清华大学出版社统计学课后答案

合集下载

统计学(第二版)课件及习题答案《统计学》参考答案

统计学(第二版)课件及习题答案《统计学》参考答案

《统计学》(教育部教材)习题参考答案第一章统计概述一、填空题1.数量方面定量认识2.统计总体同质性差异性大量性3.总体单位数量标志品质标志不变标志可变标志4.总体指标名称指标数值5.总量指标相对指标平均指标数量指标质量指标静态指标动态指标二、单项选择题1.B 2.C 3.A 4.B 5.B三、多项选择题1.ABDE 2.ABC 3.ABCD 4.ABD 5.ABD四、问答题1.什么是指标?指标和标志有何区别和联系?①统计指标简称指标,是指综合反映现象总体数量特征的概念(及其数值)。

②指标与标志有两点区别:一是说明的对象范围不同,即指标是说明总体特征的,标志是说明总体单位特征的;二是具体表现的表示方式不同,即指标的具体表现都用数值表示,标志的具体表现只有数量标志用数值表示,品质标志则用文字表示。

③指标与标志有密切联系:一是标志表现是计算指标数值的基础;二是两者随研究目的不同具有转化关系。

2.指标有哪些具体分类?指标按表现形式分为总量指标、相对指标和平均指标;按性质或内容分为数量指标和质量指标;按时间状况分为静态指标和动态指标。

3.什么是指标体系?设置指标体系有何意义?指标体系是指一系列相互联系的指标组成的整体。

单项指标的局限性和社会经济现象的复杂性,决定了在统计中必须科学地设置指标体系,以便从不同角度、不同侧面来反映现象的全貌和事物间的联系。

4. 统计工作过程分哪几个阶段?如何理解统计“质—量—质”的认识过程?统计工作过程大致分为统计设计、统计调查、统计整理和统计分析四个相对独立、相互衔接的阶段。

四个阶段基本体现了统计“质—量—质”的认识过程。

统计首先要对现象进行初步的定性(质的)认识,作出统计设计;然后根据设计要求去进行量的调查和整理;最后通过统计分析,揭示现象的本质特征及其变化规律性,达到高一级的质的认识,实现统计之目的。

第二章统计调查一、填空题1.准确及时全面(系统或经济)2.调查项目3.全部工业生产设备每台工业生产设备每个工业企业4.单一表一览表表头表体表脚5.调查得到的统计数字客观现象实际数量表现登记性代表性二、单项选择题1.A 2.C 3.C 4.C 5.B三、多项选择题1.BCDE 2.BCDE 3.ABD 4.ABCDE 5.ACE四、问答题1.什么是统计调查?统计调查有哪些种类?统计调查是根据统计设计的要求,采用科学的方式和方法,有计划、有组织地向总体单位登记其有关标志表现,以获取统计研究所需要的原始资料的工作过程。

统计学 清华大学 课后习题答案

统计学 清华大学 课后习题答案

第一章总论1. 请你最大限度地说出统计在生产生活中的应用。

略2. 统计有几种涵义?各种涵义的关系如何?统计的三种涵义是指统计工作、统计资料及统计学。

统计工作是统计的实践活动,统计资料是统计工作的成果,统计学是统计实践活动的科学总结,反过来又指导统计实践。

3. 简述统计的产生和发展历史。

统计学的历史大体可分为古典统计学时期、近代统计学时期、现代统计学时期。

曾经产生过记述学派、政治算术学派、数理统计学派和社会经济统计学派等流派。

赫尔曼·康令、特弗里德·阿亨瓦尔、威廉·配第、约翰·格朗特、阿道夫·凯特勒、克尼斯等是各个不同时期、不同流派的代表人物。

《政治算术》、《社会物理学》是统计学说史上的典型著作。

4. 统计的研究对象是什么?如何认识统计研究对象的特点?统计的研究对象是大量社会经济现象的数量方面,社会经济现象的数量表现,现象变化的数量关系和数量界限,通过这个对象的研究以认识和利用社会经济发展变化的规律。

统计研究对象的特点:(1)数量性:统计的认识对象是现象总体的数量方面,包括数量多少、现象之间的数量关系、质量互变的数量界限;(2)总体性:统计是从整体的观点出发,研究大量现象总体的综合数量;(3)具体性:统计数字不是抽象的数字,它是现象总体在具体时间、地点、条件下所表现的数量;(4)客观性:统计数量是客观事物的反映,表示客观现象在具体时间、空间、条件作用下,实际已经达到的水平和程度。

5. 列举你生活中熟悉的例子,说明定类尺度、定序尺度、定距尺度、定比尺度的异同。

定类尺度的各类别间是平等的,没有高低、大小、优劣之分。

即不能进行算术运算,只能进行逻辑运算。

例如,对性别、种族、运动项目等的区分。

定序尺度各类别间有高低优劣之分,不能随意排列。

如消费者的收入,用多少排列为收入高、收入中等、收入低的顺序。

定距尺度的值以数字表述,有计量单位,可以进行加减运算。

如消费者对彩电质量满意度打分,国产95分,进口85分,于是可以说,国产比进口高10分。

《统计学》教材各章参考答案

《统计学》教材各章参考答案

各章思考与练习参考答案第一章导论(一)单项选择题1.D 2.C 3.B 4.D 5.D 6.D 7.B 8.A 9.B 10.A (二)多项选择题:1.ABCD 2.CD 3.AD 4.BCDE 5.ABDE(三)判断题:1.×2.×3.×4.√5.×(四)简答题:答案略(五)综合题答案略第二章统计调查(一)单项选择题:1.C 2.C 3.B 4.C 5.C 6.A 7.B 8.C 9.C 10.B (二)多项选择题:1.ACD 2.ABC 3.ABCD 4.ABC 5.ACD6.ABCD 7.ABDE 8.BCE 9.ABE 10.CD(三)判断题:1.×2.×3.×4.√5.×(四)名词解释:答案略㈤(五)简答题:答案略第三章统计整理(一)单项选择题:1.C 2.B 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.B (二)多项选择题:1.AB 2.BD 3.ACD 4.AD 5.BCD6.BD 7.ABC 8.AC 9.ABC 10.CD(三)判断题:1.×2.√3.×4.×5.×(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:2可见,组距1000元的分布数列,更为合理。

(2)对选中的分布数列,计算频率、较小制累计次数、较大制累计次数、组中值:(3)略第四章总量指标与相对指标(一)单项选择题:1.C 2.B 3.A 4.B 5.C 6.B 7.B 8.C 9.B 10.D(二)多项选择题:1.ABCD 2.CE 3.ABCDE 4.BCE 5.ABCD(三)判断题:1.X 2.X 3.X 4.√5.X(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:该企业集团实现利润比去年增长百分比 =110%/(1+7%)-1=2.80%2.解:(1)2011年的进出口贸易差额=12178-9559=2619(亿元)(顺差)2011年进出口总额的发展速度=21737/17607×100%=123.46%(2)2011年进出口额比例相对数=9559/12178×100%=78.49%2011年出口额结构相对数=12178/21737×100%=56.02%(3)该地区进出口贸易发展速度较快,出现贸易顺差。

