七年级数学下册期中考试卷及答案.doc

合集下载

七年级数学下册期中考试题(及参考答案)

七年级数学下册期中考试题(及参考答案)

七年级数学下册期中考试题(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.4的算术平方根是( )A .-2B .2C .2±D .25.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .87aB .87|a|C .127|a|D .127a 6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C.两点确定一条直线D.垂线段最短7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+187+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间9.已知x a=3,x b=4,则x3a-2b的值是()A.278B.2716C.11 D.1910.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.己知三角形三边长分别为6,6,23,则此三角形的最大边上的高等于________.5.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______.6.如图,在△ABC 中,∠BAC =33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB ′C ′,则∠B ′AC 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()43203x x --= (2)23211510x x -+-=2.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、C6、D7、B8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、23、15°45、-8、86、17°三、解答题(本大题共6小题,共72分)1、(1)x=9;(2)x=8.52、m>﹣23、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、略5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车。

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。

新人教版七年级数学下册期中考试卷及答案【可打印】

新人教版七年级数学下册期中考试卷及答案【可打印】

新人教版七年级数学下册期中考试卷及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.65.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.下列解方程去分母正确的是( )A .由1132x x --=,得2x ﹣1=3﹣3x B .由2124x x --=-,得2x ﹣2﹣x =﹣4 C .由135y y -=,得2y-15=3y D .由1123y y +=+,得3(y+1)=2y+6 7.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .38.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,过直线AB 上一点O 作射线OC ,∠BOC=29°18′,则∠AOC 的度数为________.3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 6.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3=___________度.三、解答题(本大题共6小题,共72分)1.按要求解下列方程组.(1)124x y x y +=⎧⎨-=-⎩(用代入法解) (2)34225x y x y +=⎧⎨-=⎩(用加减法解)2.已知关于x 的方程m +3x =4的解是关于x 的方程241346x m x x ---=-的解的2倍,求m 的值.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD上的一个动点。

2023年部编版七年级数学下册期中考试卷(加答案)

2023年部编版七年级数学下册期中考试卷(加答案)

2023年部编版七年级数学下册期中考试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.已知点P (2a+4,3a-6)在第四象限,那么a 的取值范围是( )A .-2<a <3B .a <-2C .a >3D .-2<a <25.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.观察下列图形,是中心对称图形的是( )A .B .C .D .7.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A.4 cm B.5 cm C.6 cm D.10 cm9.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6510.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.已知,|a|=﹣a,bb=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=_____.5.若不等式组x a0{12x x2+≥-->有解,则a的取值范围是________.5.若一个数的平方等于5,则这个数等于________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.计算那列各式(1)计算:﹣14+(﹣2)3÷4×[5﹣(﹣3)2](2)解方程435x-﹣1=723x-2.如果方程34217123x x-+-=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.3.如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、A6、D7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、55°3、﹣2c4、a>﹣15、6、160°三、解答题(本大题共6小题,共72分)1、(1)7;(2)x=﹣14 232、x=10;a=-4;11.3、略4、略.5、(1)作图见解析;(2)120.6、(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.。

七年级数学下册期中测试卷【及参考答案】

七年级数学下册期中测试卷【及参考答案】

七年级数学下册期中测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a 4410m =,则m =________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.如果a、b互为倒数,c、d互为相反数,且m1=-,则()22ab c d m-++=___________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、90°3、104、(4,2)或(﹣2,2).5、①③④⑤.6、3三、解答题(本大题共6小题,共72分)1、(1);(2).2、(1)a+b=0,cd=1,m=±2;(2)3或-13、略4、证明略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、略。

七年级下册数学期中试卷(含答案)完整

七年级下册数学期中试卷(含答案)完整

七年级下册数学期中试卷(含答案)完整一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.下列各点在第二象限的是( )A .()3,4B .()4,3-C .()4,3-D .()3,4-- 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个5.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1)……则点A 2021的坐标为( )A .(505,﹣504)B .(506,﹣505)C .(505,﹣505)D .(﹣506,506)二、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC =130°,∠C =30°,则∠DAE 的度数是__________.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图所示是一张长方形形状的纸条,1105∠=︒,则2∠的度数为__________.14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图,一个点在第一象限及x 轴、y 轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.三、解答题17.计算:(1)利用平方根意义求x 值:()2136x -=(2)()235832-----18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图,已知3A ∠=∠,DE BC ⊥,AB BC ⊥,求证:DE 平分CDB ∠.证明:DE BC ⊥,AB BC ⊥ (已知)90DEC ABC ∴∠=∠=︒(垂直的定义)//DE AB ∴( )23∴∠=∠( )1∠= (两直线平行,同位角相等)又3A ∠=∠(已知)∴ ( )DE ∴平分CDB ∠(角平分线的定义)20.如图,在平面直角坐标系中,已知P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 1,C 1的坐标;(2)写出平移的过程;(3)求出以A ,C ,A 1,C 1为顶点的四边形的面积.21.例如∵479.<<即273<<,∴7的整数部分为2,小数部分为72-,仿照上例回答下列问题;(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求(17)y x -的平方根.22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)23.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.24.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠(1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.C【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A .()3,4在第一象限,故本选项不合题意;B .()4,3-在第四象限,故本选项不合题意;C .()4,3-在第二象限,故本选项符合题意.D .()3,4--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.A【分析】根据平行线的性质得出∠2=∠D ,进而利用邻补角得出答案即可.【详解】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°−∠1=180°−140°=40°,故选:A.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.C【详解】解:由题意可知4的算术平方根是2,43434的算术平方根是22<22,8的立方根是2,故根据数轴可知,故选C7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°-34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°-146°-90°=124°,故选:B.【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第解析:B【分析】求2021A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2021A 在第四象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20214=5051÷,∴点2021A 在第四象限,又∵5(2,1)A -,9(3,2)A -,即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴2021(506,505)A -.故选:B .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.二、填空题9.3【分析】直接利用非负数的性质得出x ,y 的值进而得出答案.【详解】∵+|3x+2y ﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x ,y 的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠C解析:5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠CAD=90°-30°=60°,∵AE是△ABC的角平分线,∠BAC=130°,∴∠CAE=12∠BAC=12×130°=65°,∴∠DAE=∠CAE-∠CAD=65°-60°=5°.故答案为:5°.【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,解析:5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=180°-105°=75°,∴∠2=(180°-75°)÷2=52.5°,故答案为:52.5°.【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01<<时,[x]=0,(x)=1,[x)=0或1,x∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.请在此输入详解!15.三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒, 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.三、解答题17.(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ,是的平方根,或(2)【点睛解析:(1)7x =或 5.x =- (2)5【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ()2136x -=, 1x ∴-是36的平方根,16,16,x x ∴-=-=-7x ∴=或 5.x =-(225(2)2=--522=+-5=【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可 【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13. 【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE ∥AB (同位角相等,两直线解析:见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC =∠ABC =90°(垂直的定义).∴DE ∥AB (同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等),∠1=∠A (两直线平行,同位角相等).又∵∠A =∠3(已知),∴∠1=∠2(等量代换).∴DE 平分∠CDB (角平分线的定义).【点睛】本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)174,3x y =;(3)8±【分析】(117a 、b 的值;(2172171的范围,即可求出x 、y 的值,代入求出即可;(3)将174,3x y ==代入(17)y x 中即可求出.【详解】解:(1)161725<4175∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,61727∴<,31714<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.22.选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x 米,由题意得:x 2=81,解得:x =±9,∵x >0,∴x =9,∴正方形的周长为4×9=36,设建成圆形时圆的半径为r 米,由题意得:πr 2=81.解得:=r ∵r >0.∴=r∴圆的周长=2π≈ ∵56<,∴3036<,∴建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案.【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.23.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.24.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .设∠AOB=x ,∵CB ∥AO ,∴∠CBO=∠AOB=x ,∵CB ∥OA ,AB ∥OC ,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。

