源的电压通常比较稳定。
2. 逆变器拓扑:单相逆变器采用不同的拓扑结构,例如全桥、半桥等。
拓扑结构决定了逆变器的性能指标。
3. PWM 控制:逆变器通过脉冲宽度调制(PWM)技术来实现将
直流电转换为交流电。
PWM 控制通过调节开关管的导通时间
和断开时间来控制输出交流电的幅值、频率和相位。
4. 滤波电路:PWM 输出的交流电是由频率较高的脉冲组成的
方波信号。
为了将其转化为纯净的正弦波交流电,逆变器配备了滤波电路,通常包括电感和电容。
5. 输出电路:滤波后的正弦波交流电经过输出电路传输到负载中。
输出电路的设计要考虑负载的容量,以避免过载和短路等问题。
6. 控制保护:逆变器通常还配备了电流、电压、温度以及过载和短路保护等控制和保护电路,以保证逆变器的安全可靠运行,并防止损坏负载设备。
通过以上几个步骤,单相逆变器可以将直流电源转换为交流电,
用于供应各种家用电器、电子设备以及工业设备等需要交流电的场合。
逆变器的工作原理关键是通过PWM控制实现直流电到交流电的高效转换。
单相桥式有源逆变电路设计
单相桥式有源逆变电路设计1. 引言有源逆变器是一种将直流电源转换为交流电源的装置,常用于电力电子领域。
单相桥式有源逆变电路是其中一种常见的拓扑结构,可以实现从直流电源到交流电源的有效转换。
本文将介绍单相桥式有源逆变电路的设计原理和步骤。
2. 单相桥式有源逆变电路的原理单相桥式有源逆变电路由四个开关管和一个电源组成,其中两个开关管为上桥臂开关管,另外两个开关管为下桥臂开关管。
开关管通过开关控制器进行开关操作,通过改变开关管的状态来实现对电流的控制和转换。
在正半周的工作状态下,上桥臂的开关管S1和S2打开,下桥臂的开关管S3和S4关闭。
此时,电源的正极连接至负载,负载的交流电路通过开关管S1和S2直接接通。
在负半周的工作状态下,上桥臂的开关管S1和S2关闭,下桥臂的开关管S3和S4打开。
此时,电源的负极连接至负载,负载的交流电路通过开关管S3和S4直接接通。
通过交替切换开关管的状态,可以实现直流电源到交流电源的转换。
3. 单相桥式有源逆变电路的设计步骤3.1 确定输入和输出参数在设计单相桥式有源逆变电路时,首先需要确定输入和输出的参数。
输入参数包括直流电压和电流的范围,输出参数包括交流电压和电流的要求。
3.2 选择开关管和开关控制器根据输入和输出参数的要求,选择适合的开关管和开关控制器。
开关管需要能够承受输入参数的范围,并具有较低的开关损耗和导通损耗。
开关控制器需要能够实现准确的开关控制,并具有过流保护和过温保护等功能。
3.3 设计滤波电路为了减小逆变电路的谐波含量,需要设计合适的滤波电路。
滤波电路可以采用LC滤波器或LCL滤波器,通过选择合适的电感和电容参数来实现滤波效果。
3.4 进行仿真和优化在设计完成后,使用电路仿真软件对单相桥式有源逆变电路进行仿真。
通过仿真可以评估电路的性能,如电压波形的失真程度和效率等。
根据仿真结果进行优化,调整参数和设计,以达到设计要求。
3.5 PCB布线和制作根据最终的设计结果,进行PCB布线设计。
大容量PWM电压源逆变器的LC滤波器设计
大容量PWM电压源逆变器的LC滤波器设计一、概述随着可再生能源和电力电子技术的快速发展,电力系统中逆变器的应用越来越广泛。
PWM(脉冲宽度调制)电压源逆变器以其高效、灵活的控制方式在各类电能转换场合中占据了重要地位。
PWM逆变器产生的谐波对电网的影响不容忽视,设计合适的LC滤波器以滤除这些谐波,提高电能质量,成为了当前研究的热点。
大容量PWM电压源逆变器的LC滤波器设计涉及多个方面,包括滤波器的拓扑结构、参数优化、动态性能分析等。
本文首先介绍了PWM逆变器的基本原理及谐波产生的原因,然后详细阐述了LC滤波器的设计原则和方法,包括滤波器拓扑结构的选择、电感电容参数的计算与优化、以及滤波效果的评价指标等。
在此基础上,本文还讨论了滤波器设计中的一些关键问题,如滤波器的动态性能、热设计、电磁兼容性等。
通过案例分析,本文验证了所提设计方法的有效性和实用性。
通过本文的研究,旨在为大容量PWM电压源逆变器的LC滤波器设计提供理论支持和实用指导,促进电力电子技术的可持续发展。
1. 介绍PWM电压源逆变器的应用背景及其在电力系统中的重要地位。
在现代电力系统中,PWM(脉宽调制)电压源逆变器已成为一种重要的电能转换装置,广泛应用于各种电力电子设备中。
作为一种将直流电能转换为交流电能的电子设备,PWM电压源逆变器在机械传动控制、电动机调速、太阳能电池、风能发电等领域发挥着至关重要的作用。
