七年级数学三角形3篇
七年级数学下册三角形知识点总结
七年级数学下册第五章三角形知识点总结 考点一、三角形1、三角形的三边关系定理及推论1三角形三边关系定理:三角形的两边之和大于第三边. 推论:三角形的两边之差小于第三边. 2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°. 推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的来两个内角的和. ③三角形的一个外角大于任何一个和它不相邻的内角.注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.4、三角形的面积三角形的面积=21×底×高 考点二、全等三角形 1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形. 2、三角形全等的判定 三角形全等的判定定理:1边角边定理:有两边和它们的夹角对应相等的两个三角形全等可简写成“边角边”或“SAS”2角边角定理:有两角和它们的夹边对应相等的两个三角形全等可简写成“角边角”或“ASA”3边边边定理:有三边对应相等的两个三角形全等可简写成“边边边”或“SSS”.4角角边定理:有两角和一边对应相等的两个三角形全等可简写成“角角边”或“AAS”.直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等可简写成“斜边、直角边”或“HL”3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换.全等变换包括一下三种:1平移变换:把图形沿某条直线平行移动的变换叫做平移变换.2对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换.3旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换.考点三、等腰三角形1、等腰三角形的性质1等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等简称:等边对等角推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线.1三角形共有三条中位线,并且它们又重新构成一个新的三角形.2要会区别三角形中线与中位线.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:位置关系:可以证明两条直线平行.数量关系:可以证明线段的倍分关系.常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半.结论2:三条中位线将原三角形分割成四个全等的三角形.结论3:三条中位线将原三角形划分出三个面积相等的平行四边形.结论4:三角形一条中线和与它相交的中位线互相平分.结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等.解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半.3、直角三角形斜边上的中线等于斜边的一半4、直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、锐角三角函数的概念 3~8分 1、如图,在△ABC 中,∠C=90° ①c asin =∠=斜边的对边A A②c bcos =∠=斜边的邻边A A③batan =∠∠=的邻边的对边A A A④abcot =∠∠=的对边的邻边A A A2、一些特殊角的三角函数值3、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A,tanA=cot90°—A,cotA=tan90°—A2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4弦切关系:tanA=AAcos sin 三角形相似考点一、比例线段 1、比例的性质 1基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔22更比性质交换比例的内项或外项dbc a =交换内项 ⇒=d c b a acb d =交换外项 abc d =同时交换内项和外项3反比性质交换比的前项、后项:cd a b d c b a =⇒= 4合比性质:ddc b b ad c b a ±=±⇒= 5等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC,BCAC>BC,并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-≈ 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例. 