人教版七年级下册数学公开课《平方根PPT课件》
合集下载
人教版七年级下数学《平方根》实数PPT教学课件
![人教版七年级下数学《平方根》实数PPT教学课件](https://img.taocdn.com/s3/m/f8e9c6921b37f111f18583d049649b6648d709e0.png)
学校要举行美术作品比赛,小美想裁出一块面积为9 dm2的正方形画布,临摹自己的最喜欢的作品参加比赛, 这块正方形画布的边长应取多少?
你一定会算出边长应取3 dm. 说一说,你是怎样算出来的? 因为32=9,所以这个正方形 画布的边长应取3 dm.
课程讲授
1 算术平方根
填表:
正方形的 面积/dm2
1
课程讲授
2 估算算术平方根
如此进行下去,可以得到 2 的更精确的近似值. 事实 上, 2 =1. 414 213 562 373…,它是一 个无限不循环 小数. 实际上,许多正有理数的算术平方根(例如 3, 5, 7 等)都是无限不循环小数.
小数位数无限,且小数部分 不循环的小数称为无限不循 环小数.
… 0.062 5 0.625 6.25 62.5 625 6 250 62 500 … … 0.25 0.790 6 2.5 7.906 25 79.06 250 …
课程讲授
3 用计算器求一个正数的算术平方根
归纳小结:被开方数的小数点向右每移动 位,它的算2术平方 根的小数点就向右移动 位;被开方数的小数点向1左每移动 位,
(5) x (6) x2 (7) x2 1 (8) 1
x1
x2
(9) x 2 4 2x
第六章 实 数
6.1 平方根
第1课时
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.算术平方根 2.估算算术平方根
3.用计算器求一个正数的算术平方根
新知导入
试一试:根据所学知识,试着解决下列问题.
课程讲授
1 算术平方根
例 求下列各数的算术平方根:
(1)100;
(2)49 ; 64
(3)0.000 1.
你一定会算出边长应取3 dm. 说一说,你是怎样算出来的? 因为32=9,所以这个正方形 画布的边长应取3 dm.
课程讲授
1 算术平方根
填表:
正方形的 面积/dm2
1
课程讲授
2 估算算术平方根
如此进行下去,可以得到 2 的更精确的近似值. 事实 上, 2 =1. 414 213 562 373…,它是一 个无限不循环 小数. 实际上,许多正有理数的算术平方根(例如 3, 5, 7 等)都是无限不循环小数.
小数位数无限,且小数部分 不循环的小数称为无限不循 环小数.
… 0.062 5 0.625 6.25 62.5 625 6 250 62 500 … … 0.25 0.790 6 2.5 7.906 25 79.06 250 …
课程讲授
3 用计算器求一个正数的算术平方根
归纳小结:被开方数的小数点向右每移动 位,它的算2术平方 根的小数点就向右移动 位;被开方数的小数点向1左每移动 位,
(5) x (6) x2 (7) x2 1 (8) 1
x1
x2
(9) x 2 4 2x
第六章 实 数
6.1 平方根
第1课时
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.算术平方根 2.估算算术平方根
3.用计算器求一个正数的算术平方根
新知导入
试一试:根据所学知识,试着解决下列问题.
课程讲授
1 算术平方根
例 求下列各数的算术平方根:
(1)100;
(2)49 ; 64
(3)0.000 1.
人教版七年级数学下册《6.1 平方根 第一课时》课件ppt
![人教版七年级数学下册《6.1 平方根 第一课时》课件ppt](https://img.taocdn.com/s3/m/9297ef1c5bcfa1c7aa00b52acfc789eb162d9e6c.png)
根的定义知它具有“双重”非负性:a≥0,
a ≥0,即算术平方根及它的被开方数都
为非负数. 2.对于所有的算术平方根,被开方数越大,对
应的算术平方根也越大;反之亦然.
同学们, 下节课见!
总结
算术平方根具有双重非负性:这个数是非负数,它的算术平方 根也是非负数.
1 9的算术平方根为( A )
A. 3
B.-3 C.±3
D. 3
2 下列说法正确的是( A )
A.因为62=36,所以6是36的算术平方根
B.因为(-6)2=36,所以-6是36的算术平方根
C.因为(±6)2=36,所以6和-6都是36的算术平方根
例2 求下列各数的算术平方根:
(1) 100;
(2) 49 ; 64
(3) 0.0001.
解:(1)因为102 = 100,所以100的算术平方根是10,
即 100 10;
(2)因为( 7 )2 = 49 ,所以 49 的算术平方根是 7 ,
8
64
64
8
即 49 7 ; 64 8
(3)因为0.012 =0.0001,所以0.0001的算术平方
例1 下列说法正确的是( A ) A.3是9的算术平方根 B.-2是4的算术平方根 C. (-2)2的算术平方根是-2 D.-9的算术平方根是3
导引:要正确把握算术平方根的定义.因为3的平方等于9,所以3 是9的算术平方根;因为-2不是正数,所以-2不是4的算 术平方根;因为(-2)2 =4,而22=4,所以2是(-2)2的算 术平方根; 负数没有算术平方根.