七年级数学下册期中考试卷【附答案】

七年级数学下册期中考试卷【附答案】

七年级数学下册期中考试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.长方形如图折叠,D 点折叠到的位置,已知∠FC =40°,则∠EFC =( )A .120°B .110°C .105°D .115°5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( )A .B .C .D . 8.计算()22b a a -⨯的结果为( ) A .bB .b -C . abD .b a 9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).525.36 5.036,253.6=15.906253600=__________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x的图象于点P .(1)求反比例函数y=k x的表达式;(2)求点B的坐标;(3)求△OAP的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、C7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、1253、15°4、205、503.66、35三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、60°5、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.6、(1)10×2+(x-10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列说法正确的是()A .4的平方根是2B .16的平方根是±4C .25的平方根是±5D .﹣36的算术平方根是62.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.如果(),P a b 在第三象限,那么点(),Q a b ab +在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行③点到直线的垂线段叫做点到直线的距离④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个5.如图,直线AB 、CD 相交于点E ,//DF AB .若70D ∠=︒,则CEB ∠等于( )A .70°B .110°C .90°D .120°6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.若,则()m a b +的值为10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号) 16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算:(1)232643--(2)()21418329⎛⎫-+⨯- ⎪⎝⎭18.求下列各式中的x .(1)x 2-81=0(2)(x ﹣1)3=819.已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F . 证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( ).∴DB ∥EC ( ).∴∠C = ( ).∵∠C =∠D (已知),∴∠D = ( ).∴DF ∥AC ( ).∴∠A =∠F ( ).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.23.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.【参考答案】一、选择题1.C解析:C【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A.4的平方根是±2,故错误,不符合题意;B16的平方根是±2,故错误,不符合题意;C.25的平方根是±5,故正确,符合题意;D.-36没有算术平方根,故错误,不符合题意;故选:C.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴a+b<0,ab>0,∴点Q(a+b,ab)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可.【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B.【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.B【分析】先根据平行线的性质得到70BED D ∠=∠=︒,然后根据平角的定义解答即可.【详解】解:∵//DF AB ,∴70BED D ∠=∠=︒,∵180BED BEC ∠+∠=︒,∴18070110CEB ∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A ,B ,C 正确.故选D .【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC 和∠CDE 的平分线交于点F ,∴∠CBF+∠CDF=12×270°=135°, ∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°,∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+(3+1)=7.与C 重合的点表示的数:3+(36 第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C 重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2021÷6所得的整数及余数,可计算出点A 2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A 6(6,0),∴OA 6=6,∵2021÷6=336…5,∴点A 2021的位于第337个循环组的第5个,∴点A 2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A 2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=443-+-3=-(2)解:原式()()()214181818329=⨯--⨯-+⨯- =1298-+-=11-.【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论.【详解】解:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°(垂直的定义),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,3【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估46c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵6<46<7,可得c=6;∴a+2b+c=3;∴a+2b+c的算术平方根为3.【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴5在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为5-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CFDE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGHBGD GF MGNC∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.。

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。

云南省昆明市2020-2021学年七年级下学期期中数学试题(word版含答案)

云南省昆明市2020-2021学年七年级下学期期中数学试题(word版含答案)