清华大学应用数理统计课后习题及答案

清华大学应用数理统计课后习题及答案

清华大学应用数理统计课后习题及答案习题三1 正常情况下,某炼铁炉的铁水含碳量2(4.55,0.108)X N :.现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)?解 由题意知 2~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立统计原假设 0010:,:H H μμμμ=≠ 拒绝域为{}00K x c μ=->,临界值1/21.960.108/0.0947c u α-==⋅=,由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性变化.设立统计原假设 22220010:,:H H σσσσ=≠ 由于0μμ=,所以当0.05α=时22220.0250.97511()0.03694,(5)0.83,(5)12.83,n i i S X n μχχ==-===∑% 2210.02520.975(5)/50.166,(5)/5 2.567c c χχ====拒绝域为 {}222200201//K s c s c σσ=><%%或由于22/ 3.167 2.567S σ=>%,所以拒绝0H ,总体的方差有显著性变化. 2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为x =950h .已知该种元件寿命2(100,)X N σ:,问这批元件是否合格(0.05α=)?解 由题意知 2(100,)X N σ:,设立统计原假设0010:,:,100.0.05.H H μμμμσα≥<==拒绝域为 {}00K x c μ=->临界值为 0.050.0532.9c u u =⋅=⋅=-由于 050x c μ-=-<,所以拒绝0H ,元件不合格.3 某食品厂用自动装罐机装罐头食品,每罐标准重量为500g ,现从某天生产的罐头中随机抽测9罐,其重量分别为510,505,498,503,492,502,497,506,495(g ),假定罐头重量服从正态分布. 问 (1)机器工作是否正常(0.05α=)? 2)能否认为这批罐头重量的方差为5.52(0.05α=)?解 (1)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ:,μ已知 设立统计原假设 0010:500,:H H μμμμ==≠,拒绝域 {}00K x c μ=-> 当0.05α=时,2500.89,34.5, 5.8737x s s ===临界值 12(1) 4.5149c t n α-=-⋅=,由于00.8889x c μ-=<,所以接受0H ,机器工作正常.(2)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ:,σ已知设立统计原假设 222220010: 5.5,:H H σσσσ==≠拒绝域为 {}{}222200102K s c s c σ=<>%%U 当α=0.05时,可得2220.0250.97512500.89,34.5,(5) 2.7,(5)19.02,0.3, 2.11x s c c χχ======%由于22001.0138sK σ=∈%,所以接受0H ,可以认为方差为25.5. 4 某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为3.399(元/500克),标准差为0.269(元/500克).已知往年的平均售价一直稳定在 3.25(元/500克)左右, 问该市当前的鸡蛋售价是否明显高于往年?(0.05α=)解 设X 表示市场鸡蛋的价格(单位:元/克),由题意知2(,)X N μσ: 设立统计原假设 0010: 3.25,:H H μμμμ==>, 拒绝域为 {}00K x c μ=->当α=0.05时,13.399,0.269,20,0.0992x n c ασμ-====⋅=临界值由于0 3.399 3.250.149.x c μ-=-=>所以拒绝0H ,当前的鸡蛋售价明显高于往年.5 已知某厂生产的维尼纶纤度2(,0.048)X N μ:,某日抽测8根纤维,其纤度分别为 1.32,1.41,1.55,1.36,1.40,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了(0.05α=)?解 由题意知 2(,0.048)X N μ:,0.05α=设立统计原假设 2222220010:0.048,:0.048H H σσσσ==>=拒绝域为{}2200K s c σ=>, 当0.05α=时,2220.950.951.4213,0.0055,(7)14.07,(7)7 2.0096x s c χχ=====由于220 2.3988s c σ=>,所以拒绝0H ,认为强度的方差明显变大.6 某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25只,测得寿命均值1950h ,标准差148h s =.设元件寿命服从正态分布,试在显著水平 α=0.05下, 确定这批元件是否合格.解 设X 表示电子元件的平均寿命(单位:h ),由题意知2(,)X N μσ: 设立统计原假设 0010:=2000H <H μμμμ≥,: 拒绝域为 {}00K x c μ=-<当0.05α=时,1950,148,(1)50.64x s c t n α===-=-临界值由于 050x c μ-=->,所以接受0H ,即这批电子元件的寿命是合格的. 7 设n X X X ,...,,21为来自总体(,4)X N μ:的样本,已知对统计假01:1;: 2.5H H μμ== 的拒绝域为0K {}2>=X .1)当9=n 时,求犯两类错的概率α与β;2)证明:当n →∞时,α→0,β→0.解 (1)由题意知 {}010~(,4),:1;: 2.5,2,9.X N H H K X n μμμ===>= 犯第一类错误的概率为()21 1.51(1.5)0.0668.X P X P αμ⎫=>==>==-Φ=⎪⎭犯第二类错误的概率为()2 2.50.75(0.75)1(0.75)0.2266.X P X P βμ⎫=≤==≤=-⎪⎭=Φ-=-Φ=(2)若0:1H μ=成立,则(1,4)X N :}{}{00000()=11)n P H H P X c P X c nc αμμσ=≥+=-<+=-Φ否定成立 当n →∞时,0)1ncσΦ→,所以0()n n α→→∞同理 }{0010=<+=+c )/)()=0()n P X c n βμμμσΦ-→Φ-∞→∞ 8 设需要对某一正态总体,4()N μ的均值进行假设检验H 0:μ= 15,H 1:μ<15取检验水平α=0.05,试写出检验H 0的统计量和拒绝域.若要求当H 1中的μ=13时犯第二类错误的概率不超过β=0.05,估计所需的样本容量n .解 由题意知 (,4)X N μ:,σ已知, 设立统计原假设 01:15,:15H H μμ=< 则拒绝域为}{015K X c =-<,其中临界值0.05c μ=⋅=-犯第二类错误的概率1513130.05P X P X β⎛⎫⎛⎫=->==->≤ ⎪ ⎭⎝⎝即1.65)0.95Φ≥, 化简得 23.311n ≥≈.9 设n X X X ,...,,21为来自总体X ~20(,)N μσ的样本,20σ为已知, 对假设:0011:;:H H μμμμ==其中01μμ≠,试证明:2211212()()n αβσμμμμ--=+⋅- 解 (1)10>μμ当时,由题意知 00110:;:;H H μμμμμ==>犯第一,二类错误分别为,αβ,则有001(|)P X c c u ααμμμ-=>+=⇒=01110(|))X P X c P u αβμμμμμ-=≤+==≤=⇒()()22011111120010u u u u n u u ββααβαβσμμμ------=-=⇒+=⇒=+- (2)10μμ≤当时由题意知 00110:,:H H μμμμμ==≤,犯第一,二类错误分别为,αβ,则有00(|)P X c c u ααμμμ=<+=⇒=()()01102201111120010(|))X P X c P u u u u u n u u αβααβαββμμμμμσμμ-----=≥+==≥+=⇒=⇒+==+-10 设171,...,X X 为总体2(0,)X N σ:样本,对假设:2201:9,: 2.905H H σσ==的拒绝域为 }{20 4.93K s =<. 求犯第Ⅰ类错误的概率α和犯第Ⅱ类错的概率β. 解 由题意知 2(0,)X N σ:,222~().nsn χσ%统计假设为 2201:9,: 2.905H H σσ==. 拒绝域为 }{20 4.93K s=<% 则犯第一,二类错误的概率,αβ分别是()()22222221717417174497.3040.0259999171744 3.319120.48810.750.253.319 3.319s s P s P P s P s P ασβσ⎛⎫⎛⎫⨯⨯=<==<=<== ⎪ ⎪⎝⎭⎝⎭⎛⎫⨯=<==-<==-= ⎪⎝⎭%%%%%11 设总体是密度函数是1,01(;)0,x x f x θθθ-<<=⎧⎨⎩其他统计假设 01:1,:2H H θθ==.现从总体中抽取样本21,X X ,拒绝域2134ΚX X =≤⎧⎫⎨⎬⎩⎭,求:两类错误的概率,αβ 解 由题意知010213:1;:2,, 2.4H H K X n X θθ⎧⎫===≤=⎨⎬⎩⎭当12121,0,11(;1) 1.~(0,1),(,)0,x x f x X U f x x θ<<⎧===⎨⎩时,其他此时 212121231431(,)0.250.75ln 0.75.4x x P X f x x dx dx X αθ≤⎛⎫=≤===+⎪⎝⎭⎰⎰当1212122,014,0,12(;2).(,)0,0,x x x x x x f x f x x θ<<<<⎧⎧===⎨⎨⎩⎩时,其他其他 此时 21212123143992(,)ln 0.75.4168x x P X f x x dx dx X βθ>⎛⎫=>===+ ⎪⎝⎭⎰⎰12 设总体2(,)X N μσ:,根据假设检验的基本原理,对统计假设:00110:,:()()H H μμμμμσ==>已知;0010:,:H H μμμμσ≥<(未知),试分析其拒绝域.解 由题意知 2(,)X N μσ:,当00110:,:()H H μμμμμ==>成立时()01X P X c P αμμμ=->==>=-Φ{}1100,u c u K X c ααμ--===->所以拒绝域为 }{00K X c μ=-> 当0010:,:H H μμμμ≥<成立时00()()X P X c P X c P αμμμμ⎛⎛⎫⎫=-<≥≥-<=<=Φ}{00,c K X c ααμμμ===-<所以拒绝域为}{00K X c μ=-<13 设总体2(,)X N μσ:根据假设检验的基本原理,对统计假设: (1)22220010:,:()H H σσσσμ=>已知;(2)22220010:,:()H H σσσσμ≤>未知试分析其拒绝域.解 由题意知 2~(,)X N μσ(1)假设统计假设为 22220010:=,:>H H σσσσ 其中μ已知当0H 成立时,拒绝域形式为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩由222220=(n)ns ns χσσ:,可得220=>nsP nc ασ⎧⎫⎪⎨⎬⎪⎭⎩所以 21-=()nc n αχ,由此可得拒绝域形式为2201-201=>()sK n nαχσ⎧⎫⎪⎨⎬⎪⎭⎩(2)假设统计假设为 22220010:<,:>H H σσσσ 其中μ未知当0H 成立时,选择拒绝域为 2020=>sK c σ⎧⎫⎪⎨⎬⎪⎭⎩,由222(-1)(1)n s n χσ-: 得 ()()()()222201111n s n s P n c P n c ασσ⎧⎫⎧⎫--⎪⎪⎪⎪=>-≤>-⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭所以21(1)(1)n c n αχ--=-,由此可得拒绝域形式为2201-201=>(1)1s K n n αχσ⎧⎫⎪-⎨⎬-⎪⎭⎩14 从甲、乙两煤矿各取若干样品,得其含灰率(%)为,甲:24.3, 20.8, 23.7, 21.3,17.4, 乙:18.2, 16.9, 20.2, 16.7 .假定含灰率均服从正态分布且2212=σσ,问甲、乙两煤矿的含灰率有无显著差异 (=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠ 其中12=5,=4n n 当=0.05α时1/2122.3238,(2) 2.3646w s t n n α-==+-=临界值1-212=(+2) 3.6861w c t n n s α-⋅= 拒绝域为}{0 3.6861K x y c =->= 而 03.5,,.x y c H -=<接受认为没有差别15 设甲、乙两种零件彼此可以代替,但乙零件比甲零件制造简单,造价也低.经过试验获得它们的抗拉强度分别为(单位:kg/cm 2):甲:88,87,92,90,91 乙:89,89,90,84,88假定两种零件的抗拉强度都服从正态分布,且21σ =22σ.问甲种零件的抗拉强度是否比乙种的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠,其中12=5,=5n n 当=0.05α时122.2136,(2) 1.86,w s t n n α==+-=-临界值1-12=(+2) 2.2136w c t n n s α-⋅= 拒绝域为}{0 2.2136K x y c =->=而 1.6x y c -=<,所以接受0H ,认为甲的抗拉强度比乙的要高.16 甲、乙两车床生产同一种零件.现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm )为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 2222012112:;:H H σσσσ≥<,其中12=8,=9n n当=0.05α时 220.0955,0.0261x y s s ==,临界值 12(1,1)0.2684c F n n α=--=拒绝域为202x y s K c s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩,而22 3.6588x y s F c s ==>,接受0H ,认为乙的精度高.17 要比较甲、乙两种轮胎的耐磨性,现从甲、乙两种轮胎中各取8个,各取一个组成一对,再随机选取8架飞机,将8对轮胎磨损量(单位:mg )数据列表如下:试问这两种轮胎的耐磨性有无显著差异?(=0.05α). 假定甲、乙两种轮胎的磨损量分别满足2212(,),Y (,)X N N μσμσ::且两个样本相互独立.解 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠,其中12===8n n n 当=0.05α时,令()221/211,320,102200,319.69,(1) 2.36461n ZZ i Z X Y z s z z s t n n α-==-==-==-=-∑ 拒绝域为}{0K z c =>,临界值1-2=(1)2138Z c t n s α-⋅= 而320z c =<,所以接受0H ,认为两种轮胎耐磨性无显著差异. 18 设总体2212(,),Y (,)X N N μσμσ::, 由两总体分别抽取样本 X :4.4,4.0,2.0,4.8 Y :6.0,1.0,3.2,0.41)能否认为12μμ= (=0.05α)? 2)能否认为2212σσ= (=0.05α)?解 (1) 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 012112:=;:H H μμμμ≠,其中12==4=n n n令Z X Y =-,则有22111.15,()9.02331n z i z s z z n ===-=-∑,当=0.05α时,1-2=(1) 3.1824c t n α-=,1-2=(1)/ 4.78Z c t n s α-⋅= 拒绝域为}{0K z c =>,而 1.15z c =<,所以012,.H μμ=接受认为(2) 由题意知 2212(,),Y (,)X N N μσμσ::设统计假设为 2222220111:=;:H H σσσσ≠,其中12==4=n n n 其中221.5467, 6.4367x y s s ==,拒绝域为2201222>x x yy s s K c c s s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩或临界值 1/21221212(1,1)0.0648,(1,1)15.4392c F n n c F n n αα-=--==--=而22201220.2403,,.X Ys F H s σσ===接受认为19 从过去几年收集的大量记录发现,某种癌症用外科方法治疗只有2%的治愈率.一个主张化学疗法的医生认为他的非外科方法比外科方法更有效.为了用实验数据证 实他的看法,他用他的方法治疗200个癌症病人,其中有6个治好了.这个医生断 言这种样本中的3%治愈率足够证实他的看法.(1)试用假设检验方法检验这个医生的看法;(2)如果该医生实际得到了4.5%治愈率,问检验将证实化学疗法比外科方法更有效的概率是多少?解 (1) 记每个病人的治愈情况为X ,则有(1,) X B p :设统计假设为 0010:=0.02;:0.02H p p H p p >≤=,其中200,0.05n α==拒绝域为}{00K x p c =-<,临界值10.0163c αμ-== 而 000.01,,0.02.x p c H p -=<>拒绝不能认为 (2) 不犯第二类错误的概率101 4.5%P X u p p β-⎧⎫⎪⎪-=>=⎨⎬⎪⎪⎭⎩由(1,) X B p :,可得 (1),p p EX p DX n-== 由中心极限定理得1 4.5%10.72X P p β⎧⎫⎪-=>=⎬⎪⎭=-Φ=20 在某公路上,50min 之间,观察每15s 内通过的汽车数,得下表通过的汽车数量0 1 2 3 4 ≥5 次数f92 68 28 11 1 0问能否认为通过的汽车辆数服从泊松分布(=0.10α)?解 设统计假设为 0010:()(),()(),200.0.10H F x F x H F x F x n α====4001ˆ,0.805.j j H X j n λν====∑若成立 记 ˆ1,2,3,4ˆ(),!j j j p P x j ej λλ-==-=则有ˆ0.8050102143243500.8050.4471,0.805*0.3599,*0.144920.8050.805*0.0389,*0.0078,10.0014,34j j p e e p p p p p p p p p p λ--=============-=∑检验统计量的值为()2522210.9500 2.1596(1)(4)9.848,~(),0.805.jj n j jnp m r np H X P ανχχχλλ-=-==<--===∑不拒绝认为且21 对某厂生产的汽缸螺栓口径进行100次抽样检验,测得100数据分组列表如下:组限 10.93~10.95 10.95~10.97 10.97~10.99 10.99~11.01 频数582034 组限 11.01~11.0311.03~11.0511.05~11.0711.07~11.09 频数17664试对螺栓的口径X 的分布做假设检验(=0.05α).解 设X 表示螺栓的口径,2(,)X N μσ:,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中100,0.05,2n r α===在0H 成立的情况下,计算得88221111ˆˆ11.0024,()0.00101888j j j j i i X x v x v μσμ====⋅==-⋅=∑∑ 由ˆ11.0024(0,1)ˆ0.00319X X N μσ--=: 得0810.9311.002411.0911.00242.2689,, 2.74520.003190.00319x x --==-==L所以110887()()0.0386,,()()0.0140p x x p x x =Φ-Φ==Φ-Φ=L检验统计量的值为2822210.951()13.825(1)(5)11.07j j nj jv np m r np αχχχ-=-==>--==∑由此应该20,~(,).H X N μσ拒绝不能认为22 检查产品质量时,每次抽取10个产品检验,共抽取100次,得下表:次品数 0 1 2 3 4 5 6 7 8 9 10 频数35 40 18 5 1 1 0 0 0 0 0问次品数是否服从二项分布(=0.05α)?