解:(2)由数轴可知a<0,b>0,a-b<0,a+b<0, 所以|a|=-a,|b|=b,|a-b|=-(a-b),|a+b|= -(a+b).所以原式=|a|-|b|-|a-b|+|a+b|= -a-b+(a-b)-(a+b)=-a-b+a-b-a-b =-a-3b.
a ≥0,即算术平方根及它的被开方数都
为非负数. 2.对于所有的算术平方根,被开方数越大,对
应的算术平方根也越大;反之亦然.
同学们, 下节课见!
总结
算术平方根具有双重非负性:这个数是非负数,它的算术平方 根也是非负数.
1 9的算术平方根为( A )
A. 3
B.-3 C.±3
D. 3
2 下列说法正确的是( A )
A.因为62=36,所以6是36的算术平方根
B.因为(-6)2=36,所以-6是36的算术平方根
C.因为(±6)2=36,所以6和-6都是36的算术平方根
例2 求下列各数的算术平方根:
(1) 100;
(2) 49 ; 64
(3) 0.0001.
解:(1)因为102 = 100,所以100的算术平方根是10,
即 100 10;
(2)因为( 7 )2 = 49 ,所以 49 的算术平方根是 7 ,
8
64
64
8
即 49 7 ; 64 8
(3)因为0.012 =0.0001,所以0.0001的算术平方
例1 下列说法正确的是( A ) A.3是9的算术平方根 B.-2是4的算术平方根 C. (-2)2的算术平方根是-2 D.-9的算术平方根是3
导引:要正确把握算术平方根的定义.因为3的平方等于9,所以3 是9的算术平方根;因为-2不是正数,所以-2不是4的算 术平方根;因为(-2)2 =4,而22=4,所以2是(-2)2的算 术平方根; 负数没有算术平方根.
解:(2)由数轴可知a<0,b>0,a-b<0,a+b<0, 所以|a|=-a,|b|=b,|a-b|=-(a-b),|a+b|= -(a+b).所以原式=|a|-|b|-|a-b|+|a+b|= -a-b+(a-b)-(a+b)=-a-b+a-b-a-b =-a-3b.
人教版七年级下册数学公开课《平方根》PPT课件(精)
![人教版七年级下册数学公开课《平方根》PPT课件(精)](https://img.taocdn.com/s3/m/b665144cba68a98271fe910ef12d2af90242a8b1.png)
二次方程在实际问题中的应用
01
02
03
04
面积问题
通过二次方程可以求解一些与 面积相关的问题,例如求解矩 形、三角形、梯形等的面积。
利润问题
在商业活动中,经常需要计算 利润和成本等问题,这些问题 可以通过建立二次方程进行求 解。
行程问题
在物理和数学问题中,经常涉 及到速度、时间和距离等概念 ,这些问题可以通过建立二次 方程进行求解。
其他问题
除了以上几种类型的问题外, 二次方程还可以应用于其他领 域的问题求解,例如金融、工 程、科学计算等。
06
课程总结与拓展
课程重点与难点回顾
1 2
平方根的定义和性质
回顾平方根的定义,强调正数有两个平方根,它 们互为相反数;0的平方根是0;负数没有平方根 。
平方根的运算
总结平方根的运算法则,包括平方根与乘除、加 减运算的结合,以及分母有理化的方法。
计算圆的面积
已知圆的半径,利用平方 根和π计算面积。
勾股定理的应用
求解直角三角形
已知直角三角形两条边, 利用勾股定理和平方根求 解第三条边。
计算两点间距离
在平面直角坐标系中,已 知两点坐标,利用勾股定 理和平方根计算两点间距 离。
判断三角形形状
已知三角形三边长度,利 用勾股定理和平方根判断 三角形是否为直角三角形 。
平方根的性质
正实数的平方根有两个,它们互为相反数;0的平方根是0;负数 没有平方根。
平方根在数学中的应用
解方程
平方根在解一元二次方程时起到关键作用,通过开 平方可以求得方程的解。
几何应用
在几何学中,平方根用于计算长度、面积和体积等 ,如勾股定理中的边长计算。
数学建模
人教版七年级数学下册6.1平方根课件(共18张PPT)
![人教版七年级数学下册6.1平方根课件(共18张PPT)](https://img.taocdn.com/s3/m/7025b0fdaaea998fcd220edd.png)
学习重点: 能用有理数估计一个带算术平方根 符号的无理数的大致范围.
活动一复习回顾 引入新知 1.什么是算术平方根?
2.判断下列各数有没有算术平方根?如果有,请
求出它们的算术平方根.
25 -36 , 0.09 , 1 2 1
, 0 , 3 2 , 2.
只-3有6非没负有数算才术有平算方术根平. 方根,算术
由算术平方根的意义可知,x= 2 .
活动二 动手操作 合作探究
你知道 2 有多大吗?
因为1<2<4
所以 1 2 4 即1 22 问题:能否进一确 步地 更确 准定 2的范围?
活动二 动手操作 合作探究
12 1,22 4,124, 1 22;
1.421.96,1.522.25,1.9622.25, 1.4 21.5;
0.462 54,
8.
25
0.462 54 0.58 8 0.57 25
4.比较下列各组数的大小.
(1)4 与 15 ; (2) 2 7 与 6;
(3) 5 1 与 0.5.
2
5.求 1 9的近似值(精确到0.000 1).