考点三、相似三角形 1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形.相似用符号“∽”来表示2、相似三角形的基本定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似.相似三角形的等价关系:1反身性:对于任一△ABC,都有△ABC∽△ABC;2对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC3传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’.3、三角形相似的判定1三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似.④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似.⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2直角三角形相似的判定方法①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似4、相似三角形的性质1相似三角形的对应角相等,对应边成比例2相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比3相似三角形周长的比等于相似比4相似三角形面积的比等于相似比的平方.5、相似多边形1如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比或相似系数2相似多边形的性质①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6、位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比.性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比.由一个图形得到它的位似图形的变换叫做位似变换.利用位似变换可以把一个图形放大或缩小.。
解三角形的教学反思5篇
解三角形的教学反思5篇第一篇:解三角形的教学反思解三角形的教学反思三角形中的几何计算的主要内容是利用正弦定理和余弦定理解斜三角形,是对正、余弦定理的拓展和强化,可看作前两节课的习题课。
本节课的重点是运用正弦定理和余弦定理处理三角形中的计算问题,难点是如何在理解题意的基础上将实际问题数学化。
在求解问题时,首先要确定与未知量之间相关联的量,把所求的问题转化为由已知条件可直接求解的量上来。
为了突出重点,突破难点,结合学生的学习情况,我是从这几方面体现的:我在这节课里所选择的例题就考常出现的三种题型:解三形、判断三角形形状及三角形面积,题目都是很有代表性的,并在学生练习过程中将例题变形让学生能观察到此类题的考点及易错点。
这节课我试图根据新课标的精神去设计,去进行教学,试图以“问题”贯穿我的整个教学过程,努力改进自己的教学方法,让学生的接受式学习中融入问题解决的成份,企图把讲授式与活动式教学有机整合,希望在学生巩固基础知识的同时,能够发展学生的创新精神和实践能力,但我觉得自己还有如下几点做得还不够:①课堂容量中体来说比较适中,但由于学生的整体能力比较差,没有给出一定的时间让同学们进行讨论,把老师自己认为难的,学生不易懂得直接让优等生进行展示,学生缺乏对这几个题目事先认识,没有引起学生的共同参与,效果上有一定的折扣;②没有充分挖掘学生探索解题思路,对学生的解题思维只给出了点评,而没有引起学生对这一问题的深入研究,例如对于运用正弦定理求三角形的角的时候,出了给学生们常规方法外,还应给出老教材中关于三角形个数的方法,至少应介绍一下;③没有很好对学生的解题过程和方法进行点评,没起到“画龙点睛”的作用。
④本来准备了一道练习题,但没能很好把握时间,而放弃了,说明了对这堂课准备不足,缺乏对学生很好的了解。
高中数学必修五《解三角形》第二节余弦定理教学反思本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。
三角形的分类教学设计(精选7篇)
三角形的分类教学设计(精选7篇)三角形的分类教学设计(精选7篇)作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。
那么你有了解过教学设计吗?以下是小编精心整理的三角形的分类教学设计,欢迎大家分享。
三角形的分类教学设计篇1教材分析1、教学内容九年义务教育小学数学教科书(人教版)四年级下册第五单元:三角形的分类(按角的特征)2、教材简析“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。
学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。
三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。
