2020年浙江高考数学试卷真题(浙江卷) Word版含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年普通高等学校招生全国统一考试(浙江卷)
数 学
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题
目要求的。

1.已知集合P ={|14}x x <<,Q={|23}x x <<,则P Q =
A .{|12}x x <≤
B .{|23}x x <<
C .{|34}x x ≤<
D .{|14}x x <<
2.已知a ∈R ,若a –1+(a –2)i(i 为虚数单位)是实数,则a =
A .1
B .–1
C .2
D .–2
3.若实数x ,y 满足约束条件310
30x y x y -+≤⎧⎨+-≥⎩
,则2z x y =+的取值范围是
A .(,4]-∞
B .[4,)+∞
C .[5,)+∞
D .(,)-∞+∞
4.函数y =x cos x +sin x 在区间[–π,π]上的图象可能是
5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是
A .
7
3
B .
143
C .3
D .6
6.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件
D .既不充分也不必要条件
7.已知等差数列{a n }的前n 项和为S n ,公差0d ≠,且1
1a d
≤.记12b S =,1222–n n n b S S ++=,n *∈N ,下列等式不可能...成立的是 A .4262a a a =+
B .4262b b b =+
C .2
428a a a =
D .2
428b b b =
8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图象上的点,则|OP |=
A .
2
B .
5
C D 9.已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x –b )(x –2a –b )≥0,则 A .a <0
B .a >0
C .b <0
D .b >0
10.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,
则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y
x
∈S .下列命题正确的是 A .若S 有4个元素,则S ∪T 有7个元素 B .若S 有4个元素,则S ∪T 有6个元素 C .若S 有3个元素,则S ∪T 有5个元素 D .若S 有3个元素,则S ∪T 有4个元素
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

11.我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)
{
}2
n n +就是二阶等差数列.数列*(1)
{
}()2
n n n +∈N 的前3项和是_______. 12.二项展开式23450123545(2)1x a a x a x a x a x a x ++++++=,则4a =_______,135a a a ++=________. 13.已知tan 2θ=,则cos2θ=_______,π
tan()4
θ-=_______.
14.已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单
位:cm )是_______.
15.已知直线(0)y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______,b =_______. 16.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取
出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______.
17.已知平面单位向量1e ,2e 满足122||-≤e e .设12=+a e e ,123=+b e e ,向量a ,b 的夹角为θ,则2cos θ
的最小值是_______.
三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)
在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2sin 0b A =. (Ⅰ)求角B 的大小;
(Ⅱ)求cos A +cos B +cos C 的取值范围.
19.(本题满分15分)
如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;
(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.
已知数列{a n },{b n },{c n }满足111112
1,,,n
n n n n n n b a b c c a a c c n b +++====-=
∈*N . (Ⅰ)若{b n }为等比数列,公比0q >,且1236b b b +=,求q 的值及数列{a n }的通项公式; (Ⅱ)若{b n }为等差数列,公差0d >,证明:*1231
1,n c c c c n d
++++<+
∈N .
21.(本题满分15分)
如图,已知椭圆2
21:12
x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点
A 的直线l 交椭圆1C 于点
B ,交抛物线2
C 于点M (B ,M 不同于A ). (Ⅰ)若1
16
p =
,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.
已知12a <≤,函数()e x
f x x a =--,其中e=2.71828…是自然对数的底数.
(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0,)+∞上的零点,证明:
0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.。

相关文档
最新文档