4.(1)∵42=16, 15 2 15 ,16>15;∴4> 15 . (2)∵ 2 7 2 28 ,62=36, ∴6 > 2 7 .
(2)若 5 11 的小数部分为 a, 5 11 的小数部分为 b,求 a+b 的值.
6.一个长方形的长为 5 cm,宽为 3 cm,一个与它的面积相等的正方形
的边长是多少?
作业(选做题):
7.请你观察思考下列计算过程.
平方根是非负的.
0.09 0.3
25 5 121 11
00
2
活动一复习回顾 引入新知 1.什么是算术平方根?
2.判断下列各数有没有算术平方根?如果有,请
求出它们的算术平方根.
25 -36 , 0.09 , 1 2 1
, 0 , 3 2 , 2.
只-3有6非没负有数算才术有平算方术根平. 方根,算术
由算术平方根的意义可知,x= 2 .
活动二 动手操作 合作探究
你知道 2 有多大吗?
因为1<2<4
所以 1 2 4 即1 22 问题:能否进一确 步地 更确 准定 2的范围?
活动二 动手操作 合作探究
12 1,22 4,124, 1 22;
1.421.96,1.522.25,1.9622.25, 1.4 21.5;
0.462 54,
8.
25
0.462 54 0.58 8 0.57 25
4.比较下列各组数的大小.
(1)4 与 15 ; (2) 2 7 与 6;
(3) 5 1 与 0.5.
2
5.求 1 9的近似值(精确到0.000 1).
4.(1)∵42=16, 15 2 15 ,16>15;∴4> 15 . (2)∵ 2 7 2 28 ,62=36, ∴6 > 2 7 .
(2)若 5 11 的小数部分为 a, 5 11 的小数部分为 b,求 a+b 的值.
6.一个长方形的长为 5 cm,宽为 3 cm,一个与它的面积相等的正方形
的边长是多少?
作业(选做题):
7.请你观察思考下列计算过程.
平方根是非负的.
0.09 0.3
25 5 121 11
00
2
七级数学下册六实数平方根一新版新人教版PPT课件
![七级数学下册六实数平方根一新版新人教版PPT课件](https://img.taocdn.com/s3/m/19a3a56c53ea551810a6f524ccbff121dc36c571.png)
.-6
D.-8
课后巩固
23.计算下列各题:
(1)(1 0.09 1 0.25) 100
;(1)23
5
(2) 196 6( 5 4 20
27
(3) 2 1 (2)2 1 9 25
;4
25
(3)7
课后巩固
24.学校小会议室面积为27 m2,小明数了一下地面 所铺的地砖,正好是300块一样大小的正方
(2)∵ 6 =
5
,
∴
的算
课堂导学
1. 3
对点训练一 表示3的__算__术__平__方__根_________;
2.5的算术平方根可写成_____5_____;
3.(1)4的算术平方根是____2______;
3
(2)2的算术平方根是2__________;
(3)0的算术平方根是0__________.
核心目标
了解算术平方根的概念,会用根号表示正数的算术 平方根,并了解算术平方根的非负性.
课前预习
1.如果一个正数x的平方等于a,即x2=a,那么这个 正数x叫做a算的术__平__方__根________,记作a______.
2.25的算术平方根是____5____,49的算术平方根是 7________.
课堂导学
知识点:算术的平方根
【例题】求下列各数的算术平方根: (1)0.11215; (2)
25
【解析】尝试哪一个数的平方等于已知数,然后依据
算术平方根的概念进行计算.
【答案】解:(1)∵0.52=0.25,
方根是0.5 ,=
∴0.25的算术平
1 11
36
62 ()
36
25 25 5 25
人教版七年级数学下册《平方根》课件ppt
![人教版七年级数学下册《平方根》课件ppt](https://img.taocdn.com/s3/m/201f9d6b773231126edb6f1aff00bed5b8f37365.png)
因此1.21的平方根是1.1与-1.1.
即± 1.21=± 1.1 .
三、平方根的数学符号表示 一个非负数的平方根的表示方法:
a 表示a的正的平方根(算术平方根)
a 表示a的负的平方根
记作 a
a﹙a≥0﹚的平方根表示为 a
说一说
7
7
7 各表示什么意义?
表示7的正 的平方根 (即算术平 方根)
121
3. 填空
(1)32= 9 ,(-3)2= 9 ;
(2)
2 3
2
4 9
,
2
2
3
4 9
;
(3)0.82= 0.64 ,(-0.8)2= 0.64 .
思考:反过来,如果已知一个数的平方,怎样求这个数?
问题 如果一个数的平方等于9,这个数是多少?
由于 3 2 =9 ,
所以这个数是3或-3.
判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根; (4)64的平方根是±8; (5)-16的平方根是-4.
例1 一个正数的两个平方根分别是2a+1和a-4,求这个数.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0, 解得a=1. 所以这个数为(2a+1)2=(2+1)2=9.
不正确,是 4. 不正确,是 ±4.
4. 分别求 64,4891 ,6.25的平方根.
解: 64的平方根是8与-8,4891
的平方根是
7 9
与
-
7 9
,6.25的平方根是2.5与-
2.5.
