简单填料精馏塔设计
甲醇—水分离过程填料精馏塔设计
甲醇—水分离过程填料精馏塔设计1.设计方案的确定设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
甲醇常压下的沸点为64.7℃,故可采用常压操作。
用30℃的循环水进行冷凝。
塔顶上升蒸汽用全冷凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至储槽。
因所分离物系的重组分为水,故选用直接蒸汽加热方式,釜残液直接排放。
甲醇-水物系分离难易程度适中,气液负荷适中,设计中选用金属环矩鞍DN50填料。
2.精馏塔的物料衡算2.1原料液及塔顶、塔底产品的摩尔分率甲醇的摩尔质量: M甲=32.04kg/kmol水的摩尔质量: M水=18.02kg/kmolXF=(0.46/32.04)/[0.46/32.04+0.54/18.02]=0.324XD=(0.997/32.04)/[0.997/32.04+0.003/18.02]=0.995XW=(0.005/32.04)/(0.005/32.04+0.995/18.02)=0.00282.2 原料液及塔顶、塔底产品的平均摩尔质量MF=0.324*32.04+(1-0.324)*18.02=22.56kg /kmolMD=0.995*32.04+(1-0.995)*18.02=31.97kg/kmolMW=0.0028*32.04+(1-0.0028)*18.02=18.06kg/kmol2.3物料衡算原料处理:qn,F=3000/22.56=132.98 kmol/h总物料衡算: 30.728=qn,D +qn,W甲醇物料衡算: 132.98*0.324=0.995 qn,D +0.0028qn,W解得: qn,D =43.05kmol/h qn,W=89.93kmol/h3塔板数的确定3.1甲醇-水属理想物系,故可用图解法求理论板层数.3.1.1由以知的甲醇-水物系的气液平衡数据,绘出x-y图.3.1.2求最小回流比及操作回流比采用作图法求最小回流比:在x-y 图中对角线上,自点e (0.324,0.324)作垂线即为进料线.该线与平衡线的交点坐标: y =0.682 x =0.324 故最小回流比; R min=(x D –y q )/(y q –x q )=(0.995-0.682)/(0.682-0.324)=0.87. 取操作回流比:R=1.743.1.3求精馏塔的气液相负荷q n,L =R* q n,D =1.74*43.05=74.91kmol/hq n,V =(R+1)* q n,D =2.74*43.05=117.96kmol/h q 、n,L= q n,L +q n,F =74.91+132.98=207.89 kmol/h q 、n,V = q n,V =117.96 kmol/h 3.1.4操作线方程 精馏段:y===0.635x+0.363提馏段:y ’===1.762-0.00213.1.5采用图解法求理论求解结果为:总理论板数: N T =11 进料位置为: N F =7 3.2全塔效率E绘出甲醇-水的气液平衡数据作t-x/y 图,查得:塔顶温度: t=64.6℃ 塔平均温度:t=82.0℃塔釜温度: t=99.3℃ 精馏段平均温度:t=70.75℃ 进料温度: t=76.8℃ 提馏段平均温度:t=88.05℃ 82.0℃下进料液相平均粘度:查手册有:μ甲=0.272mpas, μ水=0.3478mpas ,x 甲=0.192 y 甲=0.565μ=X μ甲+(1-X) μ水=0.324*0.272+(1-0.324)*0.3478=0.323mpasα===5.47=0.49=0.49=0.433.3实际塔板数的求取精馏段实际板层数: N=N/=6/0.43=13.95≈14块提留段实际板层数: N =N/=5/0.43=11.63≈12块.4 精馏塔的工艺条件及物性数据的计算4.1平均摩尔质量塔顶平均摩尔质量:X=Y=0.995. 查平衡曲线(X-Y图)得:X=0.98 MVD=0.995*32.04+(1-0.995)*18.02=31.97kmol/hMLD=0.98*32.04+(1-0.98)*18.02=31.76kmol/h 进料板层平均摩尔质量:查X-Y图得: YF =0.578 XF=0.196MVF=0.578*32.04+(1-0.578)*18.02=26.12kmol/hMLF=0.196*32.04+(1-0.196)*18.02=20.77kmol/h 塔底平均摩尔质量:XW =0.0028. YW=0.013MVW=0.013*32.04+(1-0.013)*18.02=18.20 kmol/hMLW=0.0028*32.04+(1-0.0028)*18.02=18.06kmol/h 精馏段平均摩尔质量:MVJ=(+)/2=(31.97+26.12)/2=29.05 kmol/hMLJ=(+)/2=(31.76+20.77)/2=26.27 kmol/h提馏段平均摩尔质量:M’VJ=(+)/2=(26.12+18.20)/2=22.16 kmol/hM’LJ=(+)/2=(20.77+18.06)/2=19.41kmol/h4.2平均密度计算(1).气相平均密度:由气液平衡图求得蒸汽平均温度:tJ = 70.75℃,tT=88.05℃故得精馏段的蒸汽密度:ρY,J =M T,J /22.4*[T0 /(T0 +t J)] =1.063kg/m3提留段的蒸汽密度:Y,T =MT,T/22.4*[T/(T+tT)] =0.748kg/m3(2).液相平均密度计算: 液相平均密度依下列式计算:1/lm=∑i/i塔顶液相平均密度计算:由t=64.6℃查手册得:甲醇=747.24kg/m -3水=980.66 kg/m 3lDm=1/[(0.997/747.24)+(0.003/980.66)]=747.77 kg/m 3进料板液相平均密度:由t=76.8℃,查手册得: 甲醇=736.88kg/m -3水=974.98kg/m 3进料板液相的质量分数:甲醇=0.196*32.04/[(0.196/32.04)+(0.804/18.02)]=0.302lFm=1/[(0.302/736.88)+(0.698/974.98)]=888.30 kg/m 3塔底液相的平均密度:查手册得在99.3℃时水的密度为:甲醇=712.9kg/m -3水=958.88 kg/m 3=1/[(0.005/712.9)+(0.995/958.88)]=957.23kg/m 3精馏段液相平均密度为:lJ=(747.77+888.30)/2=818.04 kg/m 3提留段液相平均密度:lT=(888.30+957.23)/2=922.77 kg/m 34.3液体平均表面张力计算 液相平均表面张力依下式计算: δ=∑x i /δi塔顶液相平均表面张力的计算:由t=64.6℃查手册得: δ甲醇=18.2 mN/m δ水 =65.345 mN/m δlDm =0.995*18.2+0.005*65.345=18.44 mN/m进料板液相表面张力的计算:由t=76.8℃查手册得: δ甲醇=17.3mN/m δ水=63.144 mN/mδlFm=0.122*17.3+0.818*63.144=54.16 mN/m 塔釜液体的表面张力接近水的表面张力,由t= 99.3℃查手册得:δ甲醇=12.878mN/m δ水=58.933 mN/mδlWm=0.0028*12.878+0.9972*58.933=58.80 mN/m 精馏段液相平均表面张力为:δlT=(18.44+54.16)/2=36.3 mN/m提留段液体平均表面张力为:δlT=(54.16+58.80)/2=56.48 mN/m4.4液体平均粘度计算液相平均粘度依下式计算,即:lgμm =∑xilgμi塔顶液相平均粘度的计算:由t=64.6℃查手册得:μ甲醇=0.330 mpas μ水=0.448 mpaslgμlDm=0.995*lg0.33+0.005*lg0.448解出:μlDm=0.3305 mpas进料板液相平均粘度的计算:由t=76.8℃查手册得:μ甲醇=0.286 mpas μ水=0.329 mpaslgμlFm=0.196*lg(0.286)+0.804*lg(0.329)解出:μlDm=0.3587 mpas塔釜液相平均粘度的计算:由t=99.3℃查手册得:μ甲醇=0.2295mpas μ水=0.2861mpaslgμlWm=0.0028*lg(0.2295)+0.9972*lg(0.2861)解出:μlDm=0.2859 mpas精馏段液相平均粘度为:μlJ=(0.3587+0.3305)/2=0.3346 mpas提留段液相平均粘度为:μlT=(0.3587+0.2859)/2=0.3223 mpas5精馏塔的塔体工艺尺寸计算5.1 塔径的计算5.1.1精馏段塔径计算WL=74.91*26.27=1967.89 kg/hWV=117.96*29.05=3426.74 kg/h精馏段气、液混合物的平均体积流量:= ==0.924m3/s= ==0.000668m3/s贝恩—霍根关联式=A-K=0.06225-1.75*解得:=5.36 m/s取=0.7=3.752 m/sD==0.56m圆整为0.6m此时==3.27m/s泛点速率校核:==0.61 在允许范围内5.1.2.提留段塔径计算计算方法同精馏段,计算结果为:uF=5.72m/sD=0.542 m圆整塔径,取 D=0.60m.泛点率校核:u==3.44m/su/ uF=(3.44/5.72)=0.60 (在允许范围内) 填料规格校核: D/d =600/50=12 >8液体喷淋密度校核:取最小润湿速率为: (lw )m=0.08 m3 / m2h查附录五得:at=74.9m3 /m2 .h.u min =(lw)m* at=0.08*74.9=5.992 m3 / m2hu=3600*0.000668/(0.785*0.6*0.6)=8.51m3 / m2h >5.992 m3 / m2h 5.2填料层高度计算Z=HETP*NT.Lg(HETP)=h-1.292lnδl +1.47lnμl查表有: h=7.0653.精馏段填料层高度为:HETP=0.862m Z景=6*0.862=5.172 mZ′精=1.25*5.172=6.465 m提留段填料层高度为:HETP=0.442mZ提=5*0.442=2.21 mZ′提=1.25*2.21=2.76 m设计取精馏段填料层高度为6.5m,提留段填料层高度为3m.对于环矩鞍填料, 要求h/D=8~15. hmax≤6m.取h/D=12, 则 h=12*600=7.2 m.不需要分段。
化工原理课程设计苯氯苯填料塔设计说明书
一、设计题目苯—氯苯填料精馏塔设计二、设计数据及条件原料:苯和氯苯混合溶液,年处理能力为(7)万吨(开工率8000 小时/年),原料中苯的质量分数(0.34学号后两位);进料热状态:自选。
分离要求:馏出液中苯的质量分率不低于95%釜残液中苯的质量分率不大于0.3%(1-10号)操作压力:常压建厂地址:家乡地区单板压降:≤0.7kpa。
全塔效率:E T≥58%。
三、设计要求(一)编制一份设计说明书,主要内容包括:1.前言;2.流程与方案的选择说明与论证(附流程简图)3.精馏塔主要工艺结构尺寸设计计算(包括塔径、填料层高度、塔高的计算等)4.附属设备的选型和计算(包括冷凝器、再沸器、塔内构件:接管管径、除沫器、液体分布器、液体再分布器、支撑板、手孔、裙座等)5.填料塔流体力学计算(压力降、泛点率、气体动能因子等)6.设计结果列表7.设计评价8.主要符号和单位表9.参考文献10.致谢(二)绘制带控制点的工艺流程图(3号图纸,CAD绘图)绘制精馏塔的工艺条件图(2号图前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)目录前言 (8)符号说明 (8)1 概述与设计方案简介 (10)1.1 操作条件的确定 (10)1.1.1 操作压力 (10)1.1.2 进料状态 (10)1.1.3 加热方式 (10)1.1.4 冷却剂与出口温度 (10)1.1.5 热能的利用 (11)1.2 确定设计方案的原则 (11)1.2.1 满足工艺和操作的要求 (11)1.2.2 满足经济上的要求 (12)1.2.3 保证安全生产 (12)1.3 流程的确定和说明 (13)2.1 物料衡算 (13)2.1.1 原料液及塔顶、塔底产品的摩尔分率 (13)2.1.2 全塔物料衡算 (13)2.2 理论塔板数估算 (14)2.2.2 气液平衡线 (16)2.2.3 进料热状况参数 (17)2.2.4 求最小回流比Rmin (17)2.2.5 最佳回流比 (18)2.2.6 精馏段提馏段操作线 (20)2.2.7 图解法求理论板数 (21)2.3 各种操作条件及相关的物性估算 (22)2.3.1 操作温度估算 (22)2.3.2 平均摩尔质量估算 (23)2.3.3 液相平均粘度估算 (24)2.3.4 相对挥发度估算 (26)2.3.5 操作压力估算 (26)2.3.6 平均密度估算 (27)2.4 气液相负荷估算 (29)2.4.1 精馏段气液相负荷 (29)2.4.2 提馏段气液相负荷 (30)3 设备设计 (30)3.1 填料的选择 (30)3.2 塔径的设计 (31)3.2.1 精馏段塔径 (31)3.2.2 提馏段塔径 (32)3.3 填料层高度计算 (33)3.3.1 精馏段的填料层高度 (33)3.3.2 提馏段的填料层高度 (33)3.3.3 精馏塔的填料层总高度 (33)3.4 填料层压降的计算 (34)4 辅助设备的计算及选型 (35)4.1 接管设计 (35)4.1.1 进料管 (35)4.1.2 回流管 (36)4.1.3 塔底出料管 (36)4.1.4 塔顶蒸汽出料管 (36)4.1.5 塔底进气管 (37)4.2 法兰 (37)4.3 筒体与封头 (38)4.3.1 筒体 (38)4.3.2 封头 (38)4.4 其他塔附件 (38)4.4.1 裙座 (38)4.4.2 吊柱 (38)4.4.3 人孔手孔 (38)4.5 塔总体高度设计 (39)4.5.1 塔的顶部空间 (39)4.5.2 塔的底部空间 (39)4.5.3 塔的立体高度 (39)4.6 附属设备 (39)4.6.1 塔顶冷凝器 (39)4.6.2 原料预热器 (41)4.6.3 再沸器 (41)4.6.4 进料泵 (42)4.6.5 回流泵 (43)5 设计结果明细表 (43)5.1 物料衡算计算结果 (43)5.2 精馏塔工艺条件及有关物性数据计算结果 (44)5.3 精馏塔工艺设计结果 (44)5.4 接管尺寸计算结果 (44)设计评述 (45)参考文献 (45)前言在化工生产中,精馏是最常用的单元操作,,是分离均相液体混合物的最有效方法之一,在炼油、化工、石油化工等工业中得到广泛应用。