云南省昆明市2020-2021学年七年级下学期期中数学试题 学校:___________姓名:___________班级:___________考号:___________一、填空题1.不等式组:23x x >⎧⎨≥⎩的解集为 . 2.点P 在第二象限,P 到x 轴的距离为4,到y 轴的距离为3,那么点P 的坐标是 .3.一个正数x 的平方根是34a -和16a -,则x = .4.已知|2-34|x y +与25)2(x y -+互为相反数,则2021()x y -= . 5.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.6.如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,1)-根据这个规律探索可得,第100个点的坐标为____.二、单选题7.下列实数是无理数的是( )A .23BC .0D .-1.010 1018.用加减消元法解二元一次方程组3421x y x y +=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .①2⨯-② B .②(3)⨯--① C .①(2)⨯-+② D .①-②3⨯ 9.已知//AB y 轴,且点A 的坐标为(),21m m -,点B 的坐标为(2,4),则点A 的坐标是( )10.计算32∣∣+ 的值为( ) A .5 B.5-C .1 D.111.已知关于x y 、的二元一次方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a b +的值为( ) A .14 B .10 C .9 D .812.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是( ) A .2k < B .2k ≥ C .1k < D .12k ≤<13.已知(1,2)A -、(1,2)B -、(2,)E a 、(,3)F b ,若将线段AB 平移至EF ,点,A E 为对应点,则a b +的值为( )A .-1B .0C .1D .214.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩ D .331661x y x y -=⎧⎨+=⎩三、解答题152|16.解下列二元一次方程组:(1)21321x y x y +=⎧⎨-=⎩①②(用代入消元法) (2)27325x y x y -=⎧⎨+=⎩①②(用加减消元法) (3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ (4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩17.解不等式组253125123x x x x -<⎧⎪++⎨+>⎪⎩,并在数轴上表示出不等式组的解集.18.用如图(1)中的长方形和正方形纸板作侧面和底面,做成如图(2)所示的竖式和横式两种无盖纸盒.现仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存纸板用完?19.已知3y =,求x y 的平方根.20.已知在平面直角坐标系中有三点(3,0)A -,(5,4)B ,(1,5)C ,请回答如下问题: (1)在平面直角坐标系内描出A 、B 、C ,连接三边得到ABC ;(2)将ABC 三点向下平移2个单位长度,再向左平移1个单位,得到111A B C △;画出111A B C △,并写出1A 、1B 、1C 三点坐标;(3)求出111A B C △的面积.21.若方程组3293x y x y a +=⎧⎨-=-⎩的解满足0x >,0y >,试求a 的取值范围.22.七(1)班的生活委员利用周末时间为班上买了4把扫帚和6把铲子共64元,到班长那儿报账时,班长拿出了她上个月购买扫帚和铲子的账目:3把扫帚和5把铲子,共用了55元.班长说:“你这次购买有优惠吧”,生活委员惊讶地说:“你怎么知道的?这次扫帚确实打了八折.”(1)你知道班长是如何判断的吗?(2)你能求出扫帚和铲子的单价吗?23.在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组25 3211 a ba b+=-⎧⎨-=-⎩,C为y轴正半轴上一点,且S△ABC=6.(1)求A,B,C三点的坐标;(2)是否存在点P(t,t),使S△PAB=13S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由.参考答案1.x≥3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:观察不等式组可直接得不等式组的解集为:x≥3故答案为:x≥3【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(-3,4).【分析】点P在第二象限,故点P的横坐标为负,纵坐标为正,由点P到x轴与y轴的距离即可得点P的坐标.【详解】∵点P在第二象限∴点P的横坐标为负,纵坐标为正∵由点P到x轴与y轴的距离分别为4和3∴x=-3,y=4即点P的坐标为(-3,4)故答案为:(-3,4).【点睛】本题根据点所处的象限及点到两坐标轴的距离确定点的坐标,注意的是:点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.3.49【分析】根据一个正数的两个平方根互为相反数,以及互为相反数的两数之和为0,先求得a,再求得x【详解】一个正数x 的平方根是34a -和16a -,34160a a ∴-+-=解得1a =-∴这两个数分别为:7和7-2749x ∴==故答案为:49.【点睛】本题考查了平方根的应用,掌握一个数的两个平方根互为相反数是解题的关键.4.1【分析】两个非负数|2-34|x y +与25)2(x y -+互为相反数,则它们都为0,解方程组即可求出x 与y 的值,从而可求得结果的值.【详解】∵|2-34|x y +与25)2(x y -+互为相反数∴|2-34|x y ++25)2(x y -+=0∵|2-34|0x y +≥,2)25(0x y -+≥∴|2-34|x y +=0,且25)2(x y -+=0即2-340x y +=且250x y -+=即2340250x y x y -+=⎧⎨-+=⎩解方程组得:76x y =⎧⎨=⎩ ∴20212021()(76)1x y -=-=故答案为:1.【点睛】本题考查了解二元一次方程组、求代数式的值、互为相反数的性质,关键是转化,把互为相反数转化为两个非负数的和为0,从而易得方程组;当然本题有更简单的方法,只要把两个方程相减即可直接得出x -y 的值,不用解方程组.5.4【分析】设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可.【详解】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得:1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩, 解得:46x y =⎧⎨=⎩. 故答案为:4.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列出方程组求解.6.14,2().【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n 的有n 个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】解:在横坐标上,第一列有一个点,第二列有2个点.…第n 个有n 个点,并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为111,,1,222n n n n n n ---⎛⎫⎛⎫⎛⎫-⋯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ; 偶数列的坐标为,,1,1222n n n n n n ⎛⎫⎛⎫⎛⎫-⋯- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ , 由加法推算可得到第100个点位于第14列自上而下第六行.14代入上式得(14,1452-)即(14,2),故答案为(14,2). 【点睛】本题的考查了对平面直角坐标系的熟练运用能力,用“从特殊到一般”的方法入手寻找规律是解答本题的关键.7.B【详解】2是分数,是有理数;30是整数,是有理数;-1.010 101是负小数,是有理数;故选B.点睛:无限不循环小数就是无理数.8.D【分析】根据各选项分别计算,即可解答.【详解】解:A、①×2-②得:7y=7,可以消去x,不符合题意;B、②×(﹣3)-①得:﹣7x=﹣7,可以消元y,不符合题意;C、①×(﹣2)+②得:−7y=−7,可以消元x,不符合题意;D、①-②×3得:−5x+6y=1,无法消元,符合题意.故选:D.【点睛】本题考查了加减消元法解二元一次方程组,掌握加减法消去未知数是解题的关键.9.A【分析】根据平行于y轴直线上的点的横坐标相同求解即可得到答案.【详解】解:∵直线AB∥y轴,∴点A(m,2m-1)与点B(2,4)的横坐标相同,∴m=2,∴2m-1=3,∴A(2,3),故选A.【点睛】本题主要考查了平行于y轴的直线上点的坐标的特点,解题的关键在于能够熟练掌握平行于y轴的直线上的所有点的横坐标相同.10.C【详解】原式2=1,故选:C11.A【分析】把方程组的解代入方程组即得关于a、b的方程组,解方程组即可求出a、b的值,进一步即可求出结果.【详解】解:∵5xy b=⎧⎨=⎩是方程组23x y ax y+=⎧⎨-=⎩的解,∴1053b ab+=⎧⎨-=⎩,解得:122ab=⎧⎨=⎩,∴a+b=12+2=14.故选:A.【点睛】本题考查了二元一次方程组的解的定义、二元一次方程组的解法和代数式求值,属于常考题型,正确理解题意、准确计算是关键.12.B【分析】根据不等式组的解集为两个不等式解集的公共部分,所以在无解的情况下,k的值必须大于等于2.【详解】解:∵不等式组有解,∴根据口诀可知k只要大于等于2即可.故选:B【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的取值范围,同样也是利用口诀求解,求不等式组解集的口诀:大大取大,小小取小,大小小大中间找,大大小小无处找. 13.A【分析】根据对应点的纵横坐标变化确定新坐标即可.【详解】解:∵点,A E 为对应点,∴点,B F 为对应点,∴横坐标由A 到E 向右平移一个单位,纵坐标由B 到F 向上平移一个单位,∴b=-1+1=0,a=-2+1=-1,则1a b +=-,故答案选:A .【点睛】此题考查坐标的平移,根据平移前后坐标变化确定平移方式,难度一般.14.C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x 圈,乙每分钟跑y 圈则可列方组为:331661x y x y +=⎧⎨-=⎩故选:C .【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.15.10先根据算术平方根、立方根和绝对值的性质计算各项,再根据实数运算法则计算即可.【详解】解:原式(=932-=9322-++=10【点睛】本题考查了实数运算,熟练掌握算术平方根、立方根和绝对值的性质是解题关键.16.(1)35x y =⎧⎨=⎩ ;(2)32x y =⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩. 【分析】(1)由方程②变形得y =2x -1,并代入方程①,解方程即可求得x 的值,再求得的x 值代入y =2x -1中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数互为相反数,两式相加即可消去未知数y ,求得x ,再x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用代入法或加减解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)方程②变形得:y =2x -1 ③把③代入①,得:x +2(2x -1)=13解得:x =3把x =3代入③得:y =5所以方程组的解为:35x y =⎧⎨=⎩; (2)①+②得:4x =12解得:x =3把x =3代入①得:3-2y =7所以方程组的解为:32xy=⎧⎨=-⎩;(3)方程组化简得:432 342x yx y-=⎧⎨-=-⎩①②①+②得:7x-7y=0即y=x把y=x代入①得:x=2 ∴y=x=2所以原方程组的解为:22xy=⎧⎨=⎩;(4)原方程组化为:281223 x y zx yx y z++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:x+6y=13 ④④-②得:7y=14解得:y=2把y=2代入②得:x=1把y=2、x=1代入①得:z=3所以原方程组的解为:123xyz=⎧⎪=⎨⎪=⎩.【点睛】本题考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法消元,解方程组的一般思想是:三元一次方程组消元二元一次方程消元一元一次方程.熟练而准确地解方程组是本题的关键.17.51x-<<-,数轴见解析【分析】分别解不等式①②,求得其解集的公共部分,并在数轴上表示出不等式的解集.【详解】253125123x x x x -<⎧⎪⎨+++>⎪⎩①② 解不等式①得:5x >-解不等式②得:1x <-∴不等式的解集为:51x -<<-在数轴上表示出解集,如图:【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键. 18.做竖式纸盒200个,横式纸盒400个,恰好将库存纸板用完.【详解】解:设做第一种x 个,第二种y 个,根据共有1000张正方形纸板和2000张长方形纸板,可得:432000{21000x y x y +=+= ,解得:200{400x y == . 答:做第一种200个,第二种400个.19.±3【分析】根据算术平方根有意义的条件得出x 的值,再求出y 的值,得到结果.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩ 解得x =2 ∴y =3,239x y ==,∴x y 的平方根为±3.【点睛】本题考查了算术平方根有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.20.(1)见详解;(2)图形见详解,1A (-4,-2)、1B (4,2)、1C (0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可.【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:1A (-4,-2)、1B (4,2)、1C (0,3);(3)111A B C △的面积:1115845484112222⨯-⨯⨯-⨯⨯-⨯⨯= . 【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键.21.1233a -<<. 【分析】先求得二元一次方程组的解,由条件得关于a 的一元一次不等式,解不等式即可.【详解】3? 293?x y x y a +=⎧⎨-=-⎩①② ①-②得:3y =6-9a解得:y =2-3a把y =2-3a 代入①得:x =1+3a方程组的解为1323x a y a =+⎧⎨=-⎩由题意得:130230a a +>⎧⎨->⎩解不等式组得:1233a -<<. 【点睛】本题考查了解二元一次方程组及解一元一次不等式组,关键是解二元一次方程组. 22.(1)答案见解析;(2)扫帚每把5元,铲子每把8元【分析】(1)设扫帚每把x 元,铲子每把y 元,然后根据题意列出二元一次方程组求解判断即可得到答案;(2)设扫帚每把m 元,铲子每把n 元,然后根据第二次打了八折,列出正确的方程求解即可得到答案.【详解】解:(1)设扫帚每把x 元,铲子每把y 元,由题意可得:4664 3555x yx y+=⎧⎨+=⎩,解得:514xy=-⎧⎨=⎩,∵x表示的是扫帚的单价,不可能是负数,∴班长由此判定,这次扫帚打了折;(2))设扫帚每把m元,铲子每把n元,由题意可得:40.8664 3555m nm n⨯+=⎧⎨+=⎩,解得:58mn=⎧⎨=⎩,∴扫帚每把5元,铲子每把8元,答:扫帚每把5元,铲子每把8元.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够准确找出等量关系列方程求解.23.(1)A(﹣3,0),B(1,0),C(0,3).(2)P(1,1)或(﹣1,﹣1).【详解】试题分析:(1)解出方程组即可得到时点A,B的坐标,利用S△ABC=6,求出点C的坐标;(2)利用S△PAB=S△ABC求出点P的坐标即可.解:(1)由方程组,解得,∴A(﹣3,0),B(1,0),∵c为y轴正半轴上一点,且S△ABC=6,∴AB•OC=6,解得:OC=3∴C(0,3).(2)存在.理由:∵P(t,t),且S△PAB=S△ABC,∴×4×|t|=×6,解得t=±1,∴P(1,1)或(﹣1,﹣1).考点:坐标与图形性质;解二元一次方程组;三角形的面积.。