5.求下列各式的值:
(1) 144 (2) 0.81
人教版初一数学 6.6.1 平方根 第一课时PPT课件
![人教版初一数学 6.6.1 平方根 第一课时PPT课件](https://img.taocdn.com/s3/m/da6af28f112de2bd960590c69ec3d5bbfd0ada92.png)
第六章
实数
6.1 平方根
第1课时 算术平方根
单元内容结构图
学习目标
1.了解算术平方根的意义和求法以及实际应用.
2.会求某些正数(完全平方数)的算术平方根,并会用符号
表示,提高抽象能力.
3.通过独立思考、合作交流,经历从平方运算到求算术平
方根的演变过程,感悟二者的互逆关系,并会用算术平方
根解决实际问题,发展应用意识.
= ;
8
64
64
8
64 8
探究新知
(3)0.000 1.
解:因为0.012=0.000 1,所以0.000 1的算术平方根是
0.01,即 . =0.01.
拓展应用
下列说法正确的是 ( D )
A. -1的算术平方根是-1
B. 0没有算术平方根
C.-1的相反数没有算术平方根
D. (-1)2的算术平方根是1
问题2:0的算术平方根是多少?怎么表示?
解:0的算术平方根是0.表示为 =0.
探究新知
学生活动三【典例精讲】
例 求下列各数的算术平方根:
(1)100;
解:因为102=100,所以100的算术平方根是10,
即 =10;
探究新知
49
(2) ;
64
7 2 49
49
7
49 7
解:因为
= ,所以 的算术平方根是 ,即
25;
0.81;
11
1 .
25
解:它们分别表示25的算术平方根,0.81的算术平方根,
11
6
1 的算术平方根,它们的值分别是5,0.9, .
25
5
课后作业
1.教材第41页练习第1,2题,第47页习
实数
6.1 平方根
第1课时 算术平方根
单元内容结构图
学习目标
1.了解算术平方根的意义和求法以及实际应用.
2.会求某些正数(完全平方数)的算术平方根,并会用符号
表示,提高抽象能力.
3.通过独立思考、合作交流,经历从平方运算到求算术平
方根的演变过程,感悟二者的互逆关系,并会用算术平方
根解决实际问题,发展应用意识.
= ;
8
64
64
8
64 8
探究新知
(3)0.000 1.
解:因为0.012=0.000 1,所以0.000 1的算术平方根是
0.01,即 . =0.01.
拓展应用
下列说法正确的是 ( D )
A. -1的算术平方根是-1
B. 0没有算术平方根
C.-1的相反数没有算术平方根
D. (-1)2的算术平方根是1
问题2:0的算术平方根是多少?怎么表示?
解:0的算术平方根是0.表示为 =0.
探究新知
学生活动三【典例精讲】
例 求下列各数的算术平方根:
(1)100;
解:因为102=100,所以100的算术平方根是10,
即 =10;
探究新知
49
(2) ;
64
7 2 49
49
7
49 7
解:因为
= ,所以 的算术平方根是 ,即
25;
0.81;
11
1 .
25
解:它们分别表示25的算术平方根,0.81的算术平方根,
11
6
1 的算术平方根,它们的值分别是5,0.9, .
25
5
课后作业
1.教材第41页练习第1,2题,第47页习
人教数学七下《平方根》实数PPT精品教学课件
![人教数学七下《平方根》实数PPT精品教学课件](https://img.taocdn.com/s3/m/df5efaa3b9f67c1cfad6195f312b3169a551ea50.png)
感悟新知
解:本题运用夹逼法来求整数a 与b 的值. 因为a,b 为连续整数,a< 7 <b, 而22<7<32,所以2< 7 <3. 所以a=2,b=3. 所以a+b=5.
感悟新知
3-1.[中考·天津] 估计 22 的值在( B ) A. 3 和4 之间 B. 4 和5 之间 C. 5 和6 之间 D. 6 和7 之间
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
感悟新知
(3) 412-402 表示412-402 的算术平方根.
∵ 412-402=81,92=81,
∴ 412-402 = 81 =9
被开方数412-402 是一个整
体,首先要将412-402 化简,
1. 定义:一般地,如果一个数的平方等于 a,那么这个数 叫做a 的平方根或二次方根 . 这就是说,如果x2=a,那 么x 叫做a的平方根. 表示方法:非负数a 的平方根记为± a ,读作“正、 负根号a”.
感悟新知
2. 开平方:求一个数a 的平方根的运算,叫做开平方. 特别提醒: a ,- a ,± a (a ≥ 0)的区别
6.1 平方根
感悟新知
知识点 1 算术平方根
1. 定义:一般地,如果一个正数x的平方等于a,即x2=a, 那么这个正数x 叫做a 的算术平方根 . 规定:0 的算术平 方根是0. 表示方法:a 的算术平方根记为 a ,读作“根号a”,a 叫做被开方数.
人教版七年级数学下册《6.1 平方根 第三课时》课件ppt
![人教版七年级数学下册《6.1 平方根 第三课时》课件ppt](https://img.taocdn.com/s3/m/1eb2086df02d2af90242a8956bec0975f465a4e1.png)
1.开平方:
求一个数a 的平方根的运算,叫做开平方, a 叫做被开方数.
2.要点精析: (1)一个正数的正的平方根就是它的算术平方根. (2)平方与开平方是互逆运算.开平方与加、减、乘、除、乘方 一样是一种运算,即: 运算名称:加、减、乘、除、乘方、开平方(非负数). 运算结果:和、差、积、商、幂、平方根(互为相反数).