填料式精馏塔设计
(14)
4、 辅助设备的选型计算
7.储槽的选型计
算…………………………………………… (15)
8.换热器的选型计算
…………………………………………(16)
9.主要接管尺寸的选型计算
…………………………………(19)
10.泵的选型计算
…………………………………………… (21)
11.流量计选取
……………………………………………… (21)
(5)
2.全塔物料衡
算…………………………………………………(5)
3.采用图解法,求解RMin,R
……………………………………(5)
4.填料塔压力降的计
算…………………………………………(6)
5.D、Z、计算…………………………………………………
(7)
6.计算结果列表 ………………………………………………
查得103℃下,甲醇密度 水
由 得:
=956.080kg/m3 进料板 =915.988kg/m3
故提馏段平均液相密度
5.2.5提馏段汽相平均密度
5.2.6提馏段平均液相粘度’
查《化学工程手册》第一篇 : 塔底 103℃
甲醇
A 555.30
水
658.25
=0.2663cp 进料板: ℃时
=0.3182cp 则提馏段平均液相粘度 塔板效率 ET=0.17-0.616lg=0.487 N=NT/ET=22.6 实际塔板数应取23块。
化工原理 课程设计说明书
设计题目: 甲醇—水连续填料精馏塔 设计者: 专业: 学号:
指导老师:
2016年06月25日
目录
1、
前言
…………………………………………………………(3)
乙基苯-苯乙烯精馏塔设计
乙基苯-苯乙烯精馏塔是用于分离乙基苯和苯乙烯的设备,下面是一般的设计步骤:
1. 确定馏分需求:首先需要明确产品要求和馏分纯度,例如乙基苯和苯乙烯的纯度要求。
2. 确定操作压力:根据物料的性质和工艺要求,选择合适的操作压力。
通常情况下,较低的操作压力可以提高苯乙烯的收率,但也会增加设备成本和操作难度。
3. 确定塔的类型:根据馏分过程的要求,选择合适的塔类型。
常见的选择包括板式塔和填料塔。
填料塔通常适用于高液体负荷和较大的塔径,而板式塔适用于较低的液体负荷和较小的塔径。
4. 确定塔内部组件:根据塔的类型和操作要求,选择合适的塔板或填料。
对于填料塔,选择具有良好质量传递和液体分布性能的填料材料。
对于板式塔,选择合适的塔板类型和开孔面积,以满足分离要求。
5. 进行热量平衡计算:根据进料和产品的物料性质,计算出所需的加热蒸汽和冷凝水量,以实现适当的回流比和塔顶温度。
6. 进行塔的设计计算:根据物料的性质、操作压力和分离要求,进
行塔的设计计算。
这包括确定塔径、塔高、塔板数目或填料高度以及其他塔内部组件的具体参数。
7. 进行塔的模拟和优化:使用流程模拟软件进行塔的模拟和优化,以验证设计参数的合理性,并进一步优化操作条件和设备配置。
8. 进行塔的机械设计:根据设计参数和机械强度要求,进行塔的机械设计,包括塔壳厚度、支撑结构和附件的选择等。
9. 进行安全和环保考虑:在设计过程中,要考虑安全和环保因素,确保塔的运行安全可靠,并满足相关的环境保护要求。
请注意,乙基苯-苯乙烯精馏塔的设计涉及复杂的化工工艺和设备工程知识,建议在实际设计中寻求专业工程师的帮助和指导。
化工原理课程设计任务书精馏塔
化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。
一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。
乙醇—水分离填料精馏塔设计化工原理
化工原理课程设计乙醇-水填料精馏塔设计学生学院名称学号班级专业名称指导教师年月日化工原理课程设计任务书摘要乙醇是生活中一种常见的化学品,它是一种有机物,俗称酒精。
它是带有一个羟基的饱和一元醇,在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有酒香的气味,并略带刺激性。
有酒的气味和刺激的辛辣滋味。
乙醇液体密度比水小,能与水以任意比互溶。
乙醇的生产离不开精馏、萃取等化工流程。
氧化钙脱水法、共沸精馏、吸附精馏、渗透汽化、吸附法、萃取精馏法和真空脱水法等多用在乙醇的回收和提纯的方面。
实际生产中较成熟的方法是共沸精馏和萃取精馏,这2 种分离方法多以连续操作的方式出现。
在一些领域生产乙醇设备简单、投资小,可单塔分离多组分混合物,或同一塔可处理种类和组成频繁更换的物系。
塔设备是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一,一般分为级间接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
本次课程设计就是针对乙醇-水体系而进行的常压二元填料精馏塔的设计及相关设备选型。
关键词:乙醇;水;填料塔;精馏1.1 物料性质 (1)1.2 塔设备简介 (1)2流程的确定及说明 (1)2.1.加料 (1)2.2.进料 (1)2.3 塔顶冷凝方式 (2)2.4 回流方式 (2)2.5 加热方式 (2)2.6 加热器 (2)3精馏塔的设计计算 (2)3.1物料衡算 (2)3.2塔顶气相、液相,进料和塔底的温度分别为:VD t、LD t、F t、W t (3)3.3平均相对挥发度α (4)3.4回流比的确定 (4)3.5热量衡算 (5)3.5.1加热介质的选择 (5)3.5.2冷却剂的选择 (5)3.5.3热量衡算 (5)3.6理论塔板数计算 (7)3.6.1板数计算 (7)3.6.2塔板效率 (8)3.7 精馏塔主要尺寸的设计计算 (9)3.7.1流量和物性参数的计算 (9)3.7.2塔径设计计算 (11)4附属设备及主要附件的选型计算 (15)4.1.冷凝器 (15)4.3塔其他构件 (17)4.3.1.塔顶蒸汽管 (17)4.3.2.回流管 (17)4.3.3.进料管 (18)4.3.4.塔釜出料管 (18)4.3.5除沫器 (18)4.3.6液体分布器 (19)4.3.7液体再分布器 (20)4.3.8填料支撑板的选择 (20)4.3.9塔釜设计 (21)4.3.10塔的顶部空间高度 (21)4.3.11手孔的设计 (21)4.3.12.裙座的设计 (22)5精馏塔高度计算 (22)6总结 (24)附录 (24)参考文献 (26)第一部分概述1.1物料性质乙醇易燃,具刺激性。
精馏塔设计指导书
简单填料精馏塔设计设计条件与任务:已知F 、xF 、xD 、xw 或F 、xF 、xD 和η,塔顶设全凝器,泡点回流,塔底间接蒸汽加热。