解 设X 表示抽取的次品数,2(,)X N μσ:,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中10,0.05n α==在0H 成立的情况下,01ˆNjj X pjvN N===∑计算得001011922801011021033710100103101010(1),0,1,,10;ˆˆˆ(1)0.3487,(1)0.3874,(1)0.1937ˆˆ(1)0.0574,(1)10,jj N j j N p C p p j p C p p p C p p p C p p p C p p p C p p--=-==-==-==-==-==-=L L 检验统计量的值为0020()21022210.950 5.1295(1)(9)16.92j j n j jnp m r np ανχχχ-=-==<--==∑因此0,~(10,0.1).H X B 不拒绝认为23 请71人比较A 、B 两种型号电视机的画面好坏,认为A 好的有23人,认为B 好的有45人,拿不定主意的有3人,是否可以认为B 的画面比A 的好(=0.10α)?解 设X 表示A 种型号电视机的画面要好些,Y 表示B 中型号电视机画面要好些分布函数分别为()X F x ,()Y F x ,统计假设为01:()(),:()(),10,100.0.05X Y X Y H F x F x H F x F x N n α=≠===由题意知++=23=45,=+n n n n n --, 检验统计量 ,min()s n n +-=而23(68)25s s α=<=,所以0,.H B 拒绝认为的画面好24 为比较两车间(生产同一种产品)的产品某项指标的波动情况,各依次抽取12个产品进行测量,得下表 甲 1.13 1.26 1.16 1.41 0.86 1.39 1.21 1.22 1.20 0.62 1.18 1.34 乙 1.211.310.991.591.411.481.311.121.601.381.601.84问这两车间所生产的产品的该项指标分布是否相同(=0.05α)?解 设,X Y 分别表示甲乙两车间所生产产品的指标分布,分布函数分别()X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,12,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为112T =且(150,300)T N :拒绝域为012K u u α-⎧⎫⎪=>⎨⎬⎪⎭⎩而0.9752.194 1.96u u =>=,所以0,.H 拒绝认为指标分布不相同 25 观察两班组的劳动生产率(件/h),得下表:问两班组的劳动生产率是否相同(α=0.05)?解 设,X Y 分别表示两个组的劳动生产率,分布函数分别为(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,9,9X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为73T = 拒绝域形式为}{01212,<K T t T t t t =<>U 其中而12(9,9)=66,(9,9)105t t =,因此T K ∈, 所以0,.H 接受认为劳动生产率相同26 观观察得两样本值如下:Ⅰ 2.36 3.14 7.52 3.48 2.76 5.43 6.54 7.41 Ⅱ 4.38 4.25 6.54 3.28 7.21 6.54 问这两样本是否来自同一总体(α=0.05)?解 设,X Y 分别表示Ⅰ,Ⅱ两个样本,分布函数分别是(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,6,8,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为49T = 拒绝域形式为}{01212,<K T t T t t t =<>U 其中而12(6,8)=32,(6,8)58t t =,因此0T K ∈, 所以0,.H 接受认为来自同一总体 27 某种动物配偶的后代按体格的属性分为三类,各类的数目是:10,53,46,按照某种遗传模型其比率之比应为:22)1(:)1(2:p p p p --,问数据与模型是否相符(05.0=α)?解 设体格的属性为样本X ,由题意知(2,1)X B p -: 其密度函数为()f x ,其中22(,)(1)0,1,2xxx f x p C p p x -=-=统计假设为0010:()(),:()()H F x F x H F x F x =≠似然函数为222211(1)(1)i iii nnx x x x n nxnxi i L C pp pp C --===-=-∏∏ 解得最大似然统计量为 ˆ12xp=- 则 220ˆˆ 1.330.1121pp === 1ˆˆˆ2(1)0.4454p p p =-= 22ˆˆ(1)0.4424p p =-= 拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ0.9134(1)(9) 3.8414ˆj j n j j npm r npανχχχ-=-==<--==∑所以0,.H 不拒绝认为与模型相符28 在某地区的人口调查中发现:15729245个男人中有3497个是聋哑人.16799031个女人中有3072个是聋哑人.试检验“聋哑人与性别无关”的假设(05.0=α).解 设X 表示男人中聋哑人的个数,Y 表示女人中聋哑人的个数,其分布函数分别表示为()X F x ,()Y F x . 统计假设为01:(,)()(),:(,)()()X Y X Y H F x y F x F x H F x y F x F x =≠拒绝域为}{2201(1)K m r αχχ-=>--而21022210.950ˆ()62.64(1)(1) 3.84ˆj j nj j v np m r np αχχχ-=-==>--==∑ 所以0,.H 拒绝认为聋哑与性别相关 29 下表为某药治疗感冒效果的联列表:试问该药疗效是否与年龄有关(α=0.05)?解 设X 表示该药的疗效与年龄有关,Y 表示该药的疗效与年龄无关,其分布函数分别表示为(),X F x ()Y F x . 统计假设为01:(,)()(),:(,)()(),3,3,0.05,X Y X Y H F x y F x F x H F x y F x F x r s α=≠===拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ13.59(1)(4)9.488ˆj j n j j npm r npανχχχ-=-==>--==∑所以0,.H 拒绝认为疗效与年龄相关30 某电子仪器厂与协作的电容器厂商定,当电容器厂提供的产品批的不合格率不超过3%时以高于95%的概率接受,当不合格率超过12%时,将以低于10%的概率接受.试为验收者制订验收抽样方案.解 由题意知,010.03,0.12,0.05,0.1p p αβ====代入式子 01()1()L p L p αβ=-⎧⎨=⎩()L p选用式子()(L P X d P U φ=≤=≤≈计算求得 66,4n d ==,于是抽查方案是:抽查66件产品,如果抽得的不合格产品4X ≤,则接受这批产品,否则拒绝这批产品.31 假设一批产品的质量指标2(,)X N μσ:(2σ已知),要求质量指标值越小越好.试给出检验抽样方案(,n c )的计算公式.若2σ未知,又如何确定检验抽样方案(,n c )?若质量高时指质量指标在一个区间时,又如何确定检验抽样方案(,n c )?解 (1) 解方程组01()1()L L μαμβ=-⎧⎨=⎩得 ()201u u n αβσμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+ (2) 若2σ未知,用*2M 估计2σ,从而得出公式()2*201u u M n αβμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+习题四1 下表数据是退火温度x (C 0)对黄铜延性η效应的试验结果,η是以延伸率计算的,且设为正态变量,求η对x 的样本线性回归方程.x (C 0)300 400 500 600 700 800 y (%)40 50 55 60 67 70解 利用回归系数的最小二估计:101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑ 代入样本数据得到:1ˆˆ0.0589,24.6286ββ== 样本线性回归方程为:ˆ24.62860.0589yx =+ 2 证明线性回归函数中(1)回归系数1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ-±-; (2)回归系数0β的置信水平为α-1的置信区间为2ˆ(2)n αβ-±-.证 (1) 由于211ˆ,xx N l σββ⎛⎫ ⎪⎝⎭:()0,1N : 222(2)ES n χσ-:又因为:,()222ˆ2(2)n n σχσ--:故所以()2t n -:易知 {}11ˆ1p c ββα-<=-,1P α<=-⎪⎭⎩其中()122n α--所以1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ-- (2) 由0ˆβ~2201(,())xxnx N l βσ+,得()0,1N :,()222ˆ2(2)n n σχσ--:,0ˆβ与2ˆσ相互独立, 所以:()2T t n ==-:根据11221(2)(2)P T t n P t n ααα--⎫⎪⎛⎫⎪-=<-=<- ⎪⎪⎝⎭⎪⎪⎭()()0001122ˆˆ22P n n ααβββ--⎛⎫ ⎪ ⎪=-<<- ⎪ ⎪ ⎪⎝⎭得到0β的置信度为1α-的置信区间()012ˆ2n αβ-±-.3 某河流溶解氧浓度(以百万分之一计)随着水向下游流动时间加长而下降.现测得8组数据如下表所示.求溶解氧浓度对流动时间的样本线性回归方程,并以α=0.05对回归显著性作检验.流动时间t (天) 0.5 1.0 1.6 1.8 2.6 3.2 3.8 4.7 溶解氧浓度(百万分之一)0.28 0.29 0.29 0.18 0.17 0.18 0.10 0.12解 利用101ˆˆˆtytt l l y tβββ⎧=⎪⎨⎪=-⎩其中2211,n nty i i tt i i i l t y nty l t nt ===-=-∑∑代入样本数据得到: 10ˆˆ0.0472,0.3145ββ=-= 所以,样本线性回归方程为:ˆ0.31450.0472yt =- 拒绝域形式为:{}21ˆc β> ()20.95ˆ1,6,0.0058ttF c c l σ==>而21ˆ0.0022β=,所以回归模型不显著. 4 假设X 是一可控制变量,Y 是一随机变量,服从正态分布.现在不同的X 值下分别对Y 进行观测,得如下数据i x0.25 0.37 0.44 0.55 0.60 0.62 0.68 0.70 0.73 i y2.57 2.31 2.12 1.92 1.75 1.71 1.60 1.51 1.50 i x 0.75 0.82 0.84 0.87 0.88 0.90 0.95 1.00 i y1.41 1.33 1.31 1.25 1.20 1.19 1.15 1.00(1)假设X 与Y 有线性相关关系,求Y 对X 样本回归直线方程,并求2σ=DY 的无偏估计;(2)求回归系数210σββ、、的置信度为95%的置信区间; (3)检验Y 和X 之间的线性关系是否显著(=0.05α); (4)求Y 置信度为95%的预测区间;(5)为了把Y 的观测值限制在)68.1,08.1(,需把x 的值限制在什么范围?(=0.05α)解 (1) 利用101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑计算得10ˆˆ2.0698, 3.0332ββ=-= 所以,样本线性回归方程为:ˆ 3.03322.0698yx =-,22ˆ0.002015ES σ== (2) 根据第二题,1β的置信区间为()112ˆ2n αβ--,代入值计算得到:()1 2.1825, 1.9571β∈--,0β的置信区间为()02ˆ2n αβσ-±-,代入数值计算得到:()0 2.95069,3.1160β∈.(3) 根据F 检验法,其拒绝域形式为 }{201ˆK c β=> 而 12ˆ(2),xxc tn l ασ-=- 显然10K β∈,所以Y 和X 之间具有显著的线性关系.(4)()221(0,(1))xxx x y N l nσ-++:,()2ˆ1()1(0,1)xxx x s x N l n -=++:令222ˆ(2)((2)n n t n σχσ---:: 则有1122ˆˆˆ((2),(2))y yt n yt n αα--∈-+-(5) 根据(4)的结论,令22ˆˆ1.68 1.08yyαα--+=-=,解得 (0.7802,0.8172)x ∈5 证明对一元线性回归系数0ˆβ,1ˆβ相互独立的充分必要条件是0=x . 证 ""⇒()()()()()010011111ˆˆˆˆˆˆcov ,E y x ββββββββββ=--=---2110111101ˆˆˆˆ()E y x y x βββββββββ=---++2211011101ˆy xE y x ββββββββ=---++ ()2211ˆx E ββ=-- 222221111ˆˆˆ()xx E D E l σββββ=+=+ 若要()01ˆˆcov ,0ββ=,那么0x =.反之显然也成立,命题的证.6 设n 组观测值),...,2,1)(,(n i y x i i =之间有关系式:i i i i x x y εεββ,+-+=)(10~),...,2,1)(,0(2n i N =σ(其中∑==ni i x nx 11),且n εεε,...,,21相互独立.(1) 求系数10,ββ的最小二乘估计量10ˆ,ˆββ; (2) 证明∑∑∑===-+-=-ni i n i i i n i i y y y y y y 121212)ˆ()ˆ()(,其中∑==n i i y n y 11(3) 求10ˆ,ˆββ的分布. 解 (1) 最小化残差平方和:2201[()]Ei i S y x x ββ=---∑01ββ求,的偏导数[][]220101012()02()()0E Ei i i i i S S y x x y x x x x ββββββ∂∂=----==-----=∂∂∑∑, 01ˆˆ,xy xxl y l ββ==得到:(2) 易知()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑ 其中01ˆˆˆ()()xy i ii xxl y x x y x x l ββ=+-=+-,将其代入上式可得1ˆˆ()()0niiii y yy y =--=∑ 所以,∑∑∑===-+-=-ni i n i i i ni iy y yy y y121212)ˆ()ˆ()( (3) 20ˆ~(0,),iN y εσβ=Q ,200ˆ~(,)N nσββ∴同理,易得211ˆ~(,)xxN l σββ∴7 某矿脉中13个相邻样本点处某种金属的含量Y 与样本点对原点的距离X 有如下观测值ix 2 3 4 5 7 8 10 i y 106.42 108.20 109.58 109.50 110.00 109.93 110.49ix11 14 15 16 18 19i y110.59 110.60 110.90 110.76 111.00 111.20分别按(1)x b a y +=;(2)x b a y ln +=;(3)xb a y +=. 建立Y 对X 的回归方程,并用相关系数221TES S R -=指出其中哪一种相关最大.解 (1)令v y a bv ==+,根据最小二乘法得到,正规方程:101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,最后得到10ˆˆ1.1947,106.3013ββ==所以:样本线性回归方程为:ˆ106.3013y=+10.8861R = (2) 令ln ,v x y a bv ==+101ˆˆˆvyvv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ1.714,106.3147ββ== 所以:样本线性回归方程为:ˆ106.3147 1.714ln yx =+,20.9367R = (3) 令1,v y a bv x==+ 101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ111.4875,9.833ββ==- 所以:样本线性回归方程为:ˆ111.48759.833yx =-,30.987R = 综上,123R R R <<,所以第三种模型所表示的X Y 与的相关性最大. 8 设线性模型⎪⎩⎪⎨⎧++=+-=+=3213221211122εββεββεβy y y其中i ε~),0(2σN (1,2,3.i =)且相互独立,试求1β、2β的LS 估计.解 令()()1231212310,,,21,(,),,,12T TT Y y y y X βββεεεε⎡⎤⎢⎥==-==⎢⎥⎢⎥⎣⎦则线性模型可转化为 Y X βε=+ 根据 222TTTTES Y X Y Y Y X X X ββββ=-=-+, 令 20ES β∂=∂ 可得 ()1ˆTT X X X Y β-=即 112322311ˆˆ(23),(2)66Y Y Y Y Y ββ=++=--+ 9 养猪场为估算猪的毛重,随机抽测了14头猪的身长1x (cm),肚围2x (cm)与体重y (kg),得数据如下表所示,试求一个22110x b x b b y ++=型的经验公式.解由多元线性模型得:()2140,Y X I βεεσ=+⎧⎪⎨=⎪⎩()()()0121212,,,,,,T T Tn n Y y y y ββββεεεε===L L()114149145581516215271159621627416971ˆ172741787918084190851929419891110395T T X X X X Y β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦代入数值得到:12ˆ15.93840.52230.4738yx x =-++ 同样得到:12ˆ15.93840.52230.4738yx x =-++ 10 某种商品的需求量y ,消费者的平均收入1x 和商品价格2x 的统计数据如下表所示.试求y 对1x 、2x 的线性回归方程. 1i x1000 600 1200 500 300 400 1300 1100 1300 300 2i x 5 7 6 6 8 7 5 4 3 9 y100 75 80 70 50 65 90 100 110 60解 建立回归模型201122=+++(0,)Y x x N βββεεσ:其中根据2()=0E S ββ∂∂,可求得β的LS 估计为 -1ˆ=(X X)T T X Y β代入x ,得0=111.6918,β 1=0.0143,β 2=7.1882,β-则回归方程为:12ˆ111.69180.01437.1882yx x =+- 11 设n 组观测值),...,2,1)(,(n i y x i i =之间有如下关系:i i i i i x x y εεβββ,+++=2210~),...,2,1)(,0(2n i N =σ,且n εεε,...,,21相互独立.(1)求系数210,,βββ的最小二乘估计量210ˆ,ˆ,ˆβββ; (2)设n i x x y i i i ,...,2,1,ˆˆˆˆ2210=++=βββ,∑==n i i y n y 11,证明:∑∑∑===-+-=-ni i ni i i ni i y y y y y y 121212)ˆ()ˆ()(解 (1) ()()()0121212,,,,,,T T Tn n Y y y y ββββεεεε===L L1222211111Tn n X x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭L L L()1ˆT T X X X Y β-=(2)()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑()()11ˆˆˆˆ()0nTTi i i i x x x x y y yy β-==--=∑其中:y=x ,将其代入,得到 ()22211ˆˆ()()nni i i i i i y y y yy y ==∴-=-+-∑∑ 12(1)求形如2210x b x b b y ++=的回归方程;(2)对上述回归方程的显著性作检验; (3)求当x =5.5时Y 的估计值.解 (1) 令212,xx x x ==,求得回归方程为:2ˆ 3.4167 2.72620.3905yx x =+- (2) 拒绝域形式为:{}21ˆc β> ()20.9521ˆ1,6ˆxxF c l σβ=>而,所以回归方程具有显著性 (3) 将 5.5x =代入回归方程,得到ˆ 6.5982y= 13 设y 和变量12,x x 有形为ε++=2211x b x b y ,2(0,)N εσ:的回归方程模型,试用最小二乘法求出12b b 和的估计.解 令 ()()()121212,,,,,TTTn Y y y y βββεεε===L1112121222Tn n x x x X x x x ⎛⎫= ⎪⎝⎭L L残差平方和为 222T T T T E S Y X Y Y Y X X X ββββ=-=-+令 20E S β∂=∂,得到 112ˆ(,)()T T T X X X Y βββ-==.。