边长是多少?.
解:正方形的面积是边长的平方,根据算术平方根
的定义可得:正方形的边长是 A (A>0).
2 如果x 2=a,那么下列说法错误的是( B ) A. 若x 确定,则a 的值是唯一的 B. 若a 确定,则x 的值是唯一的 C. a 是x 的平方 D. x 是a 的平方根
3 4的平方根是( C ) A.16 C.±2
1. 定义:若x2=a,则x 叫做a 的平方根.
2. 性质:一个正数有两个平方根,它们互为相反数, 0的平方根是0,负数没有平方根.
3. 平方根与开平方间的关系: (1)开平方是求平方根的运算; (2)平方根是开平方运算的结果.
求一个非负数的平方根的方法:
① 求一个非负数a 的平方根,就是要把平方后等于a 的 数找出来,从而求出a 的所有平方根;
因为152=225,所以225的算术平方根是15.
(2)
2 1 9 44
.因为
3 2
2
9 4
,
所以
2 1 4
的平方根是±
3 2
.
因为
3 2
2
9 4
,所以 2 1 4
的算术平方根是
3 2.
(3)因为
1
2 3
2
1
2 3
2
,
所以
1
求一个数a 的平方根的运算,叫做开平方, a 叫做被开方数.
2.要点精析: (1)一个正数的正的平方根就是它的算术平方根. (2)平方与开平方是互逆运算.开平方与加、减、乘、除、乘方 一样是一种运算,即: 运算名称:加、减、乘、除、乘方、开平方(非负数). 运算结果:和、差、积、商、幂、平方根(互为相反数).
边长是多少?.
解:正方形的面积是边长的平方,根据算术平方根
的定义可得:正方形的边长是 A (A>0).
2 如果x 2=a,那么下列说法错误的是( B ) A. 若x 确定,则a 的值是唯一的 B. 若a 确定,则x 的值是唯一的 C. a 是x 的平方 D. x 是a 的平方根
3 4的平方根是( C ) A.16 C.±2
1. 定义:若x2=a,则x 叫做a 的平方根.
2. 性质:一个正数有两个平方根,它们互为相反数, 0的平方根是0,负数没有平方根.
3. 平方根与开平方间的关系: (1)开平方是求平方根的运算; (2)平方根是开平方运算的结果.
求一个非负数的平方根的方法:
① 求一个非负数a 的平方根,就是要把平方后等于a 的 数找出来,从而求出a 的所有平方根;
因为152=225,所以225的算术平方根是15.
(2)
2 1 9 44
.因为
3 2
2
9 4
,
所以
2 1 4
的平方根是±
3 2
.
因为
3 2
2
9 4
,所以 2 1 4
的算术平方根是
3 2.
(3)因为
1
2 3
2
1
2 3
2
,
所以
1
人教版七年级下册 6.1 平方根 公开课课件(共30张PPT)
![人教版七年级下册 6.1 平方根 公开课课件(共30张PPT)](https://img.taocdn.com/s3/m/547d44e30242a8956bece46e.png)
教师点拨
一个正数的平方根有两个,算术平方根是平方根中非 负的平方根。
【预习导学2】
阅读教材P45思考至P46,独立完成下列问题: 1、知识探究 ①正数的平方根有 两 个,它们互 相反数 ;0的平方根 是 0 ;负数 没有 平方根。 ②非负数a的平方根用± a 表示,读作 正、负根号a ,
正数a的算术平方根用 a
BACK
五号宝箱
恭喜!您获得了意外惊喜!
小组回答:如果你能答对这道题,小组每人加2分,小组加2分
6.平方根与算术平方根的联系与区别?
BACK
六号宝箱
• 平方根与算术平方根的联系与区别: 联系 (1)具有包含关系:平方根包含算术平方根,算术平方 根是平方根的一种。 (2) 存在条件相同:平方根和算术平方根都具有非负 性 (3) 0的平方根和算术平方根都是0。 区别 (1) 定义不同: “如果一个数X的平方等于a,那么这 个数X叫做a的平方根”, “如果一个正数x的平方等于a,即 x2 =a,那么这个正数x叫做a的算术平方根”。 (2)个数不同:一个正数有两个平方根,而一个正数 的算术平方根只有一个。 (3)表示方法不同:正数a的算术平方根表示为√ a, 而正数a的平方根表示为±√ a
出示目标
П
Ш
掌握用平方根运算求某些数的平方 根的方法。
【预习导学1】 【合作探究1】 【预习导学2】
【合作探究2】
【快乐晋级】
【课堂小结】
【预习导学1】
阅读教材,独立完成下列问题: 1、知识准备 的算术平方根; ,表示求9 _____________ (1)填空: 3
(2)P44页思考题解决了吗? 2、知识探究 ①一般地,如果一个数的平方等于a,那么这个数叫做a的平方 =a 根,或二次方根 _________即如果 x² ,那么x叫做a的平方根 ,如4的 ±2 平方根为 。 ②求一个数的平方根 的运算,叫做开平方。开平方与平方互 为 逆运算 。 3、自学反馈 ①49的平方根是 ±7 , 的平方根是 ±3 。
人教版初一数学 6.6.1 平方根 第3课时PPT课件
![人教版初一数学 6.6.1 平方根 第3课时PPT课件](https://img.taocdn.com/s3/m/5fb855a409a1284ac850ad02de80d4d8d15a0183.png)
2.七彩作业.