学情分析四年级的学生通过一、二年级的学习,对三角形都有一定的认识,而且也学习了角的分类和线线之间的关系,因此在教学中,教师能自然的引入。
教学目标1、学生通过观察、操作、比较,会给三角形进行分类,辨认出锐角三角形、钝角三角形、直角三角形、等腰三角形、和等边三角形。
2、在三角形分类的的操作讨论活动中,总结、区别这些三角形的特征。
3、能举出三个以上在生活中见过的等腰三角形和等边三角形。
4、能通过自主探究和合作交流,提高观察能力和动手操作能力。
教学重点和难点教学重点:让学生在“做”中,学会按角和边的特征给三角形分类。
教学难点:区别、总结各类三角形的特征。
教学过程(一)复习铺垫引入新知1、师:同学们,你们说说以前学过哪些图形?三角形是什么样的?谁想上黑板画给大家看一看?2、师:从同学们画的三角形中我们可以看出三角形可能存在这三个角。
(课件出示)①锐角、直角和钝角。
②三角形有三个特点,(课件出示)有边,角,顶点。
(我这样设计的意图是:让学生复习与新知识有密切联系的旧知识,是为学习新知识做好迁移铺垫,为突破难点打基础。
七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版
例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B
七年级数学下册北师大版第五章《三角形》知识点总结
七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。
交点在三角形的内部。
(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
七年级初一下学期数学 专题03 三角形(知识点串讲)(解析版)
专题03 三角形知识网络重难突破知识点一三角形的有关概念及分类1、三角形的有关概念名称内容图形三角形由3条不在同一条直线上的线段,首尾依次相接组成的图形叫作三角形.边组成三角形的线段叫作三角形的边.组成三角形的三条线段叫做三角形的三条边.三角形的边可以用一个小写字母或两个大写字母表示,如:a,b,c或BC,CA,AB.顶点相邻两边的公共端点叫作三角形的顶点.角相邻两条边所组成的角,叫作三角形的内角,简称三角形的角.三角形的记法三角形用符号“V”来表示,顶点是A,B,C的三角形记作ABCV,读作“三角形ABC”.2、三角形的分类(1)按角分类三个角都是锐角的三角形叫作锐角三角形,有一个角是直角的三角形叫作直角三角形,有一个角是钝角的三角形叫作钝角三角形.(2)按边分类注意:①任何一个三角形最多有三个锐角,最少有两个锐角,最多有一个钝角,最多有一个直角;②等边三角形是特殊的等腰三角形;③顶点是直角的等腰三角形叫做等腰直角三角形.典例1(2019春•东台市校级月考)若一个三角形三个内角度数的比为3:4:11,那么这个三角形是() A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【解答】解:设这个三角形三个内角度数依次为3x︒,4x︒,11x︒,则3411180++=,x x x解得:10x=,∴这个三角形三个内角度数依次为30︒,40︒,110︒,则这个三角形是钝角三角形,故选:D . 典例2(2019春•徐州期中)ABC ∆中,若::1:2:3A B C ∠∠∠=,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形【解答】解:Q 在ABC ∆中,::1:2:3A B C ∠∠∠=,∴设A x ∠=,则2B x ∠=,3C x ∠=.180A B C ∠+∠+∠=︒Q ,即23180x x x ++=︒,解得30x =︒, 390C x ∴∠==︒, ABC ∴∆是直角三角形.故选:A .知识点二 三角形的三边关系(1)对于任意的ABC V ,如果把其中任意两个顶点看成定点(假设B 、C 为定点),由“两点之间,线段最短”可得:b c a +>.同理可得:a b c +>,a c b +>.即:三角形任意两边之和大于第三边.推论:三角形任意两边之差小于第三边. 理论依据:两点之间,线段最短. (2)三角形三边关系的应用①已知三角形的两边长,求第三边的取值范围; ②判断三条线段能否组成三角形.注意:判断三条线段能否组成三角形时,首先找出三条边中的最长边,然后计算另外两边的长度和,若两条短边的长度之和大于最长边的长度,就能组成三角形.典例1(2019春•泰州市泰兴市期中)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .5cm ,5cm ,11cmD .13cm ,12cm ,20cm【解答】解:A 、348+<,故以这三根木棒不可以构成三角形,不符合题意;B 、8715+=,故以这三根木棒不能构成三角形,不符合题意;C 、5511+<,故以这三根木棒不能构成三角形,不符合题意;D 、121320+>,故以这三根木棒能构成三角形,符合题意.故选:D .