同济大学应用统计清华大学出版社答案37页word文档

同济大学应用统计清华大学出版社答案37页word文档

各章节部分习题参考答案第2章3.(3)帕累托图和饼图都可以了解哪些资源是主要的电力资源来源;帕累托图能直观表示主要电力资源的百分比。

4.(2)应该重点关注房间脏、房间不足,房间需要清洁,房间未准备好等投诉理由,因为这些因素占了73.59%的投诉理由。

5. (1) 数据的最大值为8.498,最小值为8.312,拟把数据分成10组,组距约等于0.0186,取组距为0.019.得到的频数分布表如下所示(2) 频数分布直方图频数分布百分比(3)所有的槽都达到了公司的要求,尺寸介于8.31与8.61之间6.行百分比表男女总计喜欢买衣服是37.78 62.22 100.00否74.29 25.71 100.00总计48.00 52.00 100.00列百分比表喜欢买衣服男女总计是56.67 86.15 72.00否43.33 13.85 28.00总计100.00 100.00 100.00 总百分比表喜欢买衣服男女总计是27.244.872否20.87.228总计4852100(3)喜欢买衣服的女性比例高于男性比例7. (1)分组频数百分比累积百分比0~100366100~20071420200~30081636300~400112258400~50061270500~6004878600~7003684700~8004892800~9002496900~10001298>100012100合计50100(2)右偏分布(3)8.分组上限频数百分比累积百分比502 4.17 4.17第 361 页551 2.08 6.25603 6.25 12.50653 6.25 18.7570510.42 29.1775714.58 43.7580612.50 56.2585612.50 68.7590816.67 85.429548.33 93.751003 6.25 100.00合计48100左偏分布特征第3章1. 由Excel计算如下:总体方差=样本方差*49/50=77558.02;总体标准差= =278.49242. 由Excel计算如下:3.(1)和(2)如下表所示平均7.114667标准误差0.537619中位数 6.68众数#N/A标准差 2.082189方差 4.335512峰度-1.05627偏度0.072493区域/极差 6.67最小值 3.82最大值10.49求和106.72观测数15最大(1)10.49最小(1) 3.82置信度1.153078(95.0%)第一分位数 5.715第三分位数8.54极差 6.67四分位极差 2.825变异系数0.292662Z值1.222431-0.583360.434799-0.636190.775786-1.582310.4299960.5932861.62105-0.20875-0.70823-1.45744-0.453691.342497-0.78987由于Z值都在-3.0~3.0之间,因此不存在极端值。

统计学基础课后全部详细答案与讲解

统计学基础课后全部详细答案与讲解

统计学第一至四章答案第一章一、思考题1. 统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。

统计方法可分为描述统计和推断统计。

2.统计数据的分类:按计量尺度:分类数据、顺序数据和数值型数据按获取数据的方式:观测数据和实验数据按数据与时间的关系:截面数据和时间序列数据特点:分类数据各类别之间是平等的并列关系,各类别之间的顺序可以任意改变;顺序数据的分类是有序的;数值型数据说明的是现象的数量特征,是定量数据;观测数据是通过调查或观测而收集到的数据,是在没有对事物进行人为控制的条件下得到的;实验数据是在实验中控制实验对象而收集到的数据;截面数据也称静态数据,描述的是现象在某一时刻的变化情况;时间序列数据也称动态数据,描述的是现象随时间的变化情况。

3.对武昌分校的全体教师进行工资调查,那么全体教师就是总体,从中抽取五十名教师进行调查,这五十名教师的集合就是样本,全体教师工资的总体平均值和总体标准差等描述特征的数值就是参数,五十名教师工资的样本平均值和样本标准差等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说教师的工资。

4.有限总体:指总体的范围能够明确确定,而且元素的数目是有限可数的。

例如:武昌分校10 级金融专业学生无限总体:指总体所包含的元素是无限的、不可数的。

例如:整个宇宙的星球5.变量可分为分类变量、顺序变量、数值型变量。

同时数值型变量可分为离散型变量和连续型变量。

6.离散型变量只能取有限个值,而且其取值都以整位数断开,可以一一列举,例如“产品数量” 、“企业数”。

连续型变量的取值指连续不断的,不能一一列举。

例如“温度” 、“年龄”。

二、练习题1.(1)数值型变量(2)分类变量(3)数值型变量(4)顺序变量(5)分类变量2.(1)这一研究的总体是 IT 从业者,样本是从 IT 从业者中抽取的1000 人,样本量是 1000(2)“月收入”是数值型变量(3)“消费支付方式”是分类变量3.(1)这一研究的总体是所有的网上购物者(2)“消费者在网上购物的原因”是分类变量第二章一、思考题1:答: 1: 普查的特点:①:普查通常是一次性的或周期性的;②:普查一般需要规定统一的调查时间;③:普查的数据一般比较准确; 4:普查的使用范围比较狭窄,只能调查一些最基本的、特定的现象。

统计学课后习题答案(Chap1.2)

统计学课后习题答案(Chap1.2)

第1章绪论1.什么是统计学怎样理解统计学与统计数据的关系2.试举出日常生活或工作中统计数据及其规律性的例子。

3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。

因此,他们开始检查供货商的集装箱,有问题的将其退回。

最近的一个集装箱装的是2 440加仑的油漆罐。

这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。

装满的油漆罐应为4.536 kg。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。

答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;·(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为×50=226.8 kg。

4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。

这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。

假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。

答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌`(4)推断:两个品牌中哪个口味更好。

第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。

服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。

调查结果如下:A EB EC C AD C:BD A C B C D E#E ECA DBC C A E:C BDB ACDE A B(D CDC B C ED B C;B CCD A C B C D E…CE BB EC C AD C&BA EB ACDE A B…DD CA DBC C A E[DC BC B C ED B C*CB C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。

(完整版)清华大学_杨虎_应用数理统计课后习题参考答案

(完整版)清华大学_杨虎_应用数理统计课后习题参考答案

习题一1 设总体X 的样本容量5=n ,写出在下列4种情况下样本的联合概率分布. 1)),1(~p B X ; 2))(~λP X ; 3)],[~b a U X ; 4))1,(~μN X .解 设总体的样本为12345,,,,X X X X X , 1)对总体~(1,)X B p ,1122334455511155(1)(,,,,)()(1)(1)i inx x i i i i x x P X x X x X x X x X x P X x p p p p -==-========-=-∏∏其中:5115ii x x ==∑2)对总体~()X P λ11223344555115551(,,,,)()!!ixni i i i i xi i P X x X x X x X x X x P X x e x e x λλλλ-==-==========∏∏∏其中:5115ii x x ==∑3)对总体~(,)X U a b5511511,,1,...,5 (,,)()0i i i i a x b i f x x f x b a==⎧≤≤=⎪==-⎨⎪⎩∏∏,其他4)对总体~(,1) X N μ()()()25555/222151111 (,,)()=2exp 2i x i i i i i f x x f x x μπμ---===⎛⎫==-- ⎪⎝⎭∑∏2 为了研究玻璃产品在集装箱托运过程中的损坏情况,现随机抽取20个集装箱检查其产品损坏的件数,记录结果为:1,1,1,1,2,0,0,1,3,1,0,0,2,4,0,3,1,4,0,2,写出样本频率分布、经验分布函数并画出图形.解 设(=0,1,2,3,4)i i 代表各箱检查中抽到的产品损坏件数,由题意可统计出如下的样本频率分布表1.1:表 1.1 频率分布表i 0 1 2 3 4 个数6 7 3 2 2 iX f0.3 0.35 0.15 0.1 0.1经验分布函数的定义式为:()()()(1)10,(),,=1,2,,1,1,n k k k x x kF x x x x k n n x x +<⎧⎪⎪≤<-⎨⎪≥⎪⎩,据此得出样本分布函数:200,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩图1.1 经验分布函数3 某地区测量了95位男性成年人身高,得数据(单位:cm)如下:组下限165 167 169 171 173 175 177 组上限167 169 171 173 175 177 179x()n F x人 数3 10 21 23 22 11 5试画出身高直方图,它是否近似服从某个正态分布密度函数的图形.解图1.2 数据直方图它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N .4 设总体X 的方差为4,均值为μ,现抽取容量为100的样本,试确定常数k ,使得满足9.0)(=<-k X P μ.解 ()- 54100X P X k P k μμ⎫-⎪<=<⎪⎭()()555 P k X k μ=-<-<因k 较大,由中心极限定理(0,1)4100X N : ()()()-55P X k k k μ<≈Φ-Φ-(5)(1(5))k k =Φ--Φ()2510.9k =Φ-=所以:()50.95k Φ=查表得:5 1.65k =,0.33k ∴=.5 从总体2~(52,6.3)X N 中抽取容量为36的样本,求样本均值落在50.8到53.8之间的概率.解 ()50.853.8 1.1429 1.7143X P X P ⎛⎫<<=-<< ⎪⎝⎭(0,1) 6.3X U N =()()50.853.8 1.1429 1.7143(1.7143)( 1.14290.9564(10.8729)0.8293P X P U ∴<<=-<<=Φ-Φ-=--=)6 从总体~(20,3)X N 中分别抽取容量为10与15的两个独立的样本,求它们的均值之差的绝对值大于0.3的概率.解 设两个独立的样本分别为:110,,X X 与115,,Y Y ,其对应的样本均值为:X 和Y .由题意知:X 和Y 相互独立,且: 3~(20,)10X N ,3~(20,)15Y N(0.3)1(0.3)P X Y P X Y ->=--≤1P =-~(0,0.5)~(0,1)(0.3)22(0.4243)0.6744X Y N X YN P X Y -->=-Φ=7 设110,,X X 是总体~(0,4)X N 的样本,试确定C ,使得1021()0.05ii P XC =>=∑.解 因~(0,4)i X N ,则~(0,1)2iX N ,且各样本相互独立,则有:10122~(10)2i i X χ=⎛⎫⎪⎝⎭∑所以:10102211()()144iii i CP X C P X ==>=>∑∑1021110.0544i i c P X =⎛⎫=-≤= ⎪⎝⎭∑102110.9544i i c P X =⎛⎫≤= ⎪⎝⎭∑查卡方分位数表:c/4=18.31,则c=73.24.8 设总体X 具有连续的分布函数()X F x ,1,,n X X 是来自总体X 的样本,且i EX μ=,定义随机变量:1,,1,2,,0,i i i X Y i n X μμ>==≤⎧⎨⎩试确定统计量∑=ni i Y 1的分布.解 由已知条件得:~(1,)i Y B p ,其中1()X p F μ=-.因为i X 互相独立,所以i Y 也互相独立,再根据二项分布的可加性,有1~(,)nii YB n p =∑,1()X p F μ=-.9 设1,,n X X 是来自总体X 的样本,试求2,,EX DX ES 。

《统计学》教材课后习题答案

《统计学》教材课后习题答案
92.08
0.00
92.24
368.80
829.69
1175.5
589.80
0.51
32.65
114.80
246.94
661.22
合计
350
800
20300
94250
42700
800.03
2580.48
2821.43
(1)设 表示企业总产值, 表示固定资产价值,则有:
(2)
(3)当 时, (万元)
(4)根据已知数据计算可得:
全距:24 - 20 = 4
表3-2某企业30名工人在一个工作间内生产的零件数量次数分布表
按零件数分组(件)
工人数(人)
比重(%)
20
21
22
23
24
3
7
10
6
4
10.0
23.3
33.3
20.0
13.4
合计
30
100.0
3、把题中数值按大小顺序排序:
49 54 57 57 60 61 64 65 67 68 70 71 72 72 72 73 75 75 76 7678 79 81 81 81 82 83 84 85 8686 87 87 87 89 89 89 90 95 97
(4)
含义:在单位成本取值的总体误差中,有82.81%可以由单位成本与产量之间的线性关系来解释,可见回归直线的拟合程度较高。
2、根据某地区历年人均收入(元)与商品销售额(万元)资料计算的有关数据如下:(x代表人均收入,y代表销售额):
=9, =546, =260, =34362, =16918
要求:
《统计学》课后习题答案