第六章
实数
6.1 平方根
第3课时 平方根
学习目标
1.了解平方根的概念,能用符号正确地表示一个数的平方
根,建立符号意识.
2.理解开平方运算和平方运算之间的互逆关系,明确平方
根和算术平方根之间的联系和区别,提升推理能力.
3.经历从具体到抽象、从特殊到一般的过程,提高抽象
能力.
学习重难点
学习重点:平方根的概念和求一个数的平方根.
C.-1.2是(-1.2)2的算术平方根
D.0.9的平方根是0.3
当堂训练
81
(2)
的平方根是( C )
Hale Waihona Puke 169A.±4
9
B.
4
3
C.±
2
3
D.
2
当堂训练
2.认真填一填.
(1)121的平方根是 ±11 ,5是
25 的一个平方根.
(2)若一个正数的平方根是2a-2和-a+2,则a=
正数为
4 .
0 ,这个
C.非负数的平方根互为相反数
D.一个正数的算术平方根一定大于这个数的相反数
回顾反思
1. 平方根的性质是什么?
2. 怎么表示一个非负数的平方根?
3. 怎样求一个非负数的平方根?
当堂训练
1.精心选一选.
(1)以下叙述中正确的是( B )
A.-16的算术平方根是4
5 25
B. 是 的一个平方根
6 36
7 2 49
49
7
(3)因为
= ,所以±
=± .
3
9
9
3
拓展应用
①④⑤
1.下列说法正确的是_________.
第六章
实数
6.1 平方根
第3课时 平方根
学习目标
1.了解平方根的概念,能用符号正确地表示一个数的平方
根,建立符号意识.
2.理解开平方运算和平方运算之间的互逆关系,明确平方
根和算术平方根之间的联系和区别,提升推理能力.
3.经历从具体到抽象、从特殊到一般的过程,提高抽象
能力.
学习重难点
学习重点:平方根的概念和求一个数的平方根.
C.-1.2是(-1.2)2的算术平方根
D.0.9的平方根是0.3
当堂训练
81
(2)
的平方根是( C )
Hale Waihona Puke 169A.±4
9
B.
4
3
C.±
2
3
D.
2
当堂训练
2.认真填一填.
(1)121的平方根是 ±11 ,5是
25 的一个平方根.
(2)若一个正数的平方根是2a-2和-a+2,则a=
正数为
4 .
0 ,这个
C.非负数的平方根互为相反数
D.一个正数的算术平方根一定大于这个数的相反数
回顾反思
1. 平方根的性质是什么?
2. 怎么表示一个非负数的平方根?
3. 怎样求一个非负数的平方根?
当堂训练
1.精心选一选.
(1)以下叙述中正确的是( B )
A.-16的算术平方根是4
5 25
B. 是 的一个平方根
6 36
7 2 49
49
7
(3)因为
= ,所以±
=± .
3
9
9
3
拓展应用
①④⑤
1.下列说法正确的是_________.
人教版七年级下册数学公开课《平方根PPT课件》
![人教版七年级下册数学公开课《平方根PPT课件》](https://img.taocdn.com/s3/m/a402a242f02d2af90242a8956bec0975f565a418.png)
练习计算平方根
THANKS
在生活中,我们经常需要估算物体的尺寸,例如房间的面积、桌子的面积等,平方根可以用来计算这些面积。
估算物体尺寸
解决几何问题
在几何学中,平方根可以用来计算直角三角形的斜边长度、圆的半径等。
求解代数方程
在代数中,平方根可以用来求解一元二次方程等。
物理计算
在化学中,平方根可以用来计算化学反应的平衡常数、溶解度等。
情感态度与价值观
平方根的基本概念
根号形式表示法
我们也可以用根号形式来表示平方根,即将被开方数置于根号内。例如,√4可以表示为4^(1/2)。
代数表示法
在代数中,我们通常用符号√来表示平方根,并在数字上方画一条横线来表示开方。例如,√4表示4的平方根。
二次根式表示法
如果一个数的平方等于a,则这个数可以表示为a^(1/2)。例如,2是4的平方根,可以表示为2=√4或2=4^(1/2)。
汇报人:可编辑
2023-12-23
01
课程名称:《平方根ppt课件》
适用年级:七年级下册
学科领域:数学
课程性质:公开课
01
03
04掌握平方根的概ຫໍສະໝຸດ 、性质和运算方法。知识与技能
通过观察、思考和实际操作,培养学生的数学思维和解决问题的能力。
过程与方法
培养学生对数学的兴趣和热爱,树立正确的数学观念和科学精神。
当我们使用分数指数法来表示平方根时,我们将其读作“根号”。例如,√4可以读作“根号4”。
分数指数法读法
对于一些常见的平方根,我们可以直接将其读出。例如,√2可以读作“根号2”,√3可以读作“根号3”。
直接读法
03
总结词:理解平方根加法运算的规则和步骤
THANKS
在生活中,我们经常需要估算物体的尺寸,例如房间的面积、桌子的面积等,平方根可以用来计算这些面积。
估算物体尺寸
解决几何问题
在几何学中,平方根可以用来计算直角三角形的斜边长度、圆的半径等。
求解代数方程
在代数中,平方根可以用来求解一元二次方程等。
物理计算
在化学中,平方根可以用来计算化学反应的平衡常数、溶解度等。
情感态度与价值观
平方根的基本概念
根号形式表示法
我们也可以用根号形式来表示平方根,即将被开方数置于根号内。例如,√4可以表示为4^(1/2)。
代数表示法
在代数中,我们通常用符号√来表示平方根,并在数字上方画一条横线来表示开方。例如,√4表示4的平方根。