1 全塔物料衡算求产品流量与组成F D W =+ (1)F D W Fx Dx Wx =+ (2)① 若规定F 、x F 、x D 、x w 则直接联立求解方程(1)与(2) ② 若规定F 、x F 、x D 和η DFDx Fx η=(3) 先由式(3)求出x D ,再联立求解方程(1)与(2)。
2 计算最小回流比设夹紧点在精馏段,其坐标为(xe,ye)则 min D ee ex y R y x -=-设夹紧点在提馏段,其坐标为(xe,ye)min min (1)(1)e W e Wy x R D qF LV R D q F x x -+==+--- 基础数据:气液相平衡数据3 确定操作回流比 min (1.1~2.0)R R =4 计算精馏段、提馏段理论板数① 理想溶液 图解法或求出相对挥发度用逐板计算法求取。
② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取 精馏段 11 RDfN x R x n ndxN dN x x +==-⎰⎰因 111D n n x Ry x R R +=+++所以 ()/Dfx R x n n D n dxN y x x y R=---⎰(4)提馏段 11 SfWN x S x n ndxN dN x x +==-⎰⎰因 11W n n x R y x R R +'+=-''蒸汽回流比(1)(1)(1)(1)V R D q F D F R R q W W W W+--'===+-- 所以 ()/(1)fwx S x n n n w dxN y x y x R ='---+⎰(5)式(4)、(5)中塔板由下往上计数。
5 冷凝器和再沸器热负荷冷凝器的热负荷 ()C DV DL Q V I I =-再沸器的热负荷B C D W F Q Q DI WI FI =++-待求量:进料温度t F 、塔顶上升蒸汽温度t DV (与x D 对应的露点温度)、回流温度t DL (与x D 对应的泡点温度)、再沸器温度tw (与x W 对应的泡点温度)。
化工原理 课程设计 精馏塔
化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。
该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。
乙醇的浓度要求为95%(质量分数),水含量要求低于5%。
二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。
同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。
3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。
4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。
三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。
2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。
3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。
4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。
5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。
6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。
乙醇—水分离填料精馏塔设计化工原理
乙醇—水分离填料精馏塔设计化工原理一、概述乙醇是一种常用的化学品,在医药、饮料、化妆品、涂料等一些行业中使用广泛。
乙醇的提取离不开精馏技术。
乙醇水分离是精馏技术的一个重要应用,通过此技术可以将乙醇纯化至一定程度。
本文将介绍乙醇水分离填料精馏塔设计的化工原理。
二、填料式精馏塔填料式精馏塔是一种常见的精馏设备,其结构分为下部塔体和上部塔盘两部分。
下部为填料区,上部为塔盘区。
塔体内有一条液体落下的路径,此路径称为液泛点,其上方为气体区,其下方为液体区。
填料式精馏塔的原理是将混合气体向塔体内注入后,在塔体内气体经过填料层的阻力,液体则被填料阻挡而滴落,最终通过不断的滴落和蒸发,将混合气体分离。
填料式精馏塔的优点是结构简单、操作稳定、设备可靠。
填料式精馏塔可使用各种填料进行分离,如摇摆填料、不锈钢钎子填料等。
三、乙醇水分离填料精馏塔设计化工原理1、热力学气液平衡理论热力学气液平衡理论是乙醇水分离填料精馏塔设计的化工原理之一。
其原理是在乙醇水分离过程中,乙醇和水两种有机物会在填料表面存在液膜。
通过液膜上蒸汽向下散发的热量和乙醇水液膜的蒸汽压力,即可计算出精馏过程中乙醇和水的浓度。
此理论需要考虑到物质的热力学性质,如液体表面张力、蒸汽压和相对挥发度等。
2、填料形式及选择填料的选择直接影响到乙醇水分离填料精馏塔的分离效果。
不同填料的阻力以及表面特性均会影响到精馏过程中乙醇和水的分离效率。
一般来说,近年来较常用的塔径为50mm以下的小型填料梯级精馏塔。
常用的填料材料有不锈钢、塑料、陶瓷等,塑料填料和陶瓷填料具有较好的耐腐蚀性和化学稳定性,因此更加符合精馏塔的应用要求。
3、塔内气体流动的控制和分析塔内气体流动的控制和分析也是乙醇水分离填料精馏塔设计的重要化工原理之一。
塔内气体的流动决定了填料层的液泛点以及塔体中的液体液滴形成情况。
过高的气速会导致填料层的阻力过大,增加塔体中气液分离的困难度;过低的气速则会导致塔体中的气液分离效果不够理想,从而影响到分离效率。
甲醇-水填料精馏塔的课程设计
摘要:填料塔为连续接触式的气液传质设备,与板式塔相比,不仅结构简单,而且具有生产能力大,分离填料材质的选择,可处理腐蚀性的材料,尤其对于压强降较低的真空精馏操作,填料塔更显示出优越性。
本文以甲醇-水的混合液为研究对象,因甲醇-水系统在常压下相对挥发度相差较大,较易分离,所以此设计采用常压精馏。
根据物料性质、操作条件等因素选择填料塔,此设计采用泡点进料、塔底再沸器和塔顶回流的方式,将甲醇—水进行分离的填料精馏塔。
通过甲醇—水的相关数据,对全塔进行了物料衡算和热料衡算,得出精馏产品的流量、组成和进料流量、组成之间的关系,进而得到精馏塔的理论板数。
分析了进料、塔顶、塔底、提馏段、精馏段的流量及其物性参数。
对精馏段和提留段的塔径及填料层高度进行了计算,以确定塔的结构尺寸。
对塔内管径、液体分布器、筒体壁厚进行了选型计算,从而得到分离甲醇—水混合物液的填料精馏塔。