《统计学》课后练习题答案

《统计学》课后练习题答案
3.3汇总统计表
3.4统计图的规范
3.5如何用Excel做统计图
习题
一、单项选择题
1.统计表的结构从形式上看包括()、横行标题、纵栏标题、数字资料四个部分。(知识点3.1答案:D)
A.计量单位B.附录C.指标注释D.总标题
2.如果统计表中数据的单位都一致,我们可以把单位填写在()。(知识点3.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
9.()表示事物的质的特征,是不能以数值表示的。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
10.在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。(知识点:1.7答案:B)
1.统计调查方案的主要内容是( )( )( )( )( )。(知识点2.2答案:ABCDE)
A.调查的目的B.调查对象C.调查单位D.调查时间E.调查项目
2.全国工业普查中( )( )( )( )( )。(知识点2.2答案:ABCE)
A.所有工业企业是调查对象B.每一个工业企业是调查单位C.每一个工业企业是报告单位
频数f
(棵)
频率
(%)
向上累积
向下累积
频数(棵)
频率(%)
频数(棵)
频率(%)
80-90
8
7.3
8
7.3
110
100.0
90-100
9
8.2
17
15.5
102
92.7
100-110

统计学课后习题答案(全章节)(精品).docx

统计学课后习题答案(全章节)(精品).docx

第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。

3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。

(2)制作茎叶图,并与直方图进行比较。

1.已知下表资料:25 20 10 500 2.5 30 50 25 1500 7.5 35 80 40 2800 14 40 36 18 1440 7.2 4514 7 630 3. 15 合 计200100687034. 35_y xf 6870根据频数计算工人平均日产量:〒=金^ =北* = 34.35 (件)£f 200结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。

统计学课后习题答案

统计学课后习题答案

统计学课后习题答案统计学课后习题答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】第⼀章统计学及基本概念 3第⼆章数据的收集与整理 10第三章统计表与统计图19第四章数据的描述性分析 25第五章参数估计37第六章假设检验49第七章⽅差分析62第⼋章⾮参数检验 70第九章相关与回归分析78第⼗章多元统计分析89第⼗⼀章时间序列分析101第⼗⼆章指数108第⼗⼆章指数108第⼗三章统计决策 120第⼗四章统计质量管理128第⼀章统计学及基本概念统计的涵义(统计⼯作、统计资料和统计学)统计学的内容(统计学分类:理论统计学和应⽤统计学;描述统计学与推断统计学)统计学的发展史(学派与主要代表⼈物)数据类型(定类、定序、定距和定⽐;时间序列、截⾯数据和⾯板数据;绝对数、相对数、平均数)变量:连续与离散;确定与随机总体、样本与个体标志、指标及指标体系统计计算⼯具习题⼀、单项选择题1. 推断统计学研究()。

(知识点:答案:D)A.统计数据收集的⽅法B.数据加⼯处理的⽅法C.统计数据显⽰的⽅法D.如何根据样本数据去推断总体数量特征的⽅法2. 在统计史上被认为有统计学之名⽽⽆统计学之实的学派是()。

(知识点:答案:D)A.数理统计学派 B.政治算术学派 C.社会统计学派 D.国势学派3. 下列数据中哪个是定⽐尺度衡量的数据()。

(知识点:答案:B)A.性别 B.年龄 C.籍贯 D.民族4. 统计对现象总体数量特征的认识是()。

(知识点:答案:C)A.从定性到定量B.从定量到定性C.从个体到总体D.从总体到个体5. 调查10个企业职⼯的⼯资⽔平情况,则统计总体是()。

(知识点:答案:C)个企业个企业职⼯的全部⼯资个企业的全部职⼯个企业每个职⼯的⼯资6. 从统计总体中抽取出来作为代表这⼀总体的、由部分个体组成的集合体是().(知识点:答案:A)A. 样本B. 总体单位C. 个体D. 全及总体7. 三名学⽣期末统计学考试成绩分别为80分、85分和92分,这三个数字是()。