二次根式表示法
如果一个数的平方等于a,则这个数可以表示为a^(1/2)。例如,2是4的平方根,可以表示为2=√4或2=4^(1/2)。
汇报人:可编辑
2023-12-23
01
课程名称:《平方根ppt课件》
适用年级:七年级下册
学科领域:数学
课程性质:公开课
01
03
04掌握平方根的概ຫໍສະໝຸດ 、性质和运算方法。知识与技能
通过观察、思考和实际操作,培养学生的数学思维和解决问题的能力。
过程与方法
培养学生对数学的兴趣和热爱,树立正确的数学观念和科学精神。
当我们使用分数指数法来表示平方根时,我们将其读作“根号”。例如,√4可以读作“根号4”。
分数指数法读法
对于一些常见的平方根,我们可以直接将其读出。例如,√2可以读作“根号2”,√3可以读作“根号3”。
直接读法
03
总结词:理解平方根加法运算的规则和步骤
人教版七年级数学下册《算术平方根》课件ppt
![人教版七年级数学下册《算术平方根》课件ppt](https://img.taocdn.com/s3/m/dca6f28f0875f46527d3240c844769eae009a3c6.png)
解得
x 7 , y 7 , z 35 ,
3
66
x
3y
4z
7 3
3
7 6
4
35 6
175 6
.
定义: 一般地,如果一个正数的平方等于a,即 x2 = a , 那么这个正数x叫做a的算术平方根.
性质: 算术平方根的双重非负性.
填表:
表1 正方形的边长 正方形的面积
1
2 0.5 2
3
1
4
0. 25
4 9
思考:你能从表1发现什么共同点吗?
已知一个正数,求这个正数的平方,这是平方运算.
表2 正方形的面积
1
4
正方形的边长
1
2
思考:你能从表2发现什么共同点吗? 已知一个正数的平方,求这个正数ห้องสมุดไป่ตู้ 表一和表二中的两种运算有什么关系?
到目前为止,表示非负数的式子有:
a≥0, |a|≥0, a2 ≥0, a ≥0,
例5:自由下落物体下落的距离h(米)与下落时间t(秒)的关系为h 4.9t 2
有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?
解:将h=19.6代入公式19.6 4.9t2,
得 t2 4 ,
所以正数 t 4 2 (秒). 即铁球到达地面需要2秒.
是0.01,即 0.0001 0.01.
3.下例列4式下子列表式子示表什示么什么意意义义??你你能能求求出它出们它的们值吗的?值吗?
⑴1
⑵9 25
⑶ 22 ⑷ 32 ⑸ 132 122
解: 1=1,
9 =3, 25 5
22 =2, 32 =3
132 122 =5
4.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会议室的地 面,每块地板砖的边长是多少?
人教版七年级下册数学公开课平方根PPT课件
![人教版七年级下册数学公开课平方根PPT课件](https://img.taocdn.com/s3/m/93bced54f08583d049649b6648d7c1c708a10b81.png)
03
平方根在实际问题中应用
面积与平方根关系
正方形面积与边长关系
圆的面积与半径关系
通过正方形面积公式,引入平方根概 念,理解边长与面积之间的平方根关 系。
通过圆的面积公式,探讨半径与面积 之间的平方根关系,加深对平方根概 念的理解。
矩形面积与长宽关系
分析矩形面积与长宽之间的数学关系 ,进一步理解平方根在面积计算中的 应用。
作业提交和批改要求
说明了作业的提交方式、批改标准以及反馈方式,以便学生及时 了解自己的学习情况。
预习下节课内容提示
下节课内容概述
简要介绍了下节课将要学习的内 容,包括立方根的概念、性质以
及运算等。
预习重点与难点
提示了学生在预习过程中需要重点 关注的内容以及可能出现的难点, 以便学生有针对性地进行预习。
示例
估算√20的大小,可以先找到两个最接近20的完全平方数16和25,然后取它们 的平方根4和5,得出√20≈4.5。
笔算方法讲解与练习
笔算方法
采用竖式计算,从最高位开始逐位求 解,得到精确值。
练习
计算√12345,首先确定最高位,然后 逐步计算后续位数,得到最终结果。
计算器使用技巧
计算器使用
利用计算器进行平方根计算,注意输入方式和按键操作。
处理建议
在引入平方根概念时,可以通过实例或情境导入,激发学生的学 习兴趣;在讲解平方根性质时,可以通过比较、归纳等方式帮助 学生加深对性质的理解;在求平方根时,可以通过练习、讨论等 方式提高学生的计算能力和思维水平。同时,可以结合学生的实 际情况和认知水平,适当调整教学内容和难度,确保学生能够掌 握本节课的知识和技能。
引导学生思考
通过提问,引导学生深入思考平方根的概念、性质和应用,培养学生的数学思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
探究 a
1. a表示a的算术平方根。
2.双重非负性:a 0;a 0;
也就是说,非负数的“算术”平方根是非负数。
负数不存在算术平方根,即当 a 0 时, a 无意义。
3. 是算术平方根的运算符号。
你能根据等式:122 =144说出 144的算术平方根是多少吗? 并用等式表示出来。
下列式子表示什么意思?你 能求出它们的值吗?