特别是在可再生能源领域,PWM电压源逆变器是太阳能电池板和风力发电机与电网之间的关键接口,能够实现电能的稳定、高效转换,从而满足各种负载的需求。
PWM电压源逆变器的核心在于其独特的脉宽调制技术,该技术能够根据输入信号的特点,以一定规律调制输出信号的占空比,从而达到对输出电压的精确调节。
这种技术不仅可以实现输出电压的频率和幅值的灵活调节,还能够生成各种不同形状的波形,如正弦波、方波和三角波等,以满足不同负载的需求。
PWM电压源逆变器还具有高效率、高可靠性、低谐波污染等优点,因此在电力系统中得到了广泛应用。
单相正弦波逆变电源设计原理
单相正弦波逆变电源设计原理+电路+程序目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)14.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)5.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)21.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。
满载时输出功率大于100W,效率不小于80%,具备过流保护和负载短路保护等功能。
1.2总体设计方案1.2.1设计思路题目要求设计一个车载通信设备用单相正弦波逆变电源,输出电压波形为正弦波。
设计中主电路采用电气隔离、DC-DC-AC的技术,控制部分采用SPWM(正弦脉宽调制)技术,利用对逆变原件电力MOSFET的驱动脉冲控制,使输出获得交流正弦波的稳压电源。
1.2.2方案论证与比较⑴ DC-DC变换器的方案论证与选择方案一:推挽式DC-DC变换器。
基于LC滤波器的单相SPWM逆变器双环控制设计
2电工电气 (20 7 No.4)作者简介:王博超(1992- ),女,硕士研究生,研究方向为电力电子控制技术与仿真。
基于LC滤波器的单相SPWM逆变器双环控制设计王博超(东南大学 电气工程学院,江苏 南京 210096)摘 要:对基于LC 滤波器的单相SPWM 逆变器的双环控制进行了分析,得到了LC 滤波器在逆变器使用单极性倍频的调制方式下的参数设定,以此为基础对单相逆变器的双环控制方式进行了建模及电压环、电流环的参数确定。
利用MATLAB/Simulink 软件对该逆变器模型进行了线性负载的突加突减仿真与带非线性负载时开、闭环的谐波畸变率的对比仿真。
仿真结果表明,该种控制策略下逆变器具有较好的动态响应性能及较低的谐波畸变率。
关键词:SPWM 逆变器;LC 滤波器;双环控制中图分类号:TM464 文献标识码:A 文章编号:1007-3175(2017)04-0021-05Abstract: This paper analyzed the double loop control of sigle-phase sinusoidal pulse width modulation (SPWM) inverter based on the LC filter and obtained the parameters setting of the LC filter under the conditions that the inverter used the unipolarity frequency-doubled modula -tion mode. On the basis of this, this paper established the sigle-phase inverter model with double loop control mode and determined the pa -rameters of voltage loop and current loop. The Simulink in MA TLAB was used to carry out simulation of sharp increase and reduction for the linear load of the inverter model, comparing with the loop-opened or loop-locked harmonic distortion rate for the nonlinear load. The simulation results show that this kind of control strategy can obtain favorable dynamic response and low total harmonic distortion (THD). Key words: sinusoidal pulse width modulation inverter; LC filter; double loop controlWANG Bo-chao(School of Electrical Engineering, Southeast University, Nanjing 2 00 , China )Design of Double Loop Control in Single-Phase Sinusoidal Pulse WidthModulation Inverter Based on LC Filter0 引言近些年来,为了获得具有更高的供电质量以及供电稳定性的供电系统,高性能的SPWM 逆变电源的研究、开发及其应用受到了各方面的关注,而其中的瞬时控制方案则是最重要的部分之一。
MOSFET单相桥式无源逆变电路设计
MOSFET单相桥式无源逆变电路设计无源逆变电路是一种将直流电能转换为交流电能的电路,常用于交流电机驱动、太阳能逆变器等应用中。
MOSFET单相桥式无源逆变电路是其中一种常见的设计方案,下面将详细介绍其设计原理和步骤。
设计原理:MOSFET单相桥式无源逆变电路由四个MOSFET管组成,分别为Q1、Q2、Q3和Q4、其中,Q1和Q4为上管,Q2和Q3为下管。
通过控制MOSFET管的导通和关断,实现直流电源的正负半周期切换,从而产生交流电源输出。
设计步骤:1.电源选择:根据实际需求选择适当的直流电源作为输入电源。
通常情况下,选择稳定的直流电源,如电池或直流电源供应器。
2.选择MOSFET管:根据设计要求,选择适当的MOSFET管。
关键参数包括最大电流、最大电压、开关速度等。
确保所选的MOSFET管能够满足设计需求。
3.电路连接:按照桥式无源逆变电路的连接方式,将四个MOSFET管连接成桥式电路。
其中,Q1和Q4的源极连接到正极,Q2和Q3的源极连接到负极。
同时,将输入电源连接到Q1和Q3的栅极,Q2和Q4的栅极通过适当的驱动电路控制。
4.控制信号生成:通过控制Q1和Q3的栅极驱动电路,生成交替的高低电平信号,控制其导通和关断。
具体的控制信号生成方式可以采用计算机控制、单片机控制或者专用的驱动芯片。
5.输出滤波:由于无源逆变电路输出的是一个脉冲信号,需要通过滤波电路将其转变为平滑的交流电源输出。
常用的滤波电路包括LC滤波电路、RC滤波电路等。
6.保护措施:为了保护MOSFET管和其他电路元件,可以采取一些保护措施,如过流保护、过压保护、温度保护等。
7.参数调整:在实际应用中,根据具体的负载要求和输出电流电压等参数,对无源逆变电路进行调整和优化。
可以通过改变MOSFET管的参数、调整滤波电路等方式来实现。
总结:MOSFET单相桥式无源逆变电路是一种常见的无源逆变电路设计方案。
通过控制MOSFET管的导通和关断,将直流电能转换为交流电能。
单相电流型逆变电路
单相电流型逆变电路1. 介绍单相电流型逆变电路是一种将直流电源转换为交流电源的电路。
逆变电路在现代电力系统中起着至关重要的作用,它可以将直流电能转换为交流电能,以满足各种电气设备的需求。
单相电流型逆变电路适用于一些特定的应用领域,例如家庭用逆变器、太阳能发电系统、电动汽车、UPS系统等。
本文将介绍单相电流型逆变电路的工作原理、组成部分、常见的控制策略以及应用场景。
2. 工作原理单相电流型逆变电路的工作原理基于电子器件的开关特性。
它通常由电源、逆变器桥、滤波电路和控制电路组成。
首先,直流电源经过滤波电路得到平滑的直流电压。
然后,通过逆变器桥中的开关管对直流电流进行控制。
逆变器桥由四个开关管组成,一般采用全控制硅可控器件如晶闸管或IGBT。
通过合理地对开关管进行控制,可以实现直流电流的逆变。
最后,将逆变得到的交流电压通过滤波电路进行滤波,得到稳定的输出电压。
3. 组成部分单相电流型逆变电路由以下几个主要组成部分构成:3.1 电源电源部分提供逆变电路所需的直流电压。
常见的电源包括直流电池、太阳能电池组、交流电源等。
3.2 逆变器桥逆变器桥是逆变电路的核心组成部分,它由四个开关管组成。
开关管的状态可以通过控制电路来改变,从而控制逆变电路的输出。
3.3 滤波电路滤波电路主要用于对逆变得到的交流电压进行滤波。
常见的滤波电路包括电容滤波电路和电感滤波电路。
它们可以消除输出电压中的谐波成分,得到稳定的、纯净的交流电压。
3.4 控制电路控制电路用于控制逆变器桥中的开关管,通过改变开关管的状态来控制逆变电路的输出。