清华大学 杨虎 应用数理统计课后习题参考答案2

清华大学 杨虎 应用数理统计课后习题参考答案2

习题三1 正常情况下,某炼铁炉的铁水含碳量2(4.55,0.108)X N .现在测试了5炉铁水,其含碳量分别为 4.28,4.40,4.42,4.35,4.37. 如果方差没有改变,问总体的均值有无显著变化?如果总体均值没有改变,问总体方差是否有显著变化(0.05α=)?解 由题意知 2~(4.55,0.108),5,0.05X N n α==,1/20.975 1.96u u α-==,设立统计原假设 0010:,:H H μμμμ=≠拒绝域为 {}00K x c μ=->,临界值1/2 1.960.108/0.0947c u α-==⋅=,由于 0 4.364 4.550.186x c μ-=-=>,所以拒绝0H ,总体的均值有显著性变化.设立统计原假设 22220010:,:H H σσσσ=≠由于0μμ=,所以当0.05α=时 22220.0250.97511()0.03694,(5)0.83,(5)12.83,n i i S X n μχχ==-===∑ 2210.02520.975(5)/50.166,(5)/5 2.567c c χχ====拒绝域为 {}222200201//K s c s c σσ=><或 由于220/ 3.167 2.567S σ=>,所以拒绝0H ,总体的方差有显著性变化.2 一种电子元件,要求其寿命不得低于1000h .现抽测25件,得其均值为x =950h .已知该种元件寿命2(100,)XN σ,问这批元件是否合格(0.05α=)?解 由题意知 2(100,)X N σ,设立统计原假设0010:,:,100.0.05.H H μμμμσα≥<==拒绝域为 {}00K x c μ=->临界值为 0.050.0532.9c u u =⋅=⋅=-由于 050x c μ-=-<,所以拒绝0H ,元件不合格.3 某食品厂用自动装罐机装罐头食品,每罐标准重量为500g,现从某天生产的罐头中随机抽测9罐,其重量分别为510,505,498,503,492,502,497,506,4α=)?95(g),假定罐头重量服从正态分布. 问 (1)机器工作是否正常(0.052)能否认为这批罐头重量的方差为5.52(0.05α=)?解 (1)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ,μ已知设立统计原假设 0010:500,:H H μμμμ==≠,拒绝域 {}00K x c μ=->当0.05α=时,2500.89,34.5, 5.8737x s s ===临界值 1(1) 4.5149c t n α-=-⋅=,由于00.8889x c μ-=<,所以接受0H ,机器工作正常.(2)设X 表示罐头的重量(单位:g). 由题意知2(,)X N μσ,σ已知设立统计原假设 222220010: 5.5,:H H σσσσ==≠拒绝域为 {}{}222200102K s c s c σσ=<> 当α=0.05时,可得2220.0250.97512500.89,34.5,(5) 2.7,(5)19.02,0.3, 2.11x s c c χχ======由于22001.0138s K σ=∈,所以接受0H ,可以认为方差为25.5.4 某部门对当前市场的鸡蛋价格情况进行调查,抽查某市20个集市上鸡蛋的平均售价为3.399(元/500克),标准差为0.269(元/500克).已知往年的平均售价一直稳定在 3.25(元/500克)左右, 问该市当前的鸡蛋售价是否明显高于往年?(0.05α=)解 设X 表示市场鸡蛋的价格(单位:元/克),由题意知2(,)X N μσ设立统计原假设 0010: 3.25,:H H μμμμ==>, 拒绝域为 {}00K x c μ=->当α=0.05时,13.399,0.269,20,0.0992x n c ασμ-====⋅=临界值由于0 3.399 3.250.149.x c μ-=-=>所以拒绝0H ,当前的鸡蛋售价明显高于往年.5 已知某厂生产的维尼纶纤度2(,0.048)X N μ,某日抽测8根纤维,其纤度分别为 1.32,1.41,1.55,1.36,1.40,1.50,1.44,1.39,问这天生产的维尼纶纤度的方差2σ是否明显变大了(0.05α=)?解 由题意知 2(,0.048)X N μ,0.05α=设立统计原假设 2222220010:0.048,:0.048H H σσσσ==>=拒绝域为{}2200K s c σ=>, 当0.05α=时, 2220.950.951.4213,0.0055,(7)14.07,(7)7 2.0096x s c χχ=====由于220 2.3988s c σ=>,所以拒绝0H ,认为强度的方差明显变大.6 某种电子元件,要求平均寿命不得低于2000h ,标准差不得超过130h .现从一批该种元件中抽取25只,测得寿命均值1950h ,标准差148h s =.设元件寿命服从正态分布,试在显著水平 α=0.05下, 确定这批元件是否合格.解 设X 表示电子元件的平均寿命(单位:h ),由题意知2(,)XN μσ 设立统计原假设 0010:=2000H <H μμμμ≥,:拒绝域为 {}00K x c μ=-<当0.05α=时,1950,148,(1)50.64x s c t n α===-=-临界值由于 050x c μ-=->,所以接受0H ,即这批电子元件的寿命是合格的.7 设n X X X ,...,,21为来自总体(,4)X N μ的样本,已知对统计假01:1;: 2.5H H μμ== 的拒绝域为0K {}2>=X .1)当9=n 时,求犯两类错的概率α与β;2)证明:当n →∞时,α→0,β→0.解 (1)由题意知 {}010~(,4),:1;: 2.5,2,9.X N H H K X n μμμ===>=犯第一类错误的概率为 ()21 1.51(1.5)0.0668.X P X P αμ⎫=>==>==-Φ=⎪⎭犯第二类错误的概率为 ()2 2.50.75(0.75)1(0.75)0.2266.X P X P βμ⎫=≤==≤=-⎪⎭=Φ-=-Φ= (2)若0:1H μ=成立,则(1,4)X N}{}{00000()=11)n P H H P X c P X c nc αμμσ=≥+=-<+=-Φ否定成立 当n →∞时,0)1nc σΦ→,所以0()n n α→→∞同理 }{0010=<+=+c )/)()=0()n P X c n βμμμσΦ-→Φ-∞→∞8 设需要对某一正态总体,4()N μ的均值进行假设检验H 0:μ= 15,H 1:μ<15取检验水平α=0.05,试写出检验H 0的统计量和拒绝域.若要求当H 1中的μ=13时犯第二类错误的概率不超过β=0.05,估计所需的样本容量n .解 由题意知 (,4)X N μ,σ已知, 设立统计原假设 01:15,:15H H μμ=<则拒绝域为}{015K X c =-<,其中临界值0.05c μ=⋅=-犯第二类错误的概率1513130.05P X P Xβ⎛⎫⎛⎫=->==->≤⎪⎭⎝⎝即1.65)0.95Φ≥, 化简得23.311n≥≈.9 设nXXX,...,,21为来自总体X~2(,)Nμσ的样本,2σ为已知, 对假设:0011:;:H Hμμμμ==其中01μμ≠,试证明:22011212()()nαβσμμμμ--=+⋅-解(1)10>μμ当时,由题意知00110:;:;H Hμμμμμ==>犯第一,二类错误分别为,αβ,则有001(|)P X c c uααμμμ-=>+=⇒=011100(|))XP X c P uαβμμμμμ-=≤+==≤=⇒()()220 11111120010 u u u u n u u ββααβαβσμμμ------=-=⇒+==+-(2)10μμ≤当时由题意知00110:,:H Hμμμμμ==≤,犯第一,二类错误分别为,αβ,则有00(|)P X c c uααμμμ=<+=⇒=()()01100220 1111120010 (|))XP X c P uu u u u n u uαβααβαββμμμμμσμμ-----=≥+==≥+=⇒=⇒+==+-10设171,...,XX为总体2(0,)X N σ样本,对假设:2201:9,: 2.905H Hσσ==的拒绝域为}{24.93K s=<. 求犯第Ⅰ类错误的概率α和犯第Ⅱ类错的概率β.解由题意知2(0,)X N σ,222~().nsnχσ统计假设为2201:9,: 2.905H Hσσ==. 拒绝域为}{24.93K s=<则犯第一,二类错误的概率,αβ分别是()()22222221717417174497.3040.0259999171744 3.319120.48810.750.253.319 3.319s s P s P P s P s P ασβσ⎛⎫⎛⎫⨯⨯=<==<=<== ⎪ ⎪⎝⎭⎝⎭⎛⎫⨯=<==-<==-= ⎪⎝⎭ 11 设总体是密度函数是1,01(;)0,x x f x θθθ-<<=⎧⎨⎩其他统计假设 01:1,:2H H θθ==.现从总体中抽取样本21,X X ,拒绝域2134ΚX X =≤⎧⎫⎨⎬⎩⎭,求:两类错误的概率,αβ 解 由题意知 010213:1;:2,, 2.4H H K X n X θθ⎧⎫===≤=⎨⎬⎩⎭当12121,0,11(;1) 1.~(0,1),(,)0,x x f x X U f x x θ<<⎧===⎨⎩时,其他 此时 212121231431(,)0.250.75ln 0.75.4x x P X f x x dx dx X αθ≤⎛⎫=≤===+ ⎪⎝⎭⎰⎰当1212122,014,0,12(;2).(,)0,0,x x x x x x f x f x x θ<<<<⎧⎧===⎨⎨⎩⎩时,其他其他 此时 21212123143992(,)ln 0.75.4168x x P X f x x dx dx X βθ>⎛⎫=>===+ ⎪⎝⎭⎰⎰ 12 设总体2(,)XN μσ,根据假设检验的基本原理,对统计假设:00110:,:()()H Hμμμμμσ==>已知;0010:,:H H μμμμσ≥<(未知),试分析其拒绝域.解 由题意知 2(,)X N μσ,当00110:,:()H H μμμμμ==>成立时()01X P X c P αμμμ=->==>=-Φ {}1100,u c u K X c ααμ--===-> 所以拒绝域为 }{00K X c μ=->当0010:,:H H μμμμ≥<成立时00()()X P X c P X c P αμμμμ⎛⎛⎫⎫=-<≥≥-<=<=Φ}{00,c K X c ααμμμ===-< 所以拒绝域为}{00K X c μ=-<13 设总体2(,)X N μσ根据假设检验的基本原理,对统计假设:(1)22220010:,:()H H σσσσμ=>已知;(2)22220010:,:()H H σσσσμ≤>未知试分析其拒绝域.解 由题意知 2~(,)X N μσ(1)假设统计假设为 22220010:=,:>H H σσσσ 其中μ已知当0H 成立时,拒绝域形式为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩由 222220=(n)ns ns χσσ,可得220=>ns P nc ασ⎧⎫⎪⎨⎬⎪⎭⎩所以 21-=()nc n αχ,由此可得拒绝域形式为2201-201=>()s K n n αχσ⎧⎫⎪⎨⎬⎪⎭⎩(2)假设统计假设为 22220010:<,:>H H σσσσ 其中μ未知当0H 成立时,选择拒绝域为 2020=>s K c σ⎧⎫⎪⎨⎬⎪⎭⎩,由222(-1)(1)n s n χσ-得 ()()()()222201111n s n s P n c Pn c ασσ⎧⎫⎧⎫--⎪⎪⎪⎪=>-≤>-⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭所以21(1)(1)n c n αχ--=-,由此可得拒绝域形式为2201-201=>(1)1s K n n αχσ⎧⎫⎪-⎨⎬-⎪⎭⎩14 从甲、乙两煤矿各取若干样品,得其含灰率(%)为,甲:24.3, 20.8, 23.7, 21.3, 17.4, 乙:18.2, 16.9, 20.2, 16.7 .假定含灰率均服从正态分布且2212=σσ,问甲、乙两煤矿的含灰率有无显著差异 (=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠ 其中12=5,=4n n当=0.05α时1/2122.3238,(2) 2.3646w s t n n α-==+-= 临界值1-212=(+2) 3.6861w c t n n s α-⋅= 拒绝域为}{0 3.6861K x y c =->=而 03.5,,.x y c H -=<接受认为没有差别15 设甲、乙两种零件彼此可以代替,但乙零件比甲零件制造简单,造价也低.经过试验获得它们的抗拉强度分别为(单位:kg/cm 2):甲:88,87,92,90,91 乙:89,89,90,84,88假定两种零件的抗拉强度都服从正态分布,且21σ =22σ.问甲种零件的抗拉强度是否比乙种的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12=5,=5n n当=0.05α时122.2136,(2) 1.86,w s t n n α==+-=- 临界值1-212=(+2) 2.2136w c t n n s α-⋅= 拒绝域为}{0 2.2136K x y c =->=而 1.6x y c -=<,所以接受0H ,认为甲的抗拉强度比乙的要高.16 甲、乙两车床生产同一种零件.现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm )为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05α)?解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 2222012112:;:H H σσσσ≥<,其中12=8,=9n n当=0.05α时 220.0955,0.0261x y s s ==,临界值12(1,1)0.2684c F n n α=--= 拒绝域为202x y s K c s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩,而22 3.6588x y s F c s ==>,接受0H ,认为乙的精度高. 17 要比较甲、乙两种轮胎的耐磨性,现从甲、乙两种轮胎中各取8个,各取一个组成一对,再随机选取8架飞机,将8对轮胎磨损量(单位:mg )数据列表如下:试问这两种轮胎的耐磨性有无显著差异?(=0.05α). 假定甲、乙两种轮胎的磨损量分别满足2212(,),Y (,)X N N μσμσ且两个样本相互独立.解 由题意知 2212(,),Y (,)X N N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12===8n n n当=0.05α时,令()221/211,320,102200,319.69,(1) 2.36461n ZZ i Z X Y z s z z s t n n α-==-==-==-=-∑ 拒绝域为}{0K z c =>,临界值 1-2=(1)2138Z c t n s α-⋅=而320z c =<,所以接受0H ,认为两种轮胎耐磨性无显著差异.18 设总体2212(,),Y (,)X N N μσμσ, 由两总体分别抽取样本X :4.4,4.0,2.0,4.8 Y :6.0,1.0,3.2,0.41)能否认为12μμ= (=0.05α)? 2)能否认为2212σσ= (=0.05α)?解 (1) 由题意知 2212(,),Y (,)XN N μσμσ设统计假设为 012112:=;:H H μμμμ≠,其中12==4=n n n令Z X Y =-,则有22111.15,()9.02331nzi z s z z n ===-=-∑, 当=0.05α时,1-2=(1) 3.1824c t n α-=,1-2=(1)/ 4.78Z c t n s α-⋅= 拒绝域为}{0K z c =>,而 1.15z c =<,所以012,.H μμ=接受认为 (2) 由题意知 2212(,),Y(,)XN N μσμσ设统计假设为 2222220111:=;:H H σσσσ≠,其中12==4=n n n 其中221.5467, 6.4367x y s s ==,拒绝域为2201222>x x y y s s K c c s s ⎧⎫⎪⎪=<⎨⎬⎪⎪⎭⎩或临界值 1/21221212(1,1)0.0648,(1,1)15.4392c F n n c F n n αα-=--==--=而22201220.2403,,.X Ys F H s σσ===接受认为19 从过去几年收集的大量记录发现,某种癌症用外科方法治疗只有2%的治愈率.一个主张化学疗法的医生认为他的非外科方法比外科方法更有效.为了用实验数据证 实他的看法,他用他的方法治疗200个癌症病人,其中有6个治好了.这个医生断 言这种样本中的3%治愈率足够证实他的看法.(1)试用假设检验方法检验这个医生的看法;(2)如果该医生实际得到了 4.5%治愈率,问检验将证实化学疗法比外科方法更有效的概率是多少?解 (1) 记每个病人的治愈情况为X ,则有(1,) XB p设统计假设为 0010:=0.02;:0.02H p p H p p >≤=,其中200,0.05n α==拒绝域为}{00K x p c =-<,临界值10.0163c αμ-== 而 000.01,,0.02.x p c H p -=<>拒绝不能认为 (2) 不犯第二类错误的概率101 4.5%P X u p p β-⎧⎫⎪⎪-=>=⎨⎬⎪⎪⎭⎩由(1,) XB p ,可得 (1),p p EX p DX n-==由中心极限定理得1 4.5%10.72X P p β⎧⎫⎪-=>=⎬⎪⎭=-Φ=20 在某公路上,50min 之间,观察每15s 内通过的汽车数,得下表通过的汽车数量0 1 2 3 4 ≥5 次数f92 68 28 11 1 0问能否认为通过的汽车辆数服从泊松分布(=0.10α)?解 设统计假设为 0010:()(),()(),200.0.10H F x F x H F x F x n α====4001ˆ,0.805.j j H X j n λν====∑若成立 记 ˆ1,2,3,4ˆ(),!j j j p P x j ej λλ-==-=则有ˆ0.8050102143243500.8050.4471,0.805*0.3599,*0.144920.8050.805*0.0389,*0.0078,10.0014,34j j p e e p p p p p p p p p p λ--=============-=∑检验统计量的值为()2522210.9500 2.1596(1)(4)9.848,~(),0.805.j j n j jnp m r np H X P ανχχχλλ-=-==<--===∑不拒绝认为且21 对某厂生产的汽缸螺栓口径进行100次抽样检验,测得100数据分组列表如下:组限 10.93~10.95 10.95~10.97 10.97~10.99 10.99~11.01 频数582034 组限11.01~11.0311.03~11.0511.05~11.0711.07~11.09频数 17 6 6 4试对螺栓的口径X 的分布做假设检验(=0.05α).解 设X 表示螺栓的口径,2(,)XN μσ,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中100,0.05,2n r α===在0H 成立的情况下,计算得88221111ˆˆ11.0024,()0.00101888j j j j i i X x v x v μσμ====⋅==-⋅=∑∑ 由ˆ11.0024(0,1)ˆ0.00319X X N μσ--=得0810.9311.002411.0911.00242.2689,, 2.74520.003190.00319x x --==-==所以110887()()0.0386,,()()0.0140p x x p x x =Φ-Φ==Φ-Φ=检验统计量的值为2822210.951()13.825(1)(5)11.07j j nj jv np m r np αχχχ-=-==>--==∑由此应该20,~(,).H X N μσ拒绝不能认为22 检查产品质量时,每次抽取10个产品检验,共抽取100次,得下表:次品数 0 1 2 3 4 5 6 7 8 9 10 频数35 40 18 5 1 1 0 0 0 0 0问次品数是否服从二项分布(=0.05α)? 