关键词:填料塔;流量;回流比;理论板数;工艺尺寸第一章:设计任务书 (1)一、设计题目 (1)二、操作条件 (1)三、填料类型 (1)四、设计内容 (2)第二章:工艺设计计算 (2)一、设计方案的确定 (2)二、精馏塔的物料衡算 (3)三、理论塔板数的确定 (3)四、精馏塔的工艺条件及有关物性数据的计算 (8)五、精馏塔塔体工艺尺寸的计算 (10)六、填料层压降的计算 (13)七、筒体壁厚的计算 (14)八、管径的计算 (14)九、液体分布器简要设计 (16)第三章:结论 (18)一、设计感想 (18)二、全章主要主要符号说明 (19)三、参考资料: (20)第一章:设计任务书一、设计题目在抗生素类药物生产过程中,需要用甲醇溶媒洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。
为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶媒进行精馏得到含水量≤0.3%(质量分数)的甲醇溶媒。
设计要求废甲醇溶媒的处理量为4t/h,塔底废水中甲醇含量≤0.5%(质量分数)。
乙醇—水分离填料精馏塔设计 化工原理
化工原理课程设计乙醇-水填料精馏塔设计学生姓名学院名称学号班级专业名称指导教师年月日化工原理课程设计任务书摘要乙醇是生活中一种常见的化学品,它是一种有机物,俗称酒精。
它是带有一个羟基的饱和一元醇,在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有酒香的气味,并略带刺激性。
有酒的气味和刺激的辛辣滋味。
乙醇液体密度比水小,能与水以任意比互溶。
乙醇的生产离不开精馏、萃取等化工流程。
氧化钙脱水法、共沸精馏、吸附精馏、渗透汽化、吸附法、萃取精馏法和真空脱水法等多用在乙醇的回收和提纯的方面。
实际生产中较成熟的方法是共沸精馏和萃取精馏,这2 种分离方法多以连续操作的方式出现。
在一些领域生产乙醇设备简单、投资小,可单塔分离多组分混合物,或同一塔可处理种类和组成频繁更换的物系。
塔设备是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一,一般分为级间接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
本次课程设计就是针对乙醇-水体系而进行的常压二元填料精馏塔的设计及相关设备选型。
关键词:乙醇;水;填料塔;精馏1.1 物料性质 (1)1.2 塔设备简介 (1)2流程的确定及说明 (1)2.1.加料 (1)2.2.进料 (1)2.3 塔顶冷凝方式 (2)2.4 回流方式 (2)2.5 加热方式 (2)2.6 加热器 (2)3精馏塔的设计计算 (2)3.1物料衡算 (2)3.2塔顶气相、液相,进料和塔底的温度分别为:VD t、LD t、F t、W t 3 3.3平均相对挥发度α (4)3.4回流比的确定 (4)3.5热量衡算 (5)3.5.1加热介质的选择 (5)3.5.2冷却剂的选择 (5)3.5.3热量衡算 (5)3.6理论塔板数计算 (7)3.6.1板数计算 (7)3.6.2塔板效率 (8)3.7 精馏塔主要尺寸的设计计算 (9)3.7.1流量和物性参数的计算 (9)3.7.2塔径设计计算 (11)4附属设备及主要附件的选型计算 (15)4.1.冷凝器 (15)4.3塔内其他构件 (17)4.3.1.塔顶蒸汽管 (17)4.3.2.回流管 (17)4.3.3.进料管 (18)4.3.4.塔釜出料管 (18)4.3.5除沫器 (18)4.3.6液体分布器 (19)4.3.7液体再分布器 (20)4.3.8填料支撑板的选择 (20)4.3.9塔釜设计 (21)4.3.10塔的顶部空间高度 (21)4.3.11手孔的设计 (21)4.3.12.裙座的设计 (22)5精馏塔高度计算 (22)6总结 (24)附录 (24)参考文献 (26)第一部分概述1.1物料性质乙醇易燃,具刺激性。
化工工艺设计第6章填料精馏塔的工艺设计
似于网波纹填料,但抗堵能力比网波纹填料
强,并且价格较便宜。它按波峰高度分为: 4.5型、6.3型、10型;按比表面积分为: 250Y型、500X型,700Y型。
规整填料的性能曲线与气体动能因子F有关, F因子的表达式为:
F uG G
F V
3600 G
• 精馏段的平均液体量:
9000 9950
L 精 115.18kmol/h
2
9475kg/h
• 折合成精馏段平均液体负荷为:
l精
L
AT L
9475
1.32 804
8.88 m3/(m2
h)
4
对精馏段用线性插入法求出填料阻力为:
(⊿P/z)精 = 0.11kPa/m
F
4V
3600DT2
• 塔中:
4 12600 1.60
G 3600 1.32 2.7
F
4V
4 13930 1.77
3600DT2 G 3600 1.32 2.7
• 塔底:
F
4V
4 14810 1.89
3600DT2 G 3600 1.32 2.7
填料
Sulzer’s Mellapak (金属)
Sulzer’s Mellapak (塑料)
Koch-Sulzer(丝网)
型号 125Y 250Y 350Y 500Y
250Y
CY BX
填料因子/m-1 3.2801×10 3.2808×20 3.2808×23 3.2808×34
3.2808×22
3.2808×70 3.2808×21
乙烯—乙烷精馏塔的设计方案
乙烯—乙烷精馏塔的设计方案引言:乙烯和乙烷是工业中常见的烃类化合物,它们具有不同的物理和化学性质,因此在工业上常需要对乙烯-乙烷混合物进行分离和纯化。
乙烯-乙烷精馏塔是一种常用的分离设备,本文将对其设计方案进行详细介绍。
一、设计要求:1.实现乙烯和乙烷的高效分离和纯化。
2.提高塔的操作灵活性和适应性,能够处理不同乙烯-乙烷混合物的工况。
3.提高产量、降低能耗和提高产品质量。
二、设计流程:1.塔的结构设计:乙烯-乙烷精馏塔一般采用塔板或填料两种结构,根据具体的生产工艺和经济效益进行选择。
2.塔内部组件设计:包括塔板、填料、液体收集器、气体分配器等组件的设计。
根据实际工艺要求和操作条件选择合适的组件类型和布置方式,以实现高效的气液传质和分离。
3.冷凝器设计:冷凝器用于冷凝乙烯和乙烷,将其转化为液体。
冷凝器的设计要考虑冷却介质的选择、冷凝器的尺寸和传热效果,以及冷凝液的回收和处理方式等。
4.除气系统设计:除气系统用于去除塔中的非可溶气体,以保证塔的正常运行。
除气系统的设计要考虑气体排放标准、操作灵活性以及能耗等因素。
5.控制系统设计:乙烯-乙烷精馏塔的控制系统包括温度、压力、流量和液位等参数的监测和控制。
合理设计控制系统可以提高塔的稳定性和操作性能。
三、设计计算:1.传热计算:根据输送介质的性质和其他工艺参数,计算冷凝器的传热面积和冷却介质的需求量。
2.塔板或填料的选择和计算:根据实际工艺要求和流体性质,选择合适的塔板或填料,并进行塔板和填料的数量和尺寸的计算。
3.塔内压降计算:根据塔板或填料的压降特性和流体的物理性质,计算塔内的压降,以确定塔的风阻和操作条件。
四、设计经济考虑:1.成本评估:考虑到设备采购、安装和维护等各方面的费用,进行整体的设备成本评估。
2.能耗分析:通过对设备的设计和操作参数的综合考虑,评估设备的能耗情况,并提出降低能耗的措施。
3.收益评估:根据分离纯化后的乙烯和乙烷的价格和市场需求,进行产量和销售收益的预估。
《精馏塔设计》课件