有意义?
(1)- 4
(3) 32
(2) 4
(4)
2
3
作业: 书本p167 1,2
课后思考题:
试用“逼近法”确定 的3大小?
(5) 62 82 (6) 6 1 (7)( 7)2 4
探究: 怎样用两个面积为1的小正方形拼
成一个面积为2的大正方形?
如图,把两个小正方形沿对角线剪开,
将所得的4个直角三角形拼在一起,就
得到一个面积为2的大正方形。你知道
这个大正方形的边长是多少吗?
设大正方形的边长为x,则
x2 =2.
25
0.81
0
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
例3: 求 下 列 各 式 的 值 ,
(1) 1 (2) 9 (3) 22 (4) 36 25
即:x2 a(x 0), x叫做a的算术平方根,
记作:x a
特殊:0的算术平方根是0。记作:0 0
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
正方形 的面积
边长
问题:学校要举行美术作品
比赛,小鸥很高兴,他想裁出 一块面积为25dm2的正方形画布, 画上自己的得意之作参加比赛, 这块正方形画布的边长应取多 少一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
1.4142 2 1.4152
1.414 2 1.415
补充练习:
1.81的 算 术 平 方 根 是 ; 81的 算 术 平 方 根 是 。
2.算术平方根是9的数是 。
3. 36的算术平方根是 。
4. ( 3)2的算术平方根等于 。
思考:
1.下列各式哪些有意义,哪些没
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x= 2
你知道 2有多大吗?
12 2 22 2 1.41421356
1 2 2
逼 1.42 2 1.52 近 法 1.4 2 1.5
1.412 2 1.422
无限不循环小数
1.41 2 1.42
8 64
64
7
8 ,即
49 = 7
64 8
(3)因为 0.012 =0.0001,所以0.0001的算术平方
根为0.01,即 0.0001 =0.01。
例2: 求 下 列 各 数 的 算 术 平方 根 , (1)121 (2)32 (3) 81 (4)( 25)2 (5)2 1
4
练习:求下列各数的算术平方根, (1)0.0025 (2)1.12 (3) 0.0001 (4)( 2.6)2 (5)6 1
探究 a
1. a表示a的算术平方根。
2.双重非负性:a 0;a 0;
也就是说,非负数的“算术”平方根是非负数。
负数不存在算术平方根,即当 a 0 时, a 无意义。
3. 是算术平方根的运算符号。
你能根据等式:122 =144说出 144的算术平方根是多少吗? 并用等式表示出来。
下列式子表示什么意思?你 能求出它们的值吗?
有意义?
(1)- 4
(3) 32
(2) 4
(4)
2
3
作业: 书本p167 1,2
课后思考题:
试用“逼近法”确定 的3大小?
(5) 62 82 (6) 6 1 (7)( 7)2 4
探究: 怎样用两个面积为1的小正方形拼
成一个面积为2的大正方形?
如图,把两个小正方形沿对角线剪开,
将所得的4个直角三角形拼在一起,就
得到一个面积为2的大正方形。你知道
这个大正方形的边长是多少吗?
设大正方形的边长为x,则
x2 =2.
25
0.81
0
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
例3: 求 下 列 各 式 的 值 ,
(1) 1 (2) 9 (3) 22 (4) 36 25
即:x2 a(x 0), x叫做a的算术平方根,
记作:x a
特殊:0的算术平方根是0。记作:0 0
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
正方形 的面积
边长
问题:学校要举行美术作品
比赛,小鸥很高兴,他想裁出 一块面积为25dm2的正方形画布, 画上自己的得意之作参加比赛, 这块正方形画布的边长应取多 少一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
1.4142 2 1.4152
1.414 2 1.415
补充练习:
1.81的 算 术 平 方 根 是 ; 81的 算 术 平 方 根 是 。
2.算术平方根是9的数是 。
3. 36的算术平方根是 。
4. ( 3)2的算术平方根等于 。
思考:
1.下列各式哪些有意义,哪些没
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x= 2
你知道 2有多大吗?
12 2 22 2 1.41421356
1 2 2
逼 1.42 2 1.52 近 法 1.4 2 1.5
1.412 2 1.422
无限不循环小数
1.41 2 1.42
8 64
64
7
8 ,即
49 = 7
64 8
(3)因为 0.012 =0.0001,所以0.0001的算术平方
根为0.01,即 0.0001 =0.01。
例2: 求 下 列 各 数 的 算 术 平方 根 , (1)121 (2)32 (3) 81 (4)( 25)2 (5)2 1
4
练习:求下列各数的算术平方根, (1)0.0025 (2)1.12 (3) 0.0001 (4)( 2.6)2 (5)6 1