常见的控制策略包括PWM(Pulse Width Modulation)控制和SPWM(Sinusoidal Pulse Width Modulation)控制。
4. 控制策略单相电流型逆变电路采用不同的控制策略来实现对输出电压的控制。
常见的控制策略有:4.1 PWM 控制PWM控制是一种通过调节开关管的导通时间比例来控制输出电压的方法。
PWM型逆变器输出LC滤波器参数设计自己的资料
PWM型逆变器输出LC滤波器参数设计自己的资料PWM型逆变器是一种将直流电源转换为交流电源的电子装置。
它通过将直流电源转换为高频脉冲信号,然后使用逆变器将这些脉冲信号转换为交流电源。
PWM型逆变器的输出需要经过LC滤波器进行滤波,以消除脉冲信号的高频成分,使输出信号更接近理想的正弦波。
在设计PWM型逆变器输出LC滤波器的参数时,需要考虑以下几个方面:1.输出电流和负载电阻:首先确定所需的输出电流和负载电阻,以便确定滤波器的工作范围和额定电流。
2.输出电压波形:确定所需的输出电压波形,通常是正弦波或近似正弦波。
根据电压波形的要求,选择合适的滤波器参数。
3.输出电压纹波:确定所需的输出电压纹波的允许范围,以便选择合适的滤波器参数。
电压纹波较小时,滤波器的容值可以选择较小,电压纹波较大时,则需要选择较大的容值。
4.带宽:确定所需的输出信号的带宽,以便选择合适的滤波器参数。
带宽较小时,滤波器的电感值可以选择较大,带宽较大时,可以选择较小的电感值。
5.输出功率:确定所需的输出功率,以便选择合适的滤波器参数。
输出功率较大时,需要选择耐压较高的元件。
在滤波器设计中,可以使用以下公式来计算LC滤波器的参数:C = 1 / (2 * π * fc * L)其中,C为滤波器的电容值,L为滤波器的电感值,fc为滤波器的截止频率。
根据以上考虑,设计PWM型逆变器输出LC滤波器的参数的具体步骤如下:1.确定所需的输出电流和负载电阻。
根据负载电阻和输出电流计算滤波器的额定电流。
2.确定所需的输出电压波形。
根据输出电压波形的要求,选择合适的滤波器参数。
3.确定所需的输出电压纹波。
根据输出电压纹波的允许范围,选择合适的滤波器参数。
4.确定所需的输出信号带宽。
根据输出信号的带宽要求,选择合适的滤波器参数。
5.确定所需的输出功率。
根据输出功率的大小,选择耐压合适的元件。
6.根据以上参数,计算滤波器的电感值和电容值。
7.选择合适的滤波器元件,如电感、电容等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制的单相逆变电源系统设计LC滤波电路单相逆变电源系统是将交流电源转换为直流电源的一种电源系统,具
有较高的效率和可靠性。
在单相逆变电源系统中,为了减小输出波形的谐
波含量,需要设计合适的LC滤波电路。
LC滤波电路是一种常用的低通滤波电路,由电感L和电容C构成。
其作用是通过电感的电流和电容的电压变化来实现对谐波频率的抑制。
具
体而言,当系统中产生谐波电流时,电感和电容组成的滤波电路会使谐波
电流通过短路回路,从而减小谐波影响。
在设计LC滤波电路时,需要考虑以下几个关键因素:
1.谐波频率:根据谐波的频率确定电感和电容的参数。
一般而言,电
感的电阻性能对低频谐波的抑制起重要作用,而电容则对高频谐波的抑制
效果更好。
根据工程经验,可以选择合适的电感和电容数值。
2.载流能力:根据单相逆变电源系统的负载特性和负载的谐波含量,
选择合适的电感和电容,确保其能够承受系统的最大载流能力。
3.设计电路拓扑结构:根据系统的设计需求和成本限制,选择合适的
电路拓扑结构。
常见的拓扑结构有L型滤波电路、CL型滤波电路等。
除了以上几个关键因素之外,还需要考虑以下几个设计原则:
1.电感和电容的选择:电感的电流回路阻抗选择较小,能够有效抑制
低频谐波;电容的导纳选择较大,能够有效抑制高频谐波。
根据这一原则,选择合适的电感和电容数值。
2.系统的稳定性:LC滤波电路需要确保在整个工作范围内具有稳定的电流和电压特性。
因此,需要进行系统稳定性分析,以保证滤波电路的有效工作。
3.滤波电路的损耗:滤波电路会引入一定的损耗,特别是电感会引入一定的电阻损耗。
因此,在设计中需要合理选择电感和电容的参数,以控制滤波电路的损耗。
4.温度和环境适应性:滤波电路必须适应工作环境的变化,特别是温度的变化。
因此,在选择电感和电容时,需要考虑其温度特性和环境适应性。
总结起来,设计LC滤波电路需要考虑谐波频率、载流能力、电路拓扑结构等关键因素,并且需要遵循电感和电容的选择原则,保证系统的稳定性和滤波电路的损耗控制。
只有在满足这些要求的前提下,才能设计出高效、可靠的单相逆变电源系统。