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试卷一、单选题1.通过平移,可将图(1)中的福娃“欢欢”移动到图()A .B .C .D .2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A .30°B .25°C .20°D .15°3.下列式子错误的是().A .2=±B 1=±C .3=-D 32=4.下列命题中,是真命题的是()A .无限小数都是无理数B .9的立方根是3C .坐标轴上的点不属于任何象限D .非负数都有两个平方根5.若点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标是()A .(1,2)B .(2,1)C .(1,2),(1,-2),(-1,2),(-1,-2)D .(2,1),(2,-1),(-2,1),(-2,-1)6227,π,3.14159,)2,0.1414414441…中,无理数有()个.A .2个B .3个C .4个D .5个7.在实数范围内,下列判断正确的是()A .若m n =,则m=nB .若22a b >,则a >bC 2=,则a=b D =a=b8.在平面直角坐标系中,已知点A (﹣4,﹣1)和B (﹣1,4),平移线段AB 得到线段A 1B 1,使平移后点A 1的坐标为(2,2),则平移后点B 1坐标是()A .(﹣3,1)B .(﹣3,7)C .(1,1)D .(5,7)9.如图,下列能判定//AB CD 的条件有()个.(1)180B BCD ∠+∠=︒;(2)12∠=∠;(3)34∠=∠;(4)5B ∠=∠.A .1B .2C .3D .410.如图所示,AB ∥CD ,∠DEF=120°,则∠B 的度数为()A .120°B .60°C .150°D .30°二、填空题11.已知AB //x 轴,A (﹣2,4),AB =5,则B 点坐标为_____.12.如图,将长为5cm ,宽为3cm 的长方形ABCD 先向右平移2cm ,再向下平移1cm ,得到长方形A B C D '''',则阴影部分的面积为________2cm .13.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______14.若25x+y,其中x是整数,且0<y<1,写出x﹣y的相反数______.15.将如图左侧所示的6个大小、形状完全相同的小长方形放置在右侧的大长方形中,所标尺寸如图所示(单位:cm),则图中含有阴影部分的总面积为_____cm216.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为_____.三、解答题17.计算:31128222.18.根据如表回答下列问题x23.123.223.323.423.523.623.723.823.9 x2533.61538.24542.89547.56552.25556.96561.69566.44571.21(1)566.44的平方根是;(2561≈;(保留一位小数)(3)满足23.6n<23.7的整数n有个.19.如图,在平面直角坐标系中,平行四边形ABDC 的顶点A 、B 的坐标分别为(﹣1,0),(3,0),OC .(1)求点D 的坐标;(2)求平行四边形ABDC 的面积.20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,若∠BOC 比∠DOE 大75o .求∠AOD 和∠EOF 的度数.21.已知等式y =ax 2+bx +c ,且当x =1时,y =2;当x =﹣1时,y =6;当x =0时,y =3,求a ,b ,c 的值.22.已知在平面直角坐标系中有三点()2,1A -、()3,1B 、()2,3.C 请回答如下问题:()1如图,在坐标系内描出点A 、B 、C 的位置,求出以A 、B 、C 三点为顶点的三角形的面积;()2在y轴上否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.23.如图,∠ENC+∠CMG=180°,AB//C D.(1)请判断∠2与∠3是否相等,请说明理由.(2)若∠A=∠1+70°,∠ACB=42°,求∠B的度数.24.如图,已知△ABC在平面直角坐标系中的位置如图所示,(1)写出△ABC三个顶点的坐标;(2)求出△ABC的面积;(3)在图中画出把△ABC先向左平移5个单位,再向上平移2个单位后所得的△A′B′C′,并写出各顶点坐标.25.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)=12是y轴负半轴上一点,b2=16,S△ACB(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数;(3)如图2,若点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D 作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小.参考答案1.B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】解:A、属于图形旋转所得到,故不符合;B、图形形状大小没有改变,符合平移性质,故符合;C、属于图形旋转所得到,故不符合;D、属于图形旋转所得到,故不符合.故选:B.【点睛】本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.C【分析】由a与b平行,得到一对内错角相等,即∠1=∠3,根据等腰直角三角形的性质得到∠2+∠3=45°,根据∠1的度数即可确定出∠2的度数.【详解】解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握两直线平行,内错角相等. 3.B【分析】根据算术平方根和平方根的定义求解即可.【详解】A.2=±,故该选项正确,不符合题意;B.1=,故该选项错误,符合题意;C.3=-,故该选项正确,不符合题意;D.3=,故该选项正确,不符合题意;2故选B.【点睛】本题考查算术平方根和平方根的定义,熟练掌握相关定义是解答本题的关键.4.C【分析】利用无理数的定义、立方根和平方根的意义、点的象限分布分别判断后即可确定正确的选项.【详解】解:A、无限不循环小数是无理数,故原命题是假命题,不符合题意;B、9C、坐标轴上的点不属于任何象限,故原命题是真命题,符合题意;D、非负数中的0只有一个平方根,故原命题是假命题,不符合题意;故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解无理数的定义、立方根和平方根的意义,难度不大.5.D【分析】根据到x轴的距离得到纵坐标的可能值,到y轴的距离得到横坐标的可能值,进行组合即可.【详解】∵点N到x轴的距离是1,到y轴的距离是2,∴点N的纵坐标为1或﹣1,横坐标为2或﹣2,∴点N的坐标是(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D.【点睛】本题涉及到的知识点为:点到x轴的距离为点的纵坐标的绝对值;点到y轴的距离为点的横坐标的绝对值;易错点是得到所有组合点的坐标.6.B【分析】先把式子进行化简,再根据无理数的概念判断即可.【详解】=4,2=3,,227-,π,3.14159,2,0.1414414441…,π,0.1414414441…共3个,故选:B .【点睛】此题考查的是二次根式的性质与化简,掌握无理数概念是解决此题关键.7.D 【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.8.D 【分析】各对应点之间的关系是横坐标加6,纵坐标加3,那么让点B 的横坐标加6,纵坐标加3即为平移后点B 1的坐标.【详解】由A (﹣4,﹣1)平移后的点A 1的坐标为(2,2),可得坐标的变化规律可知:各对应点之间的关系是横坐标加6,纵坐标加3,∴点B 1的横坐标为﹣1+6=5;纵坐标为4+3=7;即平移后点B 1的坐标是为(5,7).故选:D.【点睛】考核知识点:平移与坐标.熟记坐标变化规律是关键.9.C【分析】根据平行线的判定定理分别进行判断即可.【详解】解:当∠B+∠BCD=180°,AB∥CD,符合题意;当∠1=∠2时,AD∥BC,不符合题意;当∠3=∠4时,AB∥CD,符合题意;当∠B=∠5时,AB∥CD,符合题意.综上,符合题意的有3个,故选:C.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.10.B【解析】试题分析:由对顶角相等得∠CEB=∠DEF=120°,由AB∥CD可以得到∠B=180°﹣∠CEB,从而求出∠B.∴∠B=180°﹣∠CEB=60°.故选B.考点:平行线的性质.11.(﹣7,4)或(3,4)【分析】由AB平行于x轴可知,A、B两点纵坐标相等,再根据线段AB的长为5,B点可能在A点的左边或右边,分别求B点坐标.【详解】解:∵AB//x轴,A(﹣2,4),∴A、B两点纵坐标相等,都是4,又∵线段AB的长为5,∴当B点在A点左边时,B的坐标为(﹣7,4),当B点在A点右边时,B的坐标为(3,4).故答案为:(﹣7,4)或(3,4).【点睛】本题考查了与坐标轴平行的平行线上点的坐标特点及分类讨论的解题思想,根据B点位置不确定得出两种情况,此题易出现漏解.12.6【分析】利用平移的性质求出阴影部分矩形的长,宽即可解决问题.