精馏塔设计的PPT课件将深入介绍精馏塔的概述、组成、设计参数、设计方 法、设计实例、应用、总结与展望,帮助您掌握精馏塔的关键设计要素及提 高设计水平。
概述
精馏塔的定义和工作原理。
精馏塔的组成
填料层
填料层的作用及选择。
动力层
动力层的功能和组成要素。
填料与动力层的配比
填料与动力层之间的配比关 系。
精馏塔的设计参数
填料性能参数
• 表面积 • 孔隙率 • 液体分布
动力性能参数
• 塔板间距 • 分离效率 • 产量和纯度
过量系数与塔 径的确定
过量系数和塔径的关 系及影响。
填料类型选择
不同填料类型的特点 和选择依据。
精馏塔的设计方法
1
Fenske法
2
Fenske法的原理和使用条件。
Riggs法
Riggs法的步骤和应用。
精馏塔的设计实例
实例介绍
介绍一个典型的精馏塔设计实例。
实例计算过程和结果分析
详细分析实例的计算过程和结果。
精馏塔的应用
化工工业中的应用Βιβλιοθήκη 精馏塔在化工工业中的广泛应用。
精馏塔的优化与改进
改进和优化精馏塔的措施。
总结与展望
1 精馏塔设计的意义
总结精馏塔设计的重要意义和价值。
2 未来的发展方向
展望精馏塔设计的未来发展趋势。
化工工艺设计第6章填料精馏塔的工艺设计
化工工艺设计第6章填料精馏塔的工艺设计填料精馏塔工艺设计是在化工工艺设计中非常关键的一部分,其确定直接影响到塔内物料在萃取、分离和精馏过程中的传质和传热情况。
本章将介绍填料精馏塔的工艺设计包括填料的选择、填料层间距的确定、塔径的确定以及相应的传质和传热设计等方面。
一、填料选择:在填料精馏塔的工艺设计中,填料的选择是一个重要的环节。
填料既要具有较大的总表面积,也要具备良好的液体和气体分布性能,以及足够的物理和化学稳定性。
常见的填料有环形、球型、骨架型等多种形式。
选择填料时需要综合考虑填料的本构特性、传质性能和传热性能。
二、填料层间距的确定:填料层间距的确定也是填料精馏塔工艺设计的重要内容。
填料层间距的大小影响到塔内物料在填料层之间的分布和流动情况,对传质和传热性能有重要影响。
填料层间距过小会导致液体经过填料层时阻力增大,增加能耗;填料层间距过大则会导致塔内液体在水平方向的混合程度不高,使得传质效果降低。
具体的填料层间距一般可以通过试验和经验确定。
三、塔径的确定:填料精馏塔的塔径本质上是一个经济性和操作性之间的折衷选择。
过大的塔径会增加建设和设备成本,过小的塔径则会降低传质效率。
一般来说,在保证传质效果的条件下,应尽可能选取经济合理的塔径。
塔径的确定依据一般是塔底径和塔顶径之间的液下压降和气上压降限制。
四、传质和传热设计:填料精馏塔的传质和传热设计是塔的工艺设计中的重要环节。
传质的设计主要考虑两相物料之间的传质速率,需要根据具体的传质模型和工艺要求进行计算。
传热的设计主要包括液相传热和气相传热两部分。
液相传热一般由填料和壁面之间的传热和填料层内部的传热组成,需要根据传热模型和壁面温度进行计算。
气相传热一般由塔顶和塔底的传热和填料层内部的传热组成,需要根据传热模型和塔顶温度进行计算。
在填料精馏塔的工艺设计中,还需要综合考虑流态分布、杂质分布、载液比、精馏塔和冷凝器之间的热负荷等。
通过合理的填料选择、填料层间距的确定、塔径的确定以及传质和传热的设计,可以实现填料精馏塔的高效运行,提高产品质量和产量。
填料精馏塔设计说明书
填料精馏塔优化设计说明书设计说明书要独立撰写,严格杜绝抄袭;说明书的撰写格式请参照学术论文格式(可参阅各类学术期刊,如福州大学学报);设计说明书一律采用A4复印纸,不得采用其他类型纸张;说明书撰写字迹要工整,纸面整洁不随意涂改。
设计完成后,必须将设计说明书、图纸、任务书一起装入资料袋,填写好资料袋封面上交。
设计说明书中的主要内容包括如下:目录1 前言(对设计要求、任务的工业背景、国内外研究现状等的介绍)2 方案论证2.1 精馏塔类型2.2 精馏压力2.3 进料方式(进料状态)2.4 填料类型(散装、规整;类型)2.5 加热方式(间接蒸汽加热、直接蒸汽加热)……3 工艺计算3.1 塔径的计算3.2 塔板数的计算……4 填料塔水力学性能校核4.1 泛点率……4.4 填料塔压降5 附属设备的设计与选型5.1 塔顶冷凝器5.2 冷却水输送泵5.3 接管5.4 填料支承结构5.5 填料压紧装置5.6 液体分布装置5.7 液体收集再分布装置5.8 气体分布装置6 设计结果汇总(以三线表分类汇总)12表1 工艺参数表参数数值单位参数数值单位处理量 100 Kmol/h 进料浓度0.2 摩尔分率表2 填料精馏塔参数 参数参数值单位塔材料 碳钢 -塔材料密度 7800 kg/m 3 塔壁厚度 5 mm 塔径 0.8 m 塔高 m 填料类型 填料比表面 …… 填料层高度 精馏段填料层高 精馏段填料层分层数 2 - 精馏段填料层第一层高度 精馏段填料层第二层高度 ……提馏段填料层高 …… 填料压降……表5 接管表接管 物流型号流量 m 3/h 流速 m/s 适宜流速范围进料管20%wt 甲醇—水溶液 1200 1.2 0.5~3 塔顶液相回流管4108⨯φ塔顶蒸汽管 99%甲醇蒸汽 塔顶产品管 冷却水输送管 冷却水 塔底残液管 塔底蒸汽管参考文献[1] 张瑞生,沈才大.化工系统工程基础.上海:华东化工学院出版社,1991[2] 天津大学化工原理教研室.化工原理(下册).天津:天津科学技术出版社,1990[3] 柴诚敬,刘国维,李阿娜.化工原理课程设计.天津:天津科学技术出版社,1994[4] 华南工学院化工原理教研组.化工过程及设备设计.广州:华南工学院出版社,1987……附录一苯—甲苯汽液平衡数据附录二……3。
高效规整填料塔的设计及精馏节能技术
02
03
自适应控制
智能控制
根据精馏过程的实时数据,自动 调整控制参数,使系统始终处于 最佳运行状态。
结合人工智能和机器学习技术, 实现精馏过程的智能控制和优化。
案例分析:成功降低能耗
1 2
案例一
某化工厂通过采用热能回收技术和优化操作条件, 成功将精馏过程的能耗降低了20%。
案例二
某石化企业采用新型填料和塔内件对精馏塔进行 改造,传质效率提高了30%,能耗降低了15%。
02 高效规整填料技术
规整填料概念及优势
规整填料定义
规整填料是一种在塔内按一定几何构形均匀排列,整齐堆砌的填料,具有特定的 几何形状和尺寸。
规整填料优势
相较于散装填料,规整填料具有更高的传质效率和更低的压降,能够提供更好的 流体分布和更大的比表面积。
高效规整填料种类介绍
金属规整填料
陶瓷规整填料
维护保养周期及内容
制定合理的维护保养计划, 定期对填料塔进行全面检 查和维护保养。
检查并更换损坏的液体分 布器、气体分布器和密封 件等易损件。
清洗填料表面的污垢和沉 积物,保持填料的清洁和 良好的传质性能。
对设备的腐蚀情况进行检 查,并采取必要的防腐措 施。
故障诊断与排除方法
01 02 03 04
热能回收
通过热交换器回收塔顶和塔底的余热,用于预热原料 或产生蒸汽,从而减少热能消耗。
优化操作条件
通过调整操作参数,如温度、压力、回流比等,使精 馏过程在最佳状态下运行,降低能耗。
新型填料与塔内件
采用高效规整填料和新型塔内件,提高传质效率,降 低能耗。
先进控制策略在精馏中应用
01
模型预测控制
