正比例函数概念与性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数概念与性质
【教学目标】
知识与技能:
1.理解正比例函数的概念.
2.会用描点法画正比例函数图象.
3.掌握正比例函数的性质.
过程与方法:
1.通过“燕鸥”这一实际情境引入,培养学生数学建模的能力.
2.通过对正比例函数的性质的探究,使学生经历做数学的过程,初步形成正确、科学的学习方法.
情感态度与价值观:
1.通过“燕鸥”这一实际情境引入,使学生认识到生活实例中有大量的函数模型,激发学生学习数学的兴趣.
2.培养学生热爱自然、热爱生活的优秀品质.
【教学重点】
1.正比例函数的概念.
2.探究正比例函数的性质.
【教学难点】
正比例函数的性质中的y与x的变化关系.
教学过程
一、创设情境,引入新知
像许多迁徙的鸟一样,北极燕鸥要在北半球的春季北上繁殖,秋季南迁越冬,很难相信,这只轻盈的海鸟轻的好像能被一阵风吹走似的,然而他们却能进行着令人难以想象的长距离的飞行,它飞过的距离比所有鸟都要长,比你我想象的都要远,据研究发现北极燕鸥一年飞行的距离竟然高达8万公里。
鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它 (一个月按30天计算) .
(1) 这只百余克重的小鸟大约平均每天飞行多少千米?
25600÷127≈200(千米)
(2) 这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?
y=200x
像y=200x这样的函数是什么函数呢?它们的图像是怎样的呢?
这节课我们学习“正比例函数”
设计意图:
通过“燕鸥”这一实际情境引入,使学生认识到现实生活和数学密不可分,向学生渗透热爱自然、关注珍惜物种、人与动物和谐共处的情感教育.
同时发展学生从实际问题中提取有用的数学信息,建立数学模型的能力.
二、观察思考、归纳概念
列问题中,变量之间的对应关系是函数关系吗?
如果是,请写出函数解析式?
1.圆的周长L随半径r的变化而变化?
2.铁的密度为7.8g/cm3,铁块的质量m(单位;g)随它的
体积V的变化而变化。
3.每个练习本的厚度为0.5cm,一些练习本摞在一起的
总厚度h(单位:cm)随联系标的本数n的变化而变化。
4.冷冻一个0°C的物体,使它每分下降2°C,物体的
温度T(单位:°C)随冷冻时间t(单位:min)的变化
而变化。
师生活动:教师多媒体呈现上述五个实际问题.
学生独立解答,解答后小组交流,出代表进行反馈.
教师要重点关注:(1)题中学生易将写成 .(4)题中每分钟下降2℃应记为“-2℃”,避免学生将写为 .关注学生能否准确找出中的常量.
设计意图:
通过指出常数、自变量、自变量的函数,对函数的概念进行回顾,从而为后续环节找正比例函数的共同点建立生长点.
通过对实际问题讨论,使学生体验从具体到抽象的认识过程.
问题2:将上表中的前四个函数与第五个函数进行比较,思考:前四个函数有什么共同特点?
师生活动:学生观察、思考.小组交流,分析、归纳共同特点,出代表反馈.
教师要根据学生的具体表现,通过引导、点拨,使学生比较、观察得出共同点.教师根据学生的表述板书:
共同点:常数×自变量.
教师板书:y=kx
概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数.
教师追问:这里为什么强调k是常数,k≠0呢?
学生交流、讨论,互相补充.
设计意图:
通过将前四个函数与第五个函数进行比较,是学生通过比较、观察、分析、概括出正比例函数的共同特点,使学生明白正比例函数的特征,从而归纳出正比例函数的概念.
有效地克服了因没有对比直接观察使学生出现的不适性、盲目性.
培养学生的观察、分析、归纳、概括等思维能力.
三、练习运用,内化概念
判断下列函数是否为正比例函数?如果是,请指出比例系数.
师生活动:1.下列式子,哪些表示y是x的正比例函数?如果是,请你指出正比例系数k的值.
(1)y=-0.1x (2)y=2x2 (3)y2=4x (4)y=-4x+3 (5)y=2(x-x2 )+2x2
(2) 1.如果y=(k-1)x,是y关于x的正比例函数,则k满足________________.
2.如果y=kxk-1,是y关于x的正比例函数,则k=__________.
3.如果y=3x+k-4,是y关于x的正比例函数,则k=_________.
学生独立解答,
教师根据学生反馈情况,引导学生根据“常数×自变量”归纳辨别正比例函数要注意的问题.
设计意图:使学生结合实例深入理解概念的内涵,做到具体问题具体分析.
四、合作探究,概括性质
正比例函数的解析式具有共同的结构特征,它们的图像是否也有某种必然的共同之处呢?
1.画一画
画出下列函数的图像.
例1.画出下列正比例函数的图像:
(1)y=2x
(2) y=-2x
师生活动:师生共同列表、描点、连线,画出正比例函数(1)y=2x(2)y=-2x 的图像
分别说出图像特征,比较两个函数图像的相同点和不同点
同时猜测正比例函数y=kx的图像特征。
设计意图:使学生熟练函数图象的画法.
为下一环节小组观察图像、归纳正比例函数图象做准备.避免只看一两个函数图象就轻易下结论的不科学、不客观的作法.
2. 在同一坐标系内画出下列正比例函数的图像:
(1)y=3x (2)y=-3x
验证你的猜想是否正确
设计意图:培养学生动手实践的能力,同时使学生亲历画图——观察——猜想——验证,给学生提供自主探索的机会,使学生亲身体验做数学的过程,知道学习数学、研究数学的基本程序.
总结:正比例函数的图像特征:
一般地,正比例函数 y=kx (k是常数,k不等于0 )的图象是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx经过第三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.
五、用“两点法”画出正比例函数的图像
正比例函数的图像是经过原点的直线,那么怎样画正比例函数的图象最简单?为什么?
用“两点法”确定正比例
函数图像的方法:确定(0,0)和(1,k)点
师生活动:教师引导学生思考、交流、归纳,得出两点法.
六、练一练
用两点法画出下列正比例函数图像
y=1/2x y=-1/2x
师生活动:学生练习,教师巡视指导.
设计意图:巩固“两点法”画图像的方法.
七比一比,看谁反应快
.1.正比例函数y=kx(k=0)的图像是——,它一定经过点——和——