【详解】解:由题意,阴影部分是矩形,长为5-2=3(cm),宽为3-1=2(cm),∴阴影部分的面积=2×3=6(cm2),故答案为6.【点睛】本题考查平移的性质,矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】解:∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB5,12,0;∴第(3)个三角形的直角顶点的坐标是()观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.146.【分析】根据题意确定出x 与y ,即可求出所求.【详解】解:∵23,∴4<5,∵2x +y ,且0<y <1,x 是整数,∴x =4,y 2,∴x −y =4−2)=∴x −y 6-,6.【点睛】此题考查了估算无理数的大小,以及实数的性质,熟练掌握运算法则是解本题的关键.15.17【分析】设小长方形的长为x cm ,宽为y cm ,根据长方形的对边相等,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【详解】解:设小长方形的长为xcm ,宽为ycm ,依题意得:4223x y x y yy x y++=++⎧⎨+=+⎩,解得:52 xy=⎧⎨=⎩,∴图中含有阴影部分的总面积=(x+y+4)×(x+y)﹣6xy=(5+2+4)×(5+2)﹣6×5×2=17.故答案为:17.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够准确找到x与y的等量关系.16.50°【分析】∠1和∠3互余,即可求出∠3的度数,根据平行线的性质:两直线平行,同位角相等可求∠2的度数.【详解】∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.【点睛】本题主要考查平行线的基本性质,熟练掌握基础知识是解题关键.17【分析】根据绝对值的代数意义,立方根的意义以及二次根式的乘法法则计算即可.【详解】解:原式1221=+-+.【点睛】本题考查了绝对值的代数意义,立方根的意义以及二次根式的乘法法则,熟练掌握相关概念机及运算法则是解决本题的关键.;(2)-23.7;(3)518.(1)23.8【分析】(1)根据表格给的对照表即可求出;(2)根据表格给的对照表即可求出;(3)由表格找到23.62=556.96,23.72=561.69,列出不等式556.96<n<561.69,找出整数n=557,558,559,560,561的5个值即可.【详解】(1)由表中数据可得:566.44的平方根是:±23.8;故答案为:±23.8;(2)∵23.72=561.69,≈23.7,﹣23.7,故答案为:﹣23.7;(3)∵23.62=556.96,23.72=561.69,556.96<n<561.69,n=557,558,559,560,561,∴满足23.623.7的整数n有5个,故答案为:5.【点睛】本题考查平方根与平方对照表的实数运算应用,掌握利用对照表求平方根得方法.19.(1)点D(4);(2).【分析】(1)由平行四边形的性质可得AB∥CD,AB=DC=4,可求解;(2)由平行四边形的面积公式可求解.【详解】解:∵OC A(﹣1,0),点B(3,0),∴点C(0),AB=4,∵四边形ABDC是平行四边形,∴AB∥CD,AB=DC=4,∴点D(4);(2)平行四边形ABDC的面积=AB×OC=.【点睛】本题主要考查了坐标与图形,平行四边形的性质,两点之间的距离,解题的关键在于能够熟练掌握相关知识进行求解.20.∠AOD=110°,∠EOF=55°【分析】设∠BOD=2x,利用角平分线的∠BOE=x;由∠BOC比∠DOE大75°可求∠BOC=∠DOE+75°=x+75°.根据题意列出方程x+75°+2x=180°,得出x=35°,求出∠BOD=70°,即可求出∠AOD=180°-70°=110°,由FO⊥CD,可求∠BOF=90°-∠BOD=20°,可求∠EOF=∠FOB+∠BOE=55°.【详解】解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB=1BOD2 =x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°-∠BOD=180°-70°=110°,∵FO⊥CD,∴∠BOF=90°-∠BOD=90°-70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.【点睛】本题考查了角平分线、垂线、邻补角,一元一次方程等知识;弄清各个角之间的数量关系是解题的关键.21.a=1,b=﹣2,c=3.【分析】把x与y的值代入等式中计算即可求出所求.【详解】解:根据题意得:263a b ca b cc++=⎧⎪-+=⎨⎪=⎩①②③,①﹣②得:2b=﹣4,解得:b=﹣2,把b=﹣2,c=3代入①得:a=1,则a=1,b=﹣2,c=3.【点睛】此题考查了解三元一次方程组,熟练掌握运算法则是解本题的关键.22.(1)图见详解,5;(2)存在;P点的坐标为(0,5)或(0,-3).【分析】(1)由题意根据点的坐标,直接描点以及根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(2)根据题意可知因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个.【详解】解:(1)描点如图;依题意,得AB∥x轴,且AB=3-(-2)=5,∴15252ABC S =⨯⨯= ;(2)存在;∵AB=5,S △ABP =10,∴P 点到AB 的距离为4,又点P 在y 轴上,∴P 点的坐标为(0,5)或(0,-3).【点睛】本题考查点的坐标的表示方法,熟练掌握并能根据点的坐标表示三角形的底和高以及求三角形的面积.23.(1)相等,证明见解析;(2)34゜【分析】(1)根据平行线的性质与判定,对顶角相等判断即可;(2)根据平行线的性质和已知条件求解即可.【详解】(1)相等,理由如下:∠ENC +∠CMG =180°,CMG FMN∠=∠180ENC FMN ∴∠+∠=︒//FG ED∴3BFG∴∠=∠//AB CDQ 2BFG ∴∠=∠23∴∠=∠(2)//AB CDQ 180A ACD \Ð+Ð=°1ACD ACB∠=∠+∠ ∠A =∠1+70°1701180ACB ∴∠+︒+∠+∠=︒又∠ACB =42°即217042180∠+︒+︒=︒134∴∠=︒【点睛】本题考查了平行线的性质和判定,对等角相等,熟练平行线的与判定是解题的关键.24.(1)A(4,3)、B(3,1)、C(1,2);(2)△ABC的面积为52;(3)如图所示,见解析;△A′B′C′即为所求,A′(﹣1,5)、B′(﹣2,3)、C′(﹣4,4).【分析】(1)由△ABC在平面直角坐标系中的位置可得答案;(2)利用割补法求解可得答案;(3)将三个顶点分别向左平移5个单位,再向上平移2个单位得到对应点,继而首尾顺次连接即可得.【详解】解:(1)A(4,3)、B(3,1)、C(1,2);(2)△ABC的面积为2×3﹣12×1×2×2﹣12×1×3=52;(3)如图所示,△A′B′C′即为所求,由图知A′(﹣1,5)、B′(﹣2,3)、C′(﹣4,4).【点睛】考核知识点:平移.理解平移和坐标的关系是关键.25.(1)A的坐标为(6,﹣4),B(0,﹣4);(2)45°;(3)1 2α【分析】(1)先确定B的坐标,再利用S△AOB的面积求出AB,即可求出点A的坐标;(2)过点N作NM∥x轴,平行线的性质及角平分线的性质可得出∠MNO=∠NOC=1 2∠EOD,∠MNF=∠NFA=12∠AFD,利用三角形的内角和,即可得出∠ONF的度数;(3)过点N作NM∥x轴,平行线的性质及角平分线的性质可得出∠MNO=∠NOC=1 2∠EOD,∠MNF=∠NFA=12∠AFD,利用三角形外角性质,即可得出∠ONF的度数.【详解】解:(1)∵b2=16,∴b=±4,∵B(0,b)是y轴负半轴上一点,∴B(0,﹣4),∵AB⊥y轴,S△AOB=12,∴12AB•BO=12,即12•AB×4=12,解得AB=6,∴A的坐标为(6,﹣4),(2)如图1,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=12∠EOD,又∵MN∥AB,∴∠MNF=∠NFA,∵FN是∠AFD的角平分线,∴∠MNF=∠NFA=12∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵ED⊥OA,∴∠EOD+∠AFD=90°,∴∠ONF=∠MNO+∠MNF=12(∠EOD+∠AFD)=12×90°=45°.(3)如图2,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=12∠EOD,又∵MN∥AB,∴∠MNF=∠NFA,∵FN是∠AFD的角平分线,∴∠MNF=∠NFA=12∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵∠ODF=∠EOD+∠AFD=α,∴∠ONF=∠MNO+∠MNF=12(∠EOD+∠AFD)=12α.【点睛】本题属于三角形综合题,主要考查了坐标与图形性质,三角形的面积,三角形内角和定理和三角形的外角性质等知识,灵活运用以上性质定理是解题的关键.21。