典例2(2019春•新吴区期中)有4根小木棒,长度分别为2cm 、3cm 、4cm 、5cm ,任意取3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为( ) A .1个B .2个C .3个D .4个【解答】解:可搭出不同的三角形为:2cm 、3cm 、4cm ;2cm 、4cm 、5cm ;3cm 、4cm 、5cm 共3个.故选:C .典例3(2019春•常熟市校级月考)已知三角形的三边长分别为4,5,x ,则x 不可能是( ) A .3B .5C .7D .9【解答】解:5454x -<<+,即19x <<,则x 的不可能的值是9,故选D .知识点三三角形的高、中线与角平分线名称图形定义几何语言三角形的高从三角形的一个顶点向它的对边所在的直线画垂线.顶点与垂足之间的线段叫作三角形的高线.简称三角形的高因为AD是ABCV的高(已知),所以AD BC⊥于点D (或90ADC ADB∠∠︒==)三角形的角平分线在三角形中,一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫作三角形的角平分线因为AD是ABCV的角平分线(已知),所以1122BAC∠∠∠==三角形的中线在三角形中,连接一个顶点和它的对边中点的线段叫作三角形的中线.三角形的三条中线相交于一点,交点叫作三角形的重心因为AD为ABCV的中线(已知),所以12BD DC BC==(或22BC BD DC==)注意:三角形的中线、角平分线、高都是一条线段;中线、角平分线都在三角形内部,三角形的高有两种特例:直角三角形中其中一条直角边的高就是另一条直角边;钝角三角形中锐角所对的边上的高在三角形的外部.(2019春•相城区期中)在ABC∆中,画出边AC上的高,下面4幅图中画法正确的是()A.B.C.D.【解答】解:如图,BE为AC边上的高.故选:D.典例2(2019春•盐城市东台市期中)下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180︒C.三角形按边分可分为不等边三角形和等腰三角形D.三角形的一个外角大于任何一个内角【解答】解:A、正确,符合线段的定义;B、正确,符合三角形内角和定理;C、正确;D、三角形的一个外角大于任何一个和它不相邻的内角,错误.故选:D.(2019春•徐州期中)如图,在ABC ∆中,AD BC ⊥,AE 平分BAC ∠. (1)若70C ∠=︒,30B ∠=︒求DAE ∠的度数; (2)若20C B ∠-∠=︒,则DAE ∠= ︒.【解答】解:(1)如图,Q 在ABC ∆中70C ∠=︒,30B ∠=︒,180180703080BAC C B ∴∠=︒-∠-∠=︒-︒-︒=︒,AE Q 平分BAC ∠,11804022CAE BAC ∴∠=∠=⨯︒=︒;AD BC ⊥Q ,70C ∠=︒,90907020CAD C ∴∠=︒-∠=︒-︒=︒,40CAE ∠=︒Q ,402020DAE CAE CAD ∴∠=∠-∠=︒-︒=︒;(2)如图,AE Q 平分BAC ∠,1(180)2CAE C B ∴∠=︒-∠-∠,AD BC ⊥Q ,90CAD C ∴∠=︒-∠,11(90)(180)()1022DAE CAD CAE C C B C B ∴∠=∠-∠=︒-∠-︒-∠-∠=∠-∠=︒.故答案为:10.巩固训练一、单选题(共8小题)1.(2019春•靖江市期中)下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .4cm 、7cm 、3cm B .7cm 、3cm 、8cmC .5cm 、6cm 、7cmD .2cm 、4cm 、5cm【解答】解:A 、437+=,不能组成三角形,故本选项正确;B 、738+>,能组成三角形,故本选项错误;C 、567+>,能组成三角形,故本选项错误;D 、425+>,能组成三角形,故本选项错误.故选:A .2.图中三角形的个数为( )A .5B .6C .7D .8【解答】解:图中是三角形的有:ABC ∆、ADE ∆、BDF ∆、DEF ∆、CEF ∆共5个. 故选:A .3.(2019春•邗江区校级月考)已知三角形三边分别为2,1a -,4,那么a 的取值范围是( ) A .15a <<B .26a <<C .37a <<D .46a <<【解答】解:依题意得:42142a -<-<+, 即:216a <-<, 37a ∴<<.故选:C . 4.下列说法:①三角形按边分类可分为三边不等的三角形、等腰三角形和等边三角形; ②等边三角形是特殊的等腰三角形; ③等腰三角形是特殊的等边三角形; ④有两边相等的三角形一定是等腰三角形;其中,说法正确的个数是( ) A .1个B .2个C .3个D .4个【解答】解:①三角形按边分类可分为三边不等的三角形、等腰三角形和等边三角形;错误. ②等边三角形是特殊的等腰三角形;正确. ③等腰三角形是特殊的等边三角形;错误. ④有两边相等的三角形一定是等腰三角形;正确, 故选:B .5.