通过建立精馏过程的数学模型, 预测未来状态并优化控制策略, 实现节能降耗。
甲醇—水填料精馏塔设计示例-范本模板
甲醇—水分离装置的工艺设计摘要甲醇是一种重要的化工原料,其用途广泛,是基础的有机化工原料和优质燃料。
主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。
甲醇易于吸收水蒸汽、二氧化碳和某些其它物质,因此只有用特殊的方法才能制得完全无水的甲醇.精馏是应用最广的传质分离操作,板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰.筛板塔和浮阀塔成功地取代泡罩塔是效益巨大的成果。
板式塔的设计已达到较高水平,设计结果比较可靠。
马伦戈尼效应造成的界面湍动现象和汽液两相间的不同接触工况的研究,使认识得到了深化,对传质效率的研究有所促进。
具有各种特点的新型塔板开发研究不断取得成果.对于塔板上汽液两相流动和混合状况、雾沫夹带及它们对效率的影响研究不断深入,但离得到一个通用而可靠的效率估算模型尚有较大距离,特别是多元系统的效率.进一步深入进行塔中汽液两相流动状况的研究,对于预测压降、传质效率和塔板的可操作区域,对于认识至今了解甚少的降液管中状况都十分有意义。
关键词:甲醇;精馏;板式塔目录摘要 (1)目录 (2)前言 (3)第一章文献综述 (5)1。
1甲醇 (5)1。
1.1甲醇的性质 (5)1。
1。
2甲醇的用途 (5)1.1.3甲醇工业 (5)1。
1。
4甲醇的下游产品 (6)1.2精馏原理 (7)1.3板式塔 (8)1。
3。
1 板式塔分类 (8)1.3.2 板式塔的结构 (8)1.3.3 板式塔的特点 (10)1。
3.4 板式塔的作用 (10)第二章设计部分 (12)2.1设计任务 (12)2.2 设计方案的确定 (12)2.3 设计计算 (12)2。
3.1 精馏塔的物料衡算 (12)2.3。
2 精馏塔塔板数的确定 (13)2。
3。
3 精馏塔的工艺条件及物性数据的计算 (14)2。
3.4 精馏塔的塔体工艺尺寸计算 (17)2。
3。
5 塔板主要工艺尺寸的计算 (18)2。
乙醇—水分离填料精馏塔设计-化工原理资料讲解
乙醇—水分离填料精馏塔设计-化工原理化工原理课程设计乙醇-水填料精馏塔设计学生姓名学院名称学号班级专业名称指导教师年月日化工原理课程设计任务书摘要乙醇是生活中一种常见的化学品,它是一种有机物,俗称酒精。
它是带有一个羟基的饱和一元醇,在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有酒香的气味,并略带刺激性。
有酒的气味和刺激的辛辣滋味。
乙醇液体密度比水小,能与水以任意比互溶。
乙醇的生产离不开精馏、萃取等化工流程。
氧化钙脱水法、共沸精馏、吸附精馏、渗透汽化、吸附法、萃取精馏法和真空脱水法等多用在乙醇的回收和提纯的方面。
实际生产中较成熟的方法是共沸精馏和萃取精馏,这 2 种分离方法多以连续操作的方式出现。
在一些领域生产乙醇设备简单、投资小,可单塔分离多组分混合物,或同一塔可处理种类和组成频繁更换的物系。
塔设备是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一,一般分为级间接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
本次课程设计就是针对乙醇-水体系而进行的常压二元填料精馏塔的设计及相关设备选型。
关键词:乙醇;水;填料塔;精馏1.1 物料性质 (1)1.2 塔设备简介 (1)2流程的确定及说明 (1)2.1.加料 (1)2.2.进料 (1)2.3 塔顶冷凝方式 (2)2.4 回流方式 (2)2.5 加热方式 (2)2.6 加热器 (2)3精馏塔的设计计算 (2)3.1物料衡算 (2)3.2塔顶气相、液相,进料和塔底的温度分别为:VD t、LD t、F t、W t 3 3.3平均相对挥发度α (4)3.4回流比的确定 (4)3.5热量衡算 (5)3.5.1加热介质的选择 (5)3.5.2冷却剂的选择 (5)3.5.3热量衡算 (5)3.6理论塔板数计算 (7)3.6.1板数计算 (7)3.6.2塔板效率 (8)3.7 精馏塔主要尺寸的设计计算 (9)3.7.1流量和物性参数的计算 (9)3.7.2塔径设计计算 (11)4附属设备及主要附件的选型计算 (15)4.1.冷凝器 (15)4.3塔内其他构件 (17)4.3.1.塔顶蒸汽管 (17)4.3.2.回流管 (17)4.3.3.进料管 (18)4.3.4.塔釜出料管 (18)4.3.5除沫器 (19)4.3.6液体分布器 (19)4.3.7液体再分布器 (20)4.3.8填料支撑板的选择 (20)4.3.9塔釜设计 (21)4.3.10塔的顶部空间高度 (21)4.3.11手孔的设计 (22)4.3.12.裙座的设计 (22)5精馏塔高度计算 (22)6总结 (24)附录 (24)参考文献 (26)第一部分概述1.1物料性质乙醇易燃,具刺激性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:要圆整塔板数
② 提馏段
式中:α——提馏段平均温度下的相对挥发度;μL——提馏段平均温度下的液相粘度, mPa.s
理论板当量高度的值与填料塔内的物系性质、气液流动状态、填料的特性等多种因素有关,一般源于实测数据或由经验关联式进行估算。在实际设计缺乏可靠数据时,也可取文献(匡国柱.化工单元过程与设备课程设计.北京:化学工业出版社.2002,264-265)P273页所列数据作参考。
填料尺寸/mm
25
a. Bain-Hougen泛点关联式
250Y金属板波纹填料:A=0.297,CY型丝网填料:A=0.30
b. 泛点压降法
Kister and Gill等压降曲线(匡国柱.化工单元过程与设备课程设计.北京:化学工业出版社.2002,264-265)
泛点压降与填料因子间的关系: Pa/m; Fp—填料因子
冷凝器的热负荷
再沸器的热负荷
待求量:进料温度tF、塔顶上升蒸汽温度tDV(与xD对应的露点温度)、回流温度tDL(与xD对应的泡点温度)、再沸器温度tw(与xW对应的泡点温度)。
物性数据:
① 各组分在平均温度下的液相热容、气相热容或汽化热。
② 各组分的热容方程常数
如
38
50
等板高度/mm
矩鞍环
430
550
750
鲍尔环
420
540
710
阶梯环
环鞍
430
530
650
以上关于HETP的取法是基于一种认识,即填料塔的分离效率与被分离物系的物理性质无关或影响很小,显然这与实际情况相比,有时会出现较大的偏差,故在设计时应特别给予注意。
25~38
D>900
50~80
② 计算方法
u 泛点气速法
----散堆填料
a. Eckert关联图法
由X值和泛点压降线查取Y值进而求得液泛气速
b. Bain-Hougen泛点关联式
填料特性:比表面积、空隙率、泛点压降因子
---规整填料
b. 以上方程中所用物性数据均取塔顶第一板与加料板物性数据的平均值
计算提馏段塔径时物性数据的处理:
a. 以上方程所用物性数据近似按加料板处理.