七年级数学下册期中测试卷(附答案)

七年级数学下册期中测试卷(附答案)

七年级数学下册期中测试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2.如图是由4个相同的小正方形组成的网格图, 其中∠1+∠2等于()A. 150°B. 180°C. 210°D. 225°3.如图, , 且. 、是上两点, , .若, , , 则的长为()A. B. C. D.4.下列图形中, 由AB∥CD, 能得到∠1=∠2的是A. B.C. D.5.如图, 数轴上有三个点A、B、C, 若点A、B表示的数互为相反数, 则图中点C对应的数是()A. ﹣2B. 0C. 1D. 46.已知一次函数y=kx+b随着x的增大而减小, 且kb<0, 则在直角坐标系内它的大致图象是()A. B. C. D.7.在同一平面内, 设a、b、c是三条互相平行的直线, 已知a与b的距离为4cm, b与c的距离为1cm, 则a与c的距离为()A. 1cmB. 3cmC. 5cm或3cmD. 1cm或3cm8.比较2, , 的大小, 正确的是()A. B.C. D.9.一次函数满足, 且随的增大而减小, 则此函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图, 下列各式中正确的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是________.2.如图, , 设, 那么, , 的关系式________.3. 如图, 在△ABC中, ∠A=60°, BD.CD分别平分∠ABC.∠ACB, M、N、Q分别在DB.DC.BC的延长线上, BE、CE分别平分∠MBC.∠BCN, BF、CF分别平分∠EBC.∠ECQ, 则∠F=________.4. 一个等腰三角形的两边长分别为4cm和9cm, 则它的周长为______cm.5. 若一个多边形的内角和等于720度, 则这个多边形的边数是________.6. 如果a、b互为倒数, c、d互为相反数, 且, 则___________.三、解答题(本大题共6小题, 共72分)1. 解二元一次方程组(1)31529x yx y+=⎧⎨-=⎩(2)3523153232x yx y x+=⎧⎪-+⎨-=-⎪⎩2. 已知: 关于x的方程=m的解为非正数, 求m的取值范围.3. 如图, 直线AB, CD相交于点O. OF平分∠AOE, OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角: ______.(2)若∠AOD=150°, 求∠AOE的度数.4. 如图1, P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动, 点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动, 在直角三角形ABC中, ∠A=90°, 若AB=16厘米, AC=12厘米, BC=20厘米, 如果P、Q同时出发, 用t(秒)表示移动时间, 那么:(1)如图1, 若P在线段AB上运动, Q在线段CA上运动, 试求出t为何值时, QA=AP(2)如图2, 点Q在CA上运动, 试求出t为何值时, 三角形QAB的面积等于三角形ABC面积的;(3)如图3, 当P点到达C点时, P、Q两点都停止运动, 试求当t为何值时, 线段AQ的长度等于线段BP的长的5. 某小学为了了解学生每天完成家庭作业所用时间的情况, 从每班抽取相同数量的学生进行调查, 并将所得数据进行整理, 制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生, 请估计其中有多少名学生能在1.5小时内完成家庭作业?6. 为保护环境, 我市公交公司计划购买A型和B型两种环保节能公交车共10辆. 若购买A型公交车1辆, B型公交车2辆, 共需400万元;若购买A型公交车2辆, B型公交车1辆, 共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次. 若该公司购买A型和B型公交车的总费用不超过1200万元, 且确保这10辆公交车在该线路的年均载客总和不少于680万人次, 则该公司有哪几种购车方案?(3)在(2)的条件下, 哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、B3、D4、B5、C6、A7、C8、C9、A10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、22、90x y z +-=︒3.15°4、225、66、3三、解答题(本大题共6小题, 共72分)1.(1) (2)2、34m ≥.3.(1)∠BOD, ∠DOE ;(2)∠AOE =120°.4.(1) 4s;(2) 9s;(3) t= s 或16s5.(1)补图见解析;(2)27°;(3)1800名6.(1)购买A 型公交车每辆需100万元, 购买B 型公交车每辆需15 0万元.(2)三种方案:①购买A 型公交车6辆, 则B 型公交车4辆;②购买A 型公交车7辆, 则B 型公交车3辆;③购买A 型公交车8辆, 则B 型公交车2辆;(3)购买A 型公交车8辆, B 型公交车2辆费用最少, 最少费用为1100万元.。

部编版七年级数学下册期中考试卷及答案【可打印】

部编版七年级数学下册期中考试卷及答案【可打印】

部编版七年级数学下册期中考试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .65.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A .零上3℃B .零下3℃C .零上7℃D .零下7℃9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_______.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.如果一个角的补角是150°,那么这个角的余角的度数是________度.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x yx y-=⎧⎨-=⎩(2)33255(2)4x yx y+⎧=⎪⎨⎪-=-⎩2.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x一2y=0的解,则k的值是多少?3.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.试说明:AB∥CD.4.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、C6、A7、B8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、720°3、0.4、8-5、606、4.三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、5k=-3、略4、(1)证明略(2)等腰三角形,略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.。

七年级数学下册期中考试卷(附答案)

七年级数学下册期中考试卷(附答案)