如图,若CD 是ABC ∆的中线,10AB =,则(AD = )A .5B .6C .8D .4【解答】解:Q 如图,若CD 是ABC ∆的中线,10AB =, 152AD BD AB ∴===. 故选:A .6.如图所示,ABC ∆中AC 边上的高线是( )A .线段DAB .线段BAC .线段BCD .线段BD【解答】解:由图可得,ABC ∆中AC 边上的高线是BD , 故选:D .7.(2019春•东台市校级月考)如图,AD 是ABC ∆的角平分线,点O 在AD 上,且OE BC ⊥于点E ,60BAC ∠=︒,80C ∠=︒,则EOD ∠的度数为( )A .20︒B .30︒C .10︒D .15︒【解答】解:60BAC ∠=︒Q ,80C ∠=︒, 40B ∴∠=︒.又AD Q 是BAC ∠的角平分线, 1302BAD BAC ∴∠=∠=︒,70ADE ∴∠=︒,又OE BC ⊥Q , 20EOD ∴∠=︒.故选:A .8.如图,ABC ∆中,12∠=∠,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ⊥于H ,下列判断,其中正确的个数是( ) ①BG 是ABD ∆中边AD 上的中线;②AD 既是ABC ∆中BAC ∠的角平分线,也是ABE ∆中BAE ∠的角平分线; ③CH 既是ACD ∆中AD 边上的高线,也是ACH ∆中AH 边上的高线.A .0B .1C .2D .3【解答】解:①G 为AD 中点,所以BG 是ABD ∆边AD 上的中线,故正确;②因为12∠=∠,所以AD 是ABC ∆中BAC ∠的角平分线,AG 是ABE ∆中BAE ∠的角平分线,故错误; ③因为CF AD ⊥于H ,所以CH 既是ACD ∆中AD 边上的高线,也是ACH ∆中AH 边上的高线,故正确. 故选:C .二、填空题(共3小题)9.(2019春•东台市校级月考)已知等腰三角形两边的长分别是15和7,则其周长为.【解答】解:①7cm是腰长时,三角形的三边分别为7、7、15,Q,771415+=<∴不能组成三角形,②7cm是底边时,三角形的三边分别为7、15、15,能组成三角形,周长7151537=++=,综上所述,它的周长是37.故答案为:37.10.已知三角形的三边长都是整数,其中两条边长分别是1cm和3cm,则第三条边长_____cm.【解答】解:Q两条边长分别是1cm和3cm,<,∴第三边的取值范围是2<第三边4Q三边均为整数,∴第三边的长为3cm,故答案为:3.11.已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为.【解答】解:设第三边长为a,则3131-<<+,a即24<<,aQ是整数,a∴=.a3故答案为:3.三、解答题(共3小题)12.(2019春•大丰区期中)如图,在ABC∆中,点D在BC上,且BAD CAD∠=∠,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?【解答】解:AD是ABC∆的角平分线;∆的角平分线,AF是ABEBE是ABC∆的中线,DE是ADC∆的中线.13.(2018秋•丹阳市期中)如图,ABC∆中,90∆的高、中线、角ACB∠=︒,CD、CE、CF分别是ABC平分线.求证:12∠=∠.【解答】证明:CFQ是ACB∠的平分线,∴∠=∠.ACF BCF∠=︒,CD ABACBQ,90⊥∴∠=∠(同角的余角相等).ACD BCEQ是AB边上的中线,∴=,BE CE∴∠=∠(等边对等角),BCE B1ACF ACD ACF B∴∠=∠-∠=∠-∠,∠=∠-∠=∠-∠,2BCF BCE ACF B∴∠=∠.1214.如图,ABC∆中,点D在AC上,点P在BD上,求证:AB AC BP CP+>+.【解答】证明:在ABD+>,∆中,AB AD BD 在PDC+>,∆中,CD PD PCAB AD CD PD BD PC∴+++>+∴+>+.AB AC BP CP。
全等三角形教案【7篇】
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
初中数学三角形教案(7篇)
初中数学三角形教案(7篇)一、教材分析本节教材是学生对小学阶段三角形有初步了解的根底上进一步熟悉三角形的特点和性质。
三角形是最简洁、最根本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。
对学生更好地熟悉现实世界,拓展空间观念都有特别重要的作用,同时对今后学习三角形全等、相像和解直角三解形,解决相关的实际问题,都有不行低估的作用。
二、教学目标1、结合实物和图形理解三角形定义2、找到全部三角形的共同特点。
3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。
4、初步了解任意三角形三边之间的大小关系。
5、能应用所学学问解决日常生活中与三角形有关的实际问题。