解 设X 表示抽取的次品数,2(,)XN μσ,分布函数为()F x ,统计假设为0010:()(),:()()H F x F x H F x F x =≠,其中10,0.05n α==在0H 成立的情况下,01ˆNjj X pjvN N===∑计算得00101192280101102103371010010*******(1),0,1,,10;ˆˆˆ(1)0.3487,(1)0.3874,(1)0.1937ˆˆ(1)0.0574,(1)10,jj N j j N p C p p j p C p p p C p p p C p p p C p pp C p p--=-==-==-==-==-==-= 检验统计量的值为0020()21022210.950 5.1295(1)(9)16.92j j n j jnp m r np ανχχχ-=-==<--==∑因此0,~(10,0.1).H X B 不拒绝认为23 请71人比较A 、B 两种型号电视机的画面好坏,认为A 好的有23人,认为B 好的有45人,拿不定主意的有3人,是否可以认为B 的画面比A 的好(=0.10α)?解 设X 表示A 种型号电视机的画面要好些,Y 表示B 中型号电视机画面要好些分布函数分别为()X F x ,()Y F x ,统计假设为01:()(),:()(),10,100.0.05X Y X Y H F x F x H F x F x N n α=≠===由题意知++=23=45,=+n n n n n --, 检验统计量 ,min()s n n +-=而23(68)25s s α=<=,所以0,.H B 拒绝认为的画面好24 为比较两车间(生产同一种产品)的产品某项指标的波动情况,各依次抽取12个产品进行测量,得下表 甲 1.13 1.26 1.16 1.41 0.86 1.39 1.21 1.22 1.20 0.62 1.18 1.34 乙 1.211.310.991.591.411.481.311.121.601.381.601.84问这两车间所生产的产品的该项指标分布是否相同(=0.05α)?解 设,X Y 分别表示甲乙两车间所生产产品的指标分布,分布函数分别()X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,12,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为112T =且(150,300)T N拒绝域为012K u u α-⎧⎫⎪=>⎨⎬⎪⎭⎩而0.9752.194 1.96u u =>=,所以0,.H 拒绝认为指标分布不相同 25 观察两班组的劳动生产率(件/h),得下表:问两班组的劳动生产率是否相同(α=0.05)?解 设,X Y 分别表示两个组的劳动生产率,分布函数分别为(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,9,9X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为73T = 拒绝域形式为}{01212,<K T t T t t t =<>其中而12(9,9)=66,(9,9)105t t =,因此T K ∈, 所以0,.H 接受认为劳动生产率相同26 观观察得两样本值如下:Ⅰ 2.36 3.14 7.52 3.48 2.76 5.43 6.54 7.41 Ⅱ 4.38 4.25 6.54 3.28 7.21 6.54问这两样本是否来自同一总体(α=0.05)?解 设,X Y 分别表示Ⅰ,Ⅱ两个样本,分布函数分别是(),X F x ()Y F x ,统计假设为01:()(),:()(),.0.05,6,8,X Y X Y H F x F x H F x F x n m α=≠===检验统计量为秩和T ,易知T 的样本值为49T = 拒绝域形式为}{01212,<K T t T t t t =<>其中而12(6,8)=32,(6,8)58t t =,因此0T K ∈, 所以0,.H 接受认为来自同一总体 27 某种动物配偶的后代按体格的属性分为三类,各类的数目是:10,53,46,按照某种遗传模型其比率之比应为:22)1(:)1(2:p p p p --,问数据与模型是否相符(05.0=α)?解 设体格的属性为样本X ,由题意知(2,1)X B p -其密度函数为()f x ,其中22(,)(1)0,1,2xxx f x p C p p x -=-=统计假设为0010:()(),:()()H F x F x H F x F x =≠似然函数为222211(1)(1)i iii nnx x x x n nxnxi i L C pp pp C --===-=-∏∏ 解得最大似然统计量为 ˆ12xp=- 则220ˆˆ 1.330.1121p p ===1ˆˆˆ2(1)0.4454pp p =-= 22ˆˆ(1)0.4424pp =-= 拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ0.9134(1)(9) 3.8414ˆjj n j j np m r npανχχχ-=-==<--==∑所以0,.H 不拒绝认为与模型相符28 在某地区的人口调查中发现:15729245个男人中有3497个是聋哑人.16799031个女人中有3072个是聋哑人.试检验“聋哑人与性别无关”的假设(05.0=α).解 设X 表示男人中聋哑人的个数,Y 表示女人中聋哑人的个数,其分布函数分别表示为()X F x ,()Y F x . 统计假设为01:(,)()(),:(,)()()X Y X Y H F x y F x F x H F x y F x F x =≠拒绝域为}{2201(1)K m r αχχ-=>--而21022210.950ˆ()62.64(1)(1) 3.84ˆj j nj jv np m r np αχχχ-=-==>--==∑ 所以0,.H 拒绝认为聋哑与性别相关 29 下表为某药治疗感冒效果的联列表:试问该药疗效是否与年龄有关(α=0.05)?解 设X 表示该药的疗效与年龄有关,Y 表示该药的疗效与年龄无关,其分布函数分别表示为(),X F x ()Y F x . 统计假设为01:(,)()(),:(,)()(),3,3,0.05,X Y X Y H F x y F x F x H F x y F x F x r s α=≠===拒绝域为}{2201(1)K m r αχχ-=>--而 ()21022210.950ˆ13.59(1)(4)9.488ˆj j n j j np m r npανχχχ-=-==>--==∑所以0,.H 拒绝认为疗效与年龄相关30 某电子仪器厂与协作的电容器厂商定,当电容器厂提供的产品批的不合格率不超过3%时以高于95%的概率接受,当不合格率超过12%时,将以低于10%的概率接受.试为验收者制订验收抽样方案.解 由题意知,010.03,0.12,0.05,0.1p p αβ====代入式子 01()1()L p L p αβ=-⎧⎨=⎩()L p 选用式子()()()(1)(1)L P X d P U np p np p φ=≤=≤≈--计算求得 66,4n d ==,于是抽查方案是:抽查66件产品,如果抽得的不合格产品4X ≤,则接受这批产品,否则拒绝这批产品.31 假设一批产品的质量指标2(,)XN μσ(2σ已知),要求质量指标值越小越好.试给出检验抽样方案(,n c )的计算公式.若2σ未知,又如何确定检验抽样方案(,n c )?若质量高时指质量指标在一个区间时,又如何确定检验抽样方案(,n c )?解 (1) 解方程组01()1()L L μαμβ=-⎧⎨=⎩ 得 ()201u u n αβσμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+ (2) 若2σ未知,用*2M 估计2σ,从而得出公式()2*201u u M n αβμμ⎛⎫+⎪= ⎪-⎝⎭10u u c u u αβαβμμ+=+习题四1 下表数据是退火温度x (C 0)对黄铜延性η效应的试验结果,η是以延伸率计算的,且设为正态变量,求η对x 的样本线性回归方程.x (C 0)300 400 500 600 700 800 y (%)40 50 55 60 67 70 解 利用回归系数的最小二估计:101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑ 代入样本数据得到:10ˆˆ0.0589,24.6286ββ== 样本线性回归方程为:ˆ24.62860.0589yx =+ 2 证明线性回归函数中(1)回归系数1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ--; (2)回归系数0β的置信水平为α-1的置信区间为2ˆ(2)n αβ-±-.证 (1) 由于211ˆ,xx N l σββ⎛⎫ ⎪⎝⎭()0,1N222(2)ES n χσ-又因为:,()222ˆ2(2)n nσχσ--故所以()2t n -易知 {}11ˆ1pc ββα-<=-,1P α<=-⎪⎭⎩其中()122n α--所以1β的置信水平为α-1的置信区间为211ˆˆ(2)n αβ-- (2) 由0ˆβ~2201(,())xxn x N l βσ+,得 ()0,1N ,()222ˆ2(2)n n σχσ--,0ˆβ与2ˆσ相互独立,所以:()2T t n ==-根据11221(2)(2)P T t n P t n ααα--⎫⎪⎛⎫⎪-=<-=<- ⎪⎪⎝⎭⎪⎪⎭()()0001122ˆˆ22P n n ααβββ--⎛⎫ ⎪ ⎪=--<<+- ⎪ ⎪ ⎪⎝⎭得到0β的置信度为1α-的置信区间()012ˆ2n αβ--.3 某河流溶解氧浓度(以百万分之一计)随着水向下游流动时间加长而下降.现测得8组数据如下表所示.求溶解氧浓度对流动时间的样本线性回归方程,并以α=0.05对回归显著性作检验.流动时间t (天) 0.5 1.0 1.6 1.8 2.6 3.2 3.8 4.7 溶解氧浓度(百万分之一)0.28 0.29 0.29 0.18 0.17 0.18 0.10 0.12解 利用101ˆˆˆtyttl l y t βββ⎧=⎪⎨⎪=-⎩其中2211,n n ty i i tt i i i l t y nty l t nt ===-=-∑∑ 代入样本数据得到: 10ˆˆ0.0472,0.3145ββ=-= 所以,样本线性回归方程为:ˆ0.31450.0472yt =- 拒绝域形式为:{}21ˆc β> ()20.95ˆ1,6,0.0058ttF c c l σ==>而21ˆ0.0022β=,所以回归模型不显著.4 假设X 是一可控制变量,Y 是一随机变量,服从正态分布.现在不同的X 值下分别对Y 进行观测,得如下数据i x0.25 0.37 0.44 0.55 0.60 0.62 0.68 0.70 0.73 i y2.57 2.31 2.12 1.92 1.75 1.71 1.60 1.51 1.50 i x 0.75 0.82 0.84 0.87 0.88 0.90 0.95 1.00 i y1.41 1.33 1.31 1.25 1.20 1.19 1.15 1.00(1)假设X 与Y 有线性相关关系,求Y 对X 样本回归直线方程,并求2σ=DY 的无偏估计;(2)求回归系数210σββ、、的置信度为95%的置信区间; (3)检验Y 和X 之间的线性关系是否显著(=0.05α); (4)求Y 置信度为95%的预测区间;(5)为了把Y 的观测值限制在)68.1,08.1(,需把x 的值限制在什么范围?(=0.05α)解 (1) 利用101ˆˆˆxyxx l l y x βββ⎧=⎪⎨⎪=-⎩其中2211,n nxy i i xx i i i l x y nxy l x nx ===-=-∑∑计算得10ˆˆ2.0698, 3.0332ββ=-= 所以,样本线性回归方程为:ˆ 3.0332 2.0698yx =-,22ˆ0.002015ES σ== (2) 根据第二题,1β的置信区间为()112ˆˆ2n αβ--,代入值计算得到: ()1 2.1825, 1.9571β∈--,0β的置信区间为()02ˆ2n αβσ-±-,代入数值计算得到:()0 2.95069,3.1160β∈.(3) 根据F 检验法,其拒绝域形式为 }{201ˆK c β=> 而 12ˆ(2),xxc tn l ασ-=- 显然10K β∈,所以Y 和X 之间具有显著的线性关系.(4)()221(0,(1))xxx x yN l nσ-++,()2ˆ1()1(0,1)xxx x s x N l n -=++令222ˆ(2)(2),(2)ˆ()n nt n s x σχσσ---则有 1122ˆˆˆ((2),(2))y yt nyt n αα--∈--(5) 根据(4)的结论,令 22ˆˆ1.68 1.08yyαα--+=-=,解得 (0.7802,0.8172)x ∈5 证明对一元线性回归系数0ˆβ,1ˆβ相互独立的充分必要条件是0=x . 证 ""⇒()()()()()010011111ˆˆˆˆˆˆcov ,E y x ββββββββββ=--=---2110111101ˆˆˆˆ()E y x y x βββββββββ=---++2211011101ˆy xE y x ββββββββ=---++ ()2211ˆx E ββ=-- 222221111ˆˆˆ()xxE D E l σββββ=+=+若要()01ˆˆcov ,0ββ=,那么0x =.反之显然也成立,命题的证.6 设n 组观测值),...,2,1)(,(n i y x i i =之间有关系式:i i i i x x y εεββ,+-+=)(10~),...,2,1)(,0(2n i N =σ(其中∑==ni i x n x 11),且n εεε,...,,21相互独立.(1) 求系数10,ββ的最小二乘估计量10ˆ,ˆββ; (2) 证明∑∑∑===-+-=-ni in i i i n i i y y y y y y 121212)ˆ()ˆ()(,其中∑==n i i y n y 11 (3) 求10ˆ,ˆββ的分布. 解 (1) 最小化残差平方和:2201[()]Ei i S y x x ββ=---∑01ββ求,的偏导数[][]220101012()02()()0E Ei i i i i S S y x x y x x x x ββββββ∂∂=----==-----=∂∂∑∑, 01ˆˆ,xy xxl y l ββ==得到:(2) 易知()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑ 其中01ˆˆˆ()()xy i ii xxl y x x y x x l ββ=+-=+-,将其代入上式可得1ˆˆ()()0niiii y yy y =--=∑ 所以,∑∑∑===-+-=-ni i n i i i ni iy y yy y y121212)ˆ()ˆ()( (3)20ˆ~(0,),i N y εσβ=,200ˆ~(,)N nσββ∴同理,易得211ˆ~(,)xxN l σββ∴7 某矿脉中13个相邻样本点处某种金属的含量Y 与样本点对原点的距离X 有如下观测值 ix 2 3 4 5 7 8 10 i y 106.42 108.20 109.58 109.50 110.00 109.93 110.49 ix 11 14 15 16 18 19 i y 110.59 110.60 110.90 110.76 111.00 111.20分别按(1)x b a y +=;(2)x b a y ln +=;(3)xba y +=. 建立Y 对X 的回归方程,并用相关系数221TES S R -=指出其中哪一种相关最大.解 (1)令v y a bv ==+,根据最小二乘法得到,正规方程:101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,最后得到10ˆˆ1.1947,106.3013ββ==所以:样本线性回归方程为:ˆ106.3013y=+10.8861R = (2) 令ln ,v x y a bv ==+101ˆˆˆvyvv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ1.714,106.3147ββ== 所以:样本线性回归方程为:ˆ106.3147 1.714ln yx =+,20.9367R = (3) 令1,v y a bv x==+ 101ˆˆˆvy vv l l y vβββ⎧=⎪⎨⎪=-⎩,得到10ˆˆ111.4875,9.833ββ==- 所以:样本线性回归方程为:ˆ111.48759.833yx =-,30.987R = 综上,123R R R <<,所以第三种模型所表示的X Y 与的相关性最大. 8 设线性模型⎪⎩⎪⎨⎧++=+-=+=3213221211122εββεββεβy y y其中i ε~),0(2σN (1,2,3.i =)且相互独立,试求1β、2β的LS 估计.解 令()()1231212310,,,21,(,),,,12T TT Y y y y X βββεεεε⎡⎤⎢⎥==-==⎢⎥⎢⎥⎣⎦则线性模型可转化为 Y X βε=+ 根据 222TTTTES Y X Y Y Y X X X ββββ=-=-+, 令 20ES β∂=∂ 可得 ()1ˆTT X X X Y β-=即 112322311ˆˆ(23),(2)66Y Y Y Y Y ββ=++=--+ 9 养猪场为估算猪的毛重,随机抽测了14头猪的身长1x (cm),肚围2x (cm)与体重y (kg),得数据如下表所示,试求一个22110x b x b b y ++=型的经验公式.解由多元线性模型得:()2140,Y X I βεεσ=+⎧⎪⎨=⎪⎩()()()0121212,,,,,,TTTn n Y y y y ββββεεεε===()114149145581516215271159621627416971ˆ172741787918084190851929419891110395T T X X X X Y β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦代入数值得到:12ˆ15.93840.52230.4738yx x =-++ 同样得到:12ˆ15.93840.52230.4738yx x =-++ 10 某种商品的需求量y ,消费者的平均收入1x 和商品价格2x 的统计数据如下表所示.试求y 对1x 、2x 的线性回归方程. 1i x1000 600 1200 500 300 400 1300 1100 1300 300 2i x 5 7 6 6 8 7 5 4 3 9 y解 建立回归模型201122=+++(0,)Y x x N βββεεσ其中根据2()=0E S ββ∂∂,可求得β的LS 估计为 -1ˆ=(X X)T T X Y β代入x ,得0=111.6918,β 1=0.0143,β 2=7.1882,β- 则回归方程为:12ˆ111.69180.01437.1882yx x =+-11 设n 组观测值),...,2,1)(,(n i y x i i =之间有如下关系:i i i i i x x y εεβββ,+++=2210~),...,2,1)(,0(2n i N =σ,且n εεε,...,,21相互独立.(1)求系数210,,βββ的最小二乘估计量21ˆ,ˆ,ˆβββ; (2)设n i x x y i i i ,...,2,1,ˆˆˆˆ2210=++=βββ,∑==n i i y n y 11,证明:∑∑∑===-+-=-ni i ni i i ni i y y y y y y 121212)ˆ()ˆ()(解 (1) ()()()0121212,,,,,,TTTn n Y y y y ββββεεεε===1222211111Tn n X x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭()1ˆT T X X X Y β-=(2)()()()22221111ˆˆˆˆˆˆ()()2()nnnniiiiiii i i i i i i i y y y yy y y y yy y y y y ====-=-+-=-+-+--∑∑∑∑()()11ˆˆˆˆ()0nT T i i i i x x x x y yy y β-==--=∑其中:y=x ,将其代入,得到 ()22211ˆˆ()()nni i i i i i y y y yy y ==∴-=-+-∑∑ 12(1)求形如210的回归方程;(2)对上述回归方程的显著性作检验; (3)求当x =5.5时Y 的估计值.解 (1) 令212,xx x x ==,求得回归方程为:2ˆ 3.4167 2.72620.3905yx x =+- (2) 拒绝域形式为:{}21ˆc β> ()20.9521ˆ1,6ˆxxF c l σβ=>而,所以回归方程具有显著性 (3)将5.5x =代入回归方程,得到ˆ 6.5982y=13 设y 和变量12,x x 有形为ε++=2211x b x b y ,2(0,)N εσ的回归方程模型,试用最小二乘法求出12b b 和的估计.解 令 ()()()121212,,,,,TT Tn Y y y y βββεεε===1112121222Tn n x x x X x x x ⎛⎫=⎪⎝⎭残差平方和为 222T T T T E S Y X Y Y Y X X X ββββ=-=-+令 20E S β∂=∂,得到 112ˆ(,)()T T T X X X Y βββ-==.友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