七年级数学下册期中考试卷(附答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元一次方程的是()A.2x﹣1=0 B.1﹣x=y C.=4 D.1﹣x2=02.二元一次方程x+2y=5的非负整数解的个数是()A.4 B.3 C.2 D.13.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.>D.﹣a>﹣b4.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤305.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.7<m<8 B.7≤m<8 C.7≤m≤8 D.7<m≤86.下列方程的变形正确的是()A.由3+x=5,得x=5+3 B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣37.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm8.《孙子算经》是中国古代重要的数学著作,书中记载有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”译文:“现有一根木头,不知道它的长短.用一根绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木长x尺、绳子长y尺,可列方程组为()A.B.C.D.9.不等式组的整数解是()A.15 B.16 C.17 D.15,1610.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.25 B.36 C.49 D.81二.填空题(共5小题,满分15分,每小题3分)11.关于x的一元一次方程2mx﹣1=3﹣x有解,则m的值为.12.已知方程,用含y的代数式表示x,那么.13.若|x﹣2|+|y+1|=0,则x﹣2y的值为.14.如果4m、m、6﹣2m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.三.解答题(共8小题,满分75分)16.(16分)解方程与方程组:(1)=1;(2).17.(10分)解不等式和不等式组,并把解集在数轴上表示出来(1)3x﹣1<7﹣x(2)(3).18.(6分)规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=4,﹣1*3=﹣9.(1)求a、b的值;(2)若,求m,n的值.(3)若3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,且3x+4y<6,求t的最小整数值.19.(7分)在关于x,y的二元一次方程组中;(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最小值?是多少?20.(8分)已知关于x,y的方程组的解满足2x+3y>0,试求m的取值范围.21.(9分)已知关于x的方程2x﹣3=+x的解满足|x|﹣1=0,求m的值.22.(9分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元.(1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?23.(10分)某公司要将一批物资一次性运往目的地.若用m辆载重量为5吨的汽车装运,则还剩余21吨物资,若用m辆载重量为8吨的汽车装运,则最后一辆汽车只要载2吨.(1)求m的值;(2)若同时使用载重为5吨和8吨的两种汽车运输,且每辆载重量5吨的汽车的运费为700元,每辆载重量8吨的汽车的运费为1000元,请你设计一种租车方案,每辆汽车都满载且租车的总费用最少.参考答案与解析一.选择题1.【答案】解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.2.【答案】解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数;∴y=0,1,2;相应的x=5,3,1.故选:B.3.【答案】解:A、∵a>b;∴a﹣5>b﹣5;故本选项符合题意;B、∵a>b;∴;故本选项不符合题意;C、a>b,当a=2,b=1时,可得;故C不符合题意;D、∵a>b;∴﹣a<﹣b;故本选项不符合题意;故选:A.4.【答案】解:设小明还能买x支签字笔;依题意得:2×2+5x≤30.故选:D.5.【答案】解:解不等式x﹣m<0,得:x<m;解不等式6﹣2x≤﹣2,得:x≥4;则不等式组的解集为4≤x<m;∵不等式组的整数解共有4个;∴不等式组的整数解为4、5、6、7;故选:D.6.【答案】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.7.【答案】解:设每块小长方形地砖的长为xcm,宽为ycm;依题意得:;解得:;即每块小长方形地砖的宽等于15cm;故选:C.8.【答案】解:根据题意得:;故选:A.9.【答案】解:由①得x<由②得x>;所以不等式组的解集是<x<;则整数解是16.故选:B.10.【答案】解:设小长方形的长为x,宽为y,则大长方形的长为3x,宽为3y;根据题意得:;解得:;∴(3x+3y)2=(3×2+3×1)2=81.故选:D.二.填空题11.【答案】解:由2mx﹣1=3﹣x,可得(2m+1)x=4;∵关于x的一元一次方程2mx﹣1=3﹣x有解;解得:m≠﹣.故答案为:≠﹣.12.【答案】解:方程x﹣8=y;整理得:x﹣40=5y;解得:x=5y+40;故答案为:x=5y+4013.【答案】解:∵|x﹣2|+|y+1|=0;∴x﹣2=0,y+1=0;解得x=2,y=﹣1;∴x﹣2y=2﹣2×(﹣1)=2+2=4;故答案为:4.14.【答案】解:根据题意得:4m<m,m<6﹣2m,4m<6﹣2m;解得:m<0,m<2,m<1;∴m的取值范围是m<0.故答案为:m<0.15.【答案】解:设该商品的标价为每件x元;由题意得:80%x﹣10=2;解得:x=15.答:该商品的标价为每件15元.故答案为:15.三.解答题16.【答案】解:(1)去分母,得4(2x+1)﹣3(x﹣1)=12;去括号,得8x+4﹣3x+3=12;移项,得8x﹣3x=12﹣4﹣3;合并同类项,得5x=5;系数化为1,得x=1;(2);②﹣①,得3x=﹣9;解得:x=﹣3;把x=﹣3代入①,得﹣3+y=1;解得:y=4;所以方程组的解是.17.解:(1)3x﹣1<7﹣x;3x+x<7+1;4x<8;x<2;在数轴上表示为;(2)∵由①得:x≥;由②得:x>;∴不等式组的解集为:x>;在数轴上表示不等式组的解集为:;(3)∵由①得:x≤4;由②得:x>0;∴不等式组的解集为:0<x≤4;在数轴上表示不等式组的解集为:.18.【答案】解:(1)∵2*1=4,﹣1*3=﹣9,x*y=ax+by;∴;①+②×2,得7b=﹣14;解得:b=﹣2;把b=﹣2代入①,得2a﹣2=4;解得:a=3;(2)∵,a=3,b=﹣2,x*y=ax+by;∴;①×2﹣②,得﹣3n=﹣6;解得:n=2;把n=2代入②,得6m﹣2=4;解得:m=1;(3)∵3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,x*y=ax+by,a=3,b=﹣2;∴;①+②,得3x+4y=﹣2﹣3t;∵3x+4y<6;∴﹣2﹣3t<6;∴﹣3t<6+2;∴﹣3t<8;∴t>﹣;∴t的最小整数值是﹣2.19.【答案】解:(1)当a=3时,方程组为;①+②×2,得5x=5;∴x=1.把x=1代入②,得y=1.∴;(2);①+②,得3x+y=a+1;∴S=a(3x+y)=a(a+1)=a2+a=(a+)2﹣.当a=﹣时,S最小,最小值是﹣.20.【答案】解:;①+②×4,得6x+9y=9﹣m;∴2x+3y=>0;∴m<9.21.【答案】解:∵|x|﹣1=0,即|x|=1;解得x=﹣1或x=1;若x=﹣1,则2×(﹣1)﹣3=;解得m=﹣12;若x=1,则2×1﹣3=+1;解得m=﹣6;∴m=﹣12或m=﹣6.22.【答案】解:(1)设购买1个篮球需要x元,购买1个足球需要y元;依题意得:;解得:.答:购买1个篮球需要120元,购买1个足球需要98元.(2)设购买篮球m个,则购买足球(40﹣m)个;依题意得:120m+98(40﹣m)≤4200;解得:m≤12.又∵m为整数;∴m可以取的最大值为12.答:篮球最多可购买12个.23.【答案】解:(1)5m+21=8(m﹣1)+2解得m=9;(2)设使用载重为5吨的汽车x辆,使用载重为8吨的汽车y辆则5x+8y=66;x,y都是正整数或.使用载重为5吨的汽车2辆,使用载重为8吨的汽车7辆总费用最少为8400元。

人教版七年级数学下册期中考试卷及答案【完整版】

人教版七年级数学下册期中考试卷及答案【完整版】

人教版七年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12B .7+7C .12或7+7D .以上都不对2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、B7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、90°3、135°4、a≤2.5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、-4≤a<-3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。