b. 以上方程中所用物性数据均取加料板与塔釜物性数据的平均值
II 填料层高度计算
---理论板当量高度(HETP)法 (精馏塔采用)
精馏段
NTSM——与1m填料分离能力相当的塔板数
HETP——与1层理论板分离能力相当的填料层高度
精馏段总压降
式中: ——每米填料层压降
提馏段的计算方法与精馏段相同。
---填料层的分段
目的:使填料层内气液两相处于良好的分布状态。
一般情况:每经过10块理论板的当量高度设置一个液体收集装置,并进行液体的再分布。
等压降曲线:
u 气相负荷因子法——用于规整填料塔的计算
填料手册中给出Csmax与ψ(流动参数)的关系图。
③ 校核
---散装填料:
a. 径比D/dp 为保证填料润湿均匀,应使径比在10以上,径比过小,液本沿填料下流时常会出现壁流现象。拉西环:D/dp>20;鲍尔环:D/dp>10;鞍形填料:D/dp>15。
因
所以 (4)
提馏段
因
蒸汽回流比
所以 (5)
式(4)、(5)中塔板由下往上计数。
5 冷凝器和再沸器热负荷
散堆填料的分段:
填料种类
填料高度/塔径
最大高度/m
填料种类
填料高度/塔径
最大高度/m
拉西环
2.5~3
≤6
鲍尔环
5~10
≤6
矩鞍环
5~8
≤6
阶梯环
8~15
≤6
规整填料的分段:
填料选择的三步骤:选材质→选类型→选尺寸(径比应保持不低于某一下限值,以防止产生较大的壁效应,造成塔的分离效率下降。)
选尺寸说明:填料尺寸大,成本低,处理量大,但效率低。一般大塔常使用50mm的填料。
塔径/mm
填料尺寸/mm
D<300
20~25
300<D<900
② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取
精馏段
因
所以 (4)
提馏段
因
蒸汽回流比
所以 (5)
④ 塔底裙座高度(当用裙式支座时用):塔底封头至基础环之间的高度
8 接管规格的确定
包括进料管、回流管、塔顶蒸汽接管、塔釜出料管
设计依据: 初设u→→查管子规格表,选定管子规格→重新计算u
9 冷凝器与再沸器的传热面积的估算
冷凝器:根据当地气候条件确定冷却水的温度,选择冷却水的出口温度→计算对数平均推动力→根据冷热流体的流动通道和种类选择总传热系数→
③ 由沃森公式计算汽化热
6 填料塔的结构设计
I. 塔径计算
计算公式:
① 塔填料选择
须知:
相对处理能力:拉西环<矩鞍<鲍尔环<阶梯环<环鞍(填料尺寸相同,压降相同)
对于规整填料,分离能力:丝网类填料>板波纹类填料,板波纹填料较丝网类有较大的处理量和较小的压降。250Y——250指的是填料的比表面积,Y指的是波纹倾角为45o,X Y指的是波纹倾角为30o
---规整填料
注意:计算出的塔径D值,应按压力容器公称直径标准进行圆整,以符合设备的加工要求及设备定型,便于设备的设计加工。根据国内压力容器公称直径标准(JB-1153-71),直径在1m以下,间隔为100mm(必要时D在700mm以下可50mm为间隔);直径在1m以上,间隔为200mm(必要时D在2m以下可用100mm为间隔)(李功祥,陈兰英.常用化工单元设备设计.广州:华南理工大学出版社.)
IV. 填料塔流体力学参数计算
a.填料塔压力降
——气体进出口压力降;——填料层的压力降;——其他塔内件的压力降.
b.泛点率
c.气体动能因子
7 附属内件的选型
包括液体初始分布器、填料压紧装置、填料支撑装置、液体再分布器、气体入塔分布器
8 塔附属高度
塔附属高度包括:塔的上部空间高度、安装液体分布器和再分布器(包括液体收集器)的所需空间高度、塔釜高度及支座高度。
填料种类
孔板波纹250Y
丝网波纹500(BX)
丝网波纹700(CY)
每段填料最大高度/m
≤6
≤3
≤1.5
提醒:为了保证工程上的可靠性,计算出的填料层高度还应加上20%左右的裕度。
III. 塔高
塔高=填料层高度+附属部件的高度+塔顶空间+塔底空间
釜液所占高度的计算:依据釜液流量、釜液的停留时间、塔径计算。
例:釜液体积流量为Ls m3/s, 塔径为D m, 停留时间为t min
料液在釜内的停留时间15min,装填系数取0.5,塔釜高h/塔径D=2:1
塔釜液量
塔釜体积
釜液所占高度 m
液面上方的气液分离高度要求:满足安装塔底气相接管所需空间高度和气液分离所需空间高度。
b. 泛点率u/uf∈(0.5~0.8) 保证塔在操作中不发生液泛
c.喷淋密度>最小喷淋密度 保证填料充分润湿。若喷淋密度过小,可增加吸收剂用量,或采用液体再循环以加大液体流量,或在许可范围内减小塔径,或适当增加填料层高度予以补偿。
d. 每米填料层压降 为使填料塔性能良好的工况下操作,每米填料层的压降不能太大,一般正常压降,真空操作下
简单填料精馏塔设计
设计条件与任务:
已知F、xF、xD、xw或F、xF、xD和η,塔顶设全凝器,泡点回流,塔底间接蒸汽加热。
1 全塔物料衡算求产品流量与组成
(1)
(2)
② 各组分的热容方程常数
如
③ 由沃森公式计算汽化热
6 计算实际塔板数
全塔效率:——O'Connel公式
式中:α——塔顶与塔底平均温度下的相对挥发度;
μL——塔顶与塔底平均温度下的液相粘度, mPa.s
① 精馏段
式中:α——精馏段平均温度下的相对挥发度;μL——精馏段平均温度下的液相粘度, mPa.s
④ 所需物性数据
物性数据:气体混合物的密度、液体混合物的密度、液体混合物的粘度、表面张力
计算式:
Hale Waihona Puke 气体混合物 液体混合物: wi——组分i的质量分数
互溶液体混合物的粘度:
含水溶液的表面张力:
式中:
计算精馏段塔径时物性数据的处理:
a. 以上方程所用物性数据近似按塔顶第一板处理. 如
设夹紧点在提馏段,其坐标为(xe,ye)
基础数据:气液相平衡数据
3 确定操作回流比
4 计算精馏段、提馏段理论板数
① 理想溶液 图解法或求出相对挥发度用逐板计算法求取。
② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取
精馏段
① 若规定F、xF、xD、xw则直接联立求解方程(1)与(2)
② 若规定F、xF、xD和η
(3)
先由式(3)求出xD,再联立求解方程(1)与(2)。
2 计算最小回流比
设夹紧点在精馏段,其坐标为(xe,ye)则
再沸器:选择蒸汽压力(温度)→计算对数平均推动力()→根据冷热流体的流动通道和种类选择总传热系数→
10 原料泵的选型