统计学(第二版)课后答案

统计学(第二版)课后答案

附录1:各章练习题答案第1章绪论(略)第2章统计数据的描述2.1 (1)属于顺序数据。

(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 4610.015.035~40 40~45 45~50 159637.522.515.0合计40 100.0 直方图(略)。

2.4 (1)排序略。

(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。

2.5 (1)属于数值型数据。

(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。

2.6 (1)直方图(略)。

(2)自学考试人员年龄的分布为右偏。

(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。

2.82.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。

(2)17.21=s (万元)。

2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。

清华大学出版社统计学课后答案

清华大学出版社统计学课后答案
4、
分厂
单位产品成本/元
生产量/件
x0*f0
x1*f1
上期x0
本期x1
上期f0
本期f1
甲分厂
100
90
3000
12000
300000
1080000
60
乙分厂
120
140
7000
8000
840000
1120000
48
合计
10000
20000
1140000
2200000
108
本期平均成本:
上期平均成本:
2500
3000-4000
8
0.27
12
26
3500
4000-5000
10
0.33
22
18
4500
5000-6000
5
0.17
27
8
5500
6000-7000
3
0.10
30
6500
第四章
一、单项选择题CBABC BBCCD
二、多项选择题ABCD、CE、ABCD、BCE、ABCD
三、判断题×××√×
六、计算题
由F(t)=95.45%,查正态分布表得t=2,则抽样极限误差为
区间的范围是
该城市居民拥有小汽车的户数范围为:200000*( )
在95.45%的概率保证程度下,该城市居民拥有小汽车的户数的范围在41680至78320户之间
5、n=20
平均寿命:
(小时)
样本方差:
(小时2)
用样本方差代替总体方差,即抽样平均误差:
42
1900
798
1942.08

统计学答案

统计学答案

统计学课本课后作业题(全) 题目第1 章:P^ 6, 7第2章:P52练习题3、9、10、11第3章:P116思考题12、14 练习题16、25第4章:P114 思考题6,练习题2、4、6、13第5章:P179思考题4、练习题3、4、6、11第6章:P209 思考题4、练习题1、3、6第7章:P246思考题1、练习题1、7第8章:卩287 思考题4、10 练习题2、3第一章6••一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。

因此,他们开始检查供货商的集装箱,有问题的将其退回。

最近的一个集装箱装的是2 440加仑的油漆罐。

这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。

装满的油漆罐应为4.536 kg。

要求:(1)描述总体;最近的一个集装箱内的全部油漆;(2)描述研究变量;装满的油漆罐的质量;(3)描述样本;最近的一个集装箱内的50罐油漆;(4)描述推断。

50罐油漆的质量应为4.536X 50= 226.8 kg。

7•“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。

这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。

假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说岀A品牌或B品牌中哪个口味更好。

要求:答:(1)总体:市场上的“可口可乐"与“百事可乐"(2)研究变量:更好口味的品牌名称;⑶样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。

第二章3.某百货公司连续40天的商品销售额如下(单位:万元):41 25 29 47 38 34 30 38 43 4046 36 45 37 37 36 45 43 33 4435 28 46 34 30 37 44 26 38 4442 36 37 37 49 39 42 32 36 35根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图解:采用等距分组全距=49-25=24n=40 取组距为5,则组数为24/5=4.8取5组频数分布表:某百货公司月份各天的销售额数据如下(单位:万元):257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269 295(1)计算该百货公司日销售额的均值、中位数和四分位数;(2)计算日销售额的标准差。

统计学课后习题答案

统计学课后习题答案

第一章统计学及基本概念 1第二章数据的收集与整理 4第三章统计表与统计图7第四章数据的描述性分析 9第五章参数估计 12第六章假设检验 17第七章方差分析 21第八章非参数检验24第九章相关与回归分析27第十章多元统计分析 31第十一章时间序列分析35第十二章指数38第十二章指数38第十三章统计决策42第十四章统计质量管理45第一章统计学及基本概念1.1 统计的涵义(统计工作、统计资料和统计学)1.2 统计学的内容(统计学分类:理论统计学和应用统计学;描述统计学与推断统计学)1.3 统计学的发展史(学派与主要代表人物)1.4 数据类型(定类、定序、定距和定比;时间序列、截面数据和面板数据;绝对数、相对数、平均数)1.5 变量:连续与离散;确定与随机1.6 总体、样本与个体1.7 标志、指标及指标体系1.8 统计计算工具习题一、单项选择题1. 推断统计学研究()。

(知识点:1.2 答案:D)A.统计数据收集的方法B.数据加工处理的方法C.统计数据显示的方法D.如何根据样本数据去推断总体数量特征的方法2. 在统计史上被认为有统计学之名而无统计学之实的学派是()。

(知识点:1.3 答案:D) A.数理统计学派B.政治算术学派C.社会统计学派D.国势学派3. 下列数据中哪个是定比尺度衡量的数据()。

(知识点:1.4 答案:B)A.性别B.年龄C.籍贯D.民族4. 统计对现象总体数量特征的认识是()。

(知识点:1.6 答案:C)A.从定性到定量B.从定量到定性C.从个体到总体D.从总体到个体5. 调查10个企业职工的工资水平情况,则统计总体是()。

(知识点:1.6 答案:C)A.10个企业B.10个企业职工的全部工资C.10个企业的全部职工D.10个企业每个职工的工资6. 从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体是().(知识点:1.6 答案:A)A. 样本B. 总体单位C. 个体D. 全及总体7. 三名学生期末统计学考试成绩分别为80分、85分和92分,这三个数字是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、计算题
1、
考试成绩
学生人数
组中值x
xf
60分以下
9
55
495
3969
60-70分
17
65
1105
2057
70-80分
40
75
3000
40
80-90分
23
85
1955
1863
90分以上
11
95
1045
3971
合计
100
7600
11900
(1)平均成绩:
(分)
样本方差:
(分2)
用样本方差代替总体方差,即抽样平均误差:
360470
364008
559858
(1)价格指数:
由于价格变动而增减的市值的绝对额:
(2)总市值指数:
股票数量指数:
(3)用相对数表示:
100.98%=155.31%*65.02%
用绝对额表示:
(364008-360470)=(559858-360470)+(364008-559858)
3538万元=199388万元-195850万元
2500
3000-4000
8
0.27
12
26
3500
4000-5000
10
0.33
22
18
4500
5000-6000
5
0.17
27
8
5500
6000-7000
3
0.10
30
6500
第四章
一、单项选择题CBABC BBCCD
二、多项选择题ABCD、CE、ABCD、BCE、ABCD
三、判断题×××√×
六、计算题
336
(1)平均重量:
(克)
样本方差:
(克2)
用样本方差代替总体方差,即抽样平均误差:
(克)
由F(t)=95.45%,查正态分布表得t=2,则抽样极限误差为
(克)
区间的范围是
在95.45%的概率保证程度下,平均重量的范围在249.836至250.564克之间
4、
拥有小汽车的比例:
用样本方差代替总体方差,即抽样平均误差:
42
1900
798
1942.08
>2000
18
2100
378
12928.32
合计
100
1832
34576
乙单位平均工资:
乙单位标准差:
乙标准差系数:
因为 ,所以乙单位平均工资水平高
因为 ,所以甲单位平均工资更具有代表性
第七章
一、单项选择题CDABD ACCBD CCBBA A
二、多项选择题ACDE、ABD、ABE、CE、DE、ABCDE、ABCD、AC、AD、CD、ACD、CE、AB、ACDE、ABCDE
逆指标:2010年每个商业网点服务的人数=人口数/商业网点数=120.4/40=3.01
2011年每个商业网点服务的人数=人口数/商业网点数=223.5/76=2.94
4、
企业
一月实际产值/万元
二月份
二月实际产值为一月的百分比/%
计划产值/万元
计划产值比重/%
实际产值/万元
计划完成百分比/%

125
(小时)
已知1-α=0.95,查t分布得:
则抽样极限误差为
(小时)
区间的范围是
在95%的概率保证程度下,这批灯泡的平均寿命的范围在1587.94至1612.06小时之间
6、
支持某位候选人的比例:
用样本方差代替总体方差,即抽样平均误差:
(1)由F(t)=95%,查正态分布表得t=1.96,则抽样极限误差为
组中值x
xf
向上累积
200-300
7
250
1750
7
300-400
28
350
9800
35
400-500
42
450
18900
77(选定此组)
500-600
18
550
9900
>600
5
650
3250
合计
100
43600
(万元)
(万元)
(万元)
2、利用加权调和平均数计算:
(元)
3、利用加权算术平均数计算
第六章
(2)2011年进出口额比例相对数=出口/进口=12178/9559*100%=127.4%
2011年出口额结构相对数=出口/进出口总额=12178/21737*100%=56%
3、正指标:2010年每万人对应的商业网点数=商业网点数/人口数=40/120.4=0.33
2011年每万人对应的商业网点数=商业网点数/人口数=76/223.5=0.34
637万美元=470.18万美元+166.82万美元
3、
股票名称
市值/万元
持股数量
基期p0*q0
报告期p1*q1
q1/q0
吉林敖东
67350
37284
1.2
80820
南方航空
83820
19224
0.9
75438
南京银行
15000
114200
1
15000
深发展
194300
193300
2
388600
合计
课后答案
第一章
一、单项选择题DCBDD BBABA
二、多项选择题ABCD、CD、AD、BCDE、ABDE
三、判断题×××√√
五、综合题总体:商店销售的所有洗衣机总体单位:商品销售的每一台洗衣机
品质标志:洗衣机的品牌数量标志:洗衣机的产值数量指标:销售总额质量指标:平均价格
第二章
一、单项选择题CCDCC ABCCA二、多项选择题CD、ABC、ABCD、ABC、ACD、ABCD、ABCDE、BCE、ABE、CD
2、n=40,N=2000
合格ห้องสมุดไป่ตู้/%
箱数/箱f
组中值p
pf
94-96
9
0.95
8.55
0.004356
96-98
18
0.97
17.46
7.2E-05
98-100
13
0.99
12.87
0.004212
合计
40
3888
0.00864
平均合格率:
样本方差:
用样本方差代替总体方差,即抽样平均误差:
由F(t)=95%,查正态分布表得t=1.96,则抽样极限误差为
合计
13503
14140
13973.18
出口额指数:
出口价格指数:
出口量指数:
绝对量分析:
出口额增加量:
出口量变动使出口额增加的绝对额为:
价格变动使出口额增加的绝对额为:
用相对数表示:
104.72%=103.48%*101.19%
用绝对额表示:
(14140-13503)=(13973.18-13503)+(14140-13973.18)
21000
1464363
合计
150
257600
4234933
甲单位平均工资:
甲单位标准差:
甲标准差系数:
乙单位:
月工资/元
乙单位人数比重/%
组中值x
<1400
2
1300
26
5660.48
1400-1600
8
1500
120
8817.92
1600-1800
30
1700
510
5227.2
1800-2000
区间的范围是
在95%的概率保证程度下,该候选人的支持率在51.864%至58.136%之间
(2)由F(t)=99%,查正态分布表得t=2.58,则抽样极限误差为
区间的范围是
在99%的概率保证程度下,该候选人的支持率在50.872%至59.128%之间
(3)由F(t)=99.73%,查正态分布表得t=3,则抽样极限误差为
(分)
由F(t)=95.45%,查正态分布表得t=2,则抽样极限误差为
(分)
区间的范围是
在95.45%的概率保证程度下,平均成绩的范围在73.82至78.18分之间
(2)成绩在80分以上的学生比例为:
用样本的比重代替总体的比重,则比重的抽样平均误差为:
比重抽样极限误差为:
比重的区间范围为:
在95.45%的概率保证程度下,成绩在80分以上的学生所占的比重的范围在24.6%至43.4%之间
由F(t)=95.45%,查正态分布表得t=2,则抽样极限误差为
区间的范围是
该城市居民拥有小汽车的户数范围为:200000*( )
在95.45%的概率保证程度下,该城市居民拥有小汽车的户数的范围在41680至78320户之间
5、n=20
平均寿命:
(小时)
样本方差:
(小时2)
用样本方差代替总体方差,即抽样平均误差:
三、判断题×√×××××
六、计算题
1、
商品
计量单位
销售量
价格/元
p0*q0
p1*q1
p0*q1
基期q0
报告期q1
基期p0
基期p1
A
公斤
8000
10000
10
12
80000
120000
100000
B

2000
2500
8
9
16000
22500
20000
相关文档
最新文档