人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.若点()1,A a a -在第二象限,则点(),1B a a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个 5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2021,0二、填空题9.计算:﹣9=_____.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.计算下列各式的值:(1)237)--(233(3)8318.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.(1)若一圆的面积与这个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆______C 正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 23.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E .①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,故选A.【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】AB CO,解://∴∠=∠=︒OAB AOC60∴∠=︒+︒=︒6090150BOC∠+∠=∠+∠=︒AOC DOA DOA BOD90∴∠=∠=︒60AOC BOD故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运解析:B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.【点睛】本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B ,∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC 沿直线AC 翻折得到△ADC ,∴S △ABC =S △ADC ,BD ⊥AC ,BE =ED ,∴S 四边形ABCD =8, ∴182AC BD ⨯⨯=, ∵BE =2,AE =3,∴BD =4,∴AC =4,∴CE =AC ﹣AE =4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD 的等面积法求解是解题的关键.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a、b为两个连续的整数,15<<,a bb=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16.【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环解析:1009 2【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是12×1×1009=10092,故答案为:10092.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.,.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 22.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯, ∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm , 324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.23.(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H 作GI ∥AB ,利用(1)中结论2∠MEN ﹣∠MHN =180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH +∠HNC =360°﹣(∠BMH +∠HND ),进而用等量代换得出2∠MEN +∠MHN =360°. ②过点H 作HT ∥MP ,由①的结论得2∠MEN +∠MHN =360°,∠H =140°,∠MEN =110°.利用平行线性质得∠ENQ +∠ENH +∠NHT =180°,由角平分线性质及邻补角可得∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.继续使用等量代换可得∠ENQ 度数.【详解】解:(1)证明:过点E 作EP ∥AB 交MH 于点Q .如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 3 页七年级数学下册期中考试卷
2018人教版七年级数学下册期中考试卷
一、选择题.(每空3分,共18分)
1.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( A ) A.130° B.140° C.150° D.160°
2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( B ) A .30° B.25° C.20° D.15°
3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( C ) A .(-1,1) B .(-2,-1) C .(-3,1) D .(1,-2) 4.下列现象属于平移的是( B )
A .冷水加热过程中小气泡上升成为大气泡
B 急刹车时汽车在地面上的滑动
C .投篮时的篮球运动
D .随风飘动的树叶在空中的运动 5.下列各数中,是无理数的为( D )
A .3
9 B. 3.14 C. 4 D.
7
22
-
6.若a 2
=9,
3
b
=-2,则a+b=( C )
A. -5
B. -11
C. -5 或 -11
D. ±5或±11 7.若点A(x,3)与点B(2,y)关于x 轴对称,则( C )
A.x=-2,y=-3;
B.x=2,y=3;
C.x=-2,y=3;
D.x=2,y=-3
8.()2
0.7-的平方根是( B ) 第9题图
A .0.7-
B .0.7±
C .0.7
D .0.49
9.如图,把图一中的ABC △经过一定的变换得到图二中的A B C '''△,如果图一中ABC △上点P 的坐标为()a b ,,那么这个点在图二中的对应点P '的坐标为( C ) A. (23)a b ++, B. (32)a b --, C. (32)a b ++, D. (23)a b --,
二、填空.(每小题3分,共27分)
10. 一个正数x 的平方根是2a -3与5-a ,则x= 49 .
11.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式:如果两条直线平行于同一条直线,那么它们相互平行。

12.一大门的栏杆如左下图所示,BA ⊥AE ,若CD ∥AE ,则∠ABC+∠BCD=270__度.
13.如左下图,有下列判断:①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。

其中正确的是__①②③_____(填序号).
14. 剧院里5排2号可以用(5,2)表示,则7排4号用 (7,4) 表示. 15.绝对值小于
7
的所有正整数有_1、2、.
16.在2-,11
7
,π,••41.0,327-这五个实数中,无理数有__11-27、、π________
17.第二象限内的点P(x,y),满足|x |=9,y 2
=4,则点P 的坐标是__(-9,2)____. 18.若点P (m -2,13+m )在y 轴上,则点P 的坐标为__(0,7)_ __
19.49的平方根是__±7______,算术平方根是__7____,-8的立方根是___-2__
三、解答题.(共70分)
20. 8分)如图,已知ABC ∆,AD BC ⊥于D ,E 为
AB 上一点,
EF BC ⊥于F ,//DG BA 交CA 于G 。

.求证12∠=∠.
第 2 页 共 3 页七年级数学下册期中考试卷
23
1312
AD BC EF BC AD EF DG
AB
⊥⊥∴∴∠=∠∴∠=∠∴∠=∠、(垂直于同一条直线的两直线相互平行)
(两直线平行,同位角相等)又
(两直线平行,内错角相等)
21.计算:()
3
2
125
0.642168

-
⨯-+
45=
52
==0
⨯⨯⨯原式(-)2+4 -22+4 23.解方程:()49
12152=-x
11
7
2446
77
x x =±
==
解: 开方 得
5-x 解得:或
24.(8分)如右图,先填空后证明.
已知: ∠1+∠2=180° 求证:a ∥b (在括号里填上推理依据) 证明:∵ ∠1=∠3( 对顶角相等 ), ∠1+∠2=180°( 已知 ) ∴ ∠3+∠2=180°( 等量代换 ) ∴ a ∥b ( 同旁内角互补,两直线平行 )
25.(10分)在平面直角坐标系中, △ABC 三个顶点的位置如图(每个小正方形的边长均为1). (1)请画出△ABC 沿x 轴向右平移3个单位长度,再沿y 轴向上平移2个单位长度后的△A ′B ′C ′(其中A ′、B ′、C ′分别是A 、B 、C 的对应点,不写画法)
(2)直接写出A ′、B ′、C ′三点的坐标: A ′(__0___,____5__); B ′(_-1____,___3___); C ′(__4___,___0___)。

(3)求△ABC 的面积。

111
=55125345222
=2517.510=6.5
ABC ⨯-⨯⨯-⨯⨯-⨯⨯---的面积
26. (10分) 计算:
23=_3___,27.0=_0.7___,20=_0__,2
6)(-=_6___,
2
)43
(-=___
34
__,
(1)根据计算,回答:
2
a 一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.
22,=a a a a
不一定等于
(2)利用你总结的规律,计算2
)14.3(π-
.=.314314ππ∴--
28.(10分)如图,已知AB ∥CD ,EF ∥MN ,∠1=115°,
( 1 )求∠2和∠4的度数; ,
EF MN, ︒
︒︒
∴∠=∠=∴∠+∠=∴∠=-∠=12115241804180265解:(1)AB
CD,
( 2 )本题隐含着一个规律,请你根据(1)的结果进行归纳:如果一个角的两边分别平行于
第 3 页 共 3 页七年级数学下册期中考试卷
另一个角的两边,那么这两个角___相等或互补________;
(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的两倍,求这两个角的大小.
解:由(2)可知这两个角互补,设一个角为x ︒
,则 另一个角为x ︒
2,
根据题意的x x ︒
+=2180,解得x
︒=60
∴这两个角分别为︒60和︒120
29.(8分)如图,直线AB 、CD 相交于点O ,OF ⊥CO,∠AOF 与∠BOD 的度数之比为3∶2,求∠AOC 的度数
.
, AOF+AOC=90,
,
AOF+BOD=90
: AOF=90OF CO AOC BOD AOF BOD ︒︒
︒︒
⊥∴∠∠∠=∠∴∠∠∴∠∠∴∠⨯
=+323
5432
解: 与的度数之比为。

相关文档
最新文档