Ag在碱性介质中作氧还原催化剂综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ag在碱性介质中作氧还原催化剂综述
本文较为全面地归纳了氧还原反应中使用的各种银基催化剂:纯银、碳载银、银合金、银-过渡金属氧化物。论述了催化剂的机理、优缺点。此外,简要阐述了银基催化剂的一些合成方法,并介绍了催化剂的形貌、PH值、成分对氧还原反应的影响,最后对银基催化剂的研究现状进行了小结并指出今后可能应用的领域,展示出良好的应用前景。
一、在碱性介质中的ORR机理
在碱性溶液中,Yeager认为ORR主要有4e和2e两种反应途径:
(1) 直接4e 反应途径
O2+2H2O+4e→4OH-ψ°=0.401 V a
(2) 2e-2e 逐步反应途径
O2+H2O+2e→ HO2-+OH-ψ°=-0.065 V b
HO2-+H2O+2e→3OH-ψ°=0.867 V c
中间产物HO2-或可发生歧化反应
2HO2-→2OH-+O2 d
反应b, c合起来即是反应a, 因此这种反应途径又可叫做准4e反应途径或连续4e反应途径,其中, 反应c被认为是速控步骤. 如果ORR按2e-2e逐步反应途径进行, 则将主要面临两个问题: (1) 若反应c没有进行,则阴极反应的转移电子数减半, 能量密度降低; 而且电池的输出电压、功率性能也相应下降, (2)在碱性溶液中稳定的HO2-容易在催化剂的作用下发生反应d, 从而降低催化剂活性。所以, 能直接催化氧还原按反应a的途径进行就显得尤为重要; 另一方面, 考虑到燃料电池的实用化, 催化材料也应具有在碱性溶液中寿命长和制作成本低、储量丰富等特点, 而在上述的催化材料中,银是少数同时具有上述三项优点的催化材料之一。但是,
Ag 的这种4e反应途径与Pt还是有区别的,已有研究表明Ag在催化还原氧的过程中有过氧化氢产物, 在卤素离子的影响下, 这种现象就更加明显。除此之外, Ag不仅具有良好的耐碱性, 而且在碱性电解质中随着OH-升高(0.1~11.1 mol/L)反而能提升Ag的催化活性。比如: ORR还原产物为OH-而基本不生成HO2-, 当在较高浓度碱性电解质中Ag电极催化ORR的性能要优于Pt的催化性能, 且Ag的质量密度约为Pt的一半, 则同样的载量, Ag的比表面积将大于Pt, 有利于增大表观总电流。
1.PH值的影响
之前的研究表明,对于像Pt和Ag这样的金属,ORR的速率决定步骤是:
O2a + e- O2- ; ψ°=0.562±0.03V e
在Ag(111)表面,此步骤e的电势值在PH=0至13之间并不随PH值增大而改变,体现出PH 的独立性,导致e步骤的反应过电势η值只从PH=0的1.53V减小到PH=14的0.7V。在e步骤后,ORR发生的是直接生成OH-或者生成中间产物HO2-。我们可通过Tafel曲线来揭示这个现象:基于催化剂为Pt的过电势,Tafel曲线中出现了两个明显的区域:在低过电势区域中,曲线斜率为-60mV/dec,表现出-30mV/PH单元的依赖性;而在高过电势区域中,曲线斜率为-120mV/dec,并无PH值的依赖性。在低过电势区域,Tafel斜率-60mV/dec,是由ORR 中间产物的而引起的氧化物中间物覆盖在Pt催化剂表面,呈现出的是Temkin吸附等温线。在高电势区域,Tafel斜率为-120mV/dec,吸附主要由Langmur吸附等温线控制,在此电位之下,主要的氧化物都都消失。类似Pt,碱性电解质中,在Ag的表面发生ORR同样是4e 过程,反应顺序一样,Tafel曲线也同样具有两个明显的斜率区域,因此,基于实验数据,有利地证明Ag作为催化剂的机理和Pt类似。但不同的是在Pt催化剂中,Pt在低的过电势时呈现出强的PH值依赖性,而Ag却没有PH的依赖性。所以,当PH值升高时,更有利于许多
非Pt催化剂反应,因此在采用碱性电解液的金属空气电池中,阴极的空气电极催化剂可以完全不用Pt,而采用如Ag、MnO x、金属氮化物和复合金属氧化物等廉价材料。
于是分别在0.1M KOH和0.1M HClO4中进行RRDE测试,探索PH值对Ag(111)的ORR 机理的影响。在酸性环境中,在低的过电势下,2e机理占主导,高的过电势下,2e和4e过程都存在于反应之中。若从酸性变为碱性环境,则其过电势减小400mV,同时ORR发生的是4e过程,所产生的H2O2量极少。在碱性电解质中,Tafel曲线呈现的两个明显的区域,在低过电势下,曲线斜率为-85mV/dec,在高的过电势下,曲线斜率为-125mV/dec。这些数据都是表明在碱性介质中Ag表面发生的ORR跟Pt类似的有利支撑。然而,对于Pt来说,无论是在酸性还是碱性介质中,表面发生的都是4e过程占主导地位。
从表观上来看,Pt和Ag上的ORR均按4e反应途径进行,而微观上看氧分子在两种材料上的吸附却有所差异,比如Pt只需要2个原子就能达到要求,而Ag却需要3-4个,且吸附能力不强,那么,微小干扰就会影响到催化效果。而在HClO4中,由于ClO4- 和Cl-在很宽的电势范围都可以在Ag上吸附,从而加大了ORR的超电势,且产物H2O2的比率显著增加,但并不是说杂质的吸附都会对ORR产生不利的影响,如果吸附选择物得当,或许还能产生正面的影响。例如,一个很有趣的例子,2012年,Casarin等根据自己的技术将酞菁铁(FePc)吸附在Ag(110)上构成修饰表面[FePc/Ag(110)] ,通过STM测试发现Fe原子以顶位或短桥位吸附在Ag(110)表面之上,呈长方矩形或倾斜矩阵排列,他们通过在330K、超高真空环境下使用离子枪喷射质子的方式模拟燃料电池中还原态氧得到氢形成水或过氧化氢的过程,经过一系列的测试和计算表明,以倾斜矩阵方式排列的FePc几乎不能吸附和还原氧,而以短桥位、长方矩阵形式排列的FePc对氧的还原效果最好,氧气在该催化剂上实现了可逆的氧化还原过程,且一个可逆过程循环完后,催化剂的组分、形貌等几乎完全回到初始状态。在最初吸附氧后,吸附形式发生转变,由Fe原子顶位吸附转换为Fe原子与两个