6、初步感受三角形简洁、广泛地适用性。
7、培育学生动手、动脑、合作、沟通、探究意识。
三、教学重难点重点:三角形共同特点的理解及三角形三边关系性质的理解。
难点:应用三边关系性质解决简章的实际问题。
四、教具及材料预备三角板、实物的三角形、包装带、剪刀、头钉、白纸、透亮胶等(师生同备)五、学生状况及教学构思七年级学生年龄较小,思维正处在由详细形象思维向抽象规律思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际动身说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。
六、教学实施1、师:在小学我们进一步了解了三角形,今日我们在一起进一步熟悉三角形的定义、记法及其相关性质,随之在黑板上板书课题(1熟悉三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。
生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由很多三角形构成的。
师:在黑板上画出同学熟识的屋顶框架图。
2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?甲生:每一个三角形都有三个内角,三个顶点。
乙生:每一个三角形都由三条线段组成。
丙生:任意三角形的三内角之和都等于180°。
初中数学三角形教案(优秀5篇)
初中数学教案优秀教案_初中数学三角形教案(优秀5篇)初中数学三角形教案篇一1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.3.进一步培养学生类比的教学思想.4.通过相似性质的学习,感受图形和语言的和谐美先学后教,达标导学1.教学重点:是性质定理1的应用.2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.1课时投影仪、胶片、常用画图工具.[复习提问]1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的其他性质(见图).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比初中数学三角形教案篇二1.经历探索直角三角形中边角关系的过程。
理解正切的意义和与现实生活的联系。
2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算。
1.从现实情境中探索直角三角形的边角关系。
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。
理解正切的意义,并用它来表示两边的比。
引导―探索法。
更多免费教案下载绿色圃中一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt△AB1C1和Rt△AB2C2有什么关系?⑵有什么关系?⑶如果改变B2在梯子上的位置(如B3C3)呢?⑷由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB 的值。
北师大版七年级数学下册第四章 三角形3 第1课时 利用“边边边”判定三角形全等
解题思路:
A
先找隐含条件 公共边 AD
再找现有条件 AB = AC
最后找准备条件
B
D
C
BD = CD
D 是 BC 的中点
准备条件
解:因为 D 是 BC 中点,
A
指明 所以 BD = DC.
范围 在△ABD 与△ACD 中,
摆齐 根据
因为 AB = AC ,
BD = CD,
B
AD = AD ,
所以△ABD≌△ACD (SSS).
D
C
写出 结论
针对训练 1. (邻水县期末)如图,AB = DC ,若要用“SSS”证 明△ABC≌△DCB,需要补充一个条件, 这个条件是 AC = BD (填一个条
2. 如图,AB = AC,DB = DC,请说明∠B =∠C 成立的理由.
解:连接 AD.
A
在△ABD 和△ACD 中,
因为 AB = AC,DB = DC,
AD = AD,
所以△ABD≌△ACD .
D
所以∠B =∠C .
B
C
2 三角形的稳定性
由上面的结论可知,只要三角形三边的长度确定了,这 个三角形的形状和大小就完全确定了.
探究活动:请同学们动手用三根木条钉成一个三角形框 架,再用四根木条钉成框架,看看它们的形状能否改变?
大小和形状 固定不变
形状可以改变
三角形的稳定性 四边形具有不稳定性
在生活中,我们经常会看到应用三角形稳定性的例子. 你还能举出一些其他的例子吗?
针对训练
3. 如图,桥梁的斜拉钢索是三角形的结构,主要是为了
A. 节省材料,节约成本 B. 保持对称
(C )
C. 利用三角形的稳定性
七年级数学下册第四章三角形3探索三角形全等的条件教学课件新版北师大版
1.讨论并解决“问题导引”中的问题. 略.
2.如图,∠B=∠E,AB=EF,BD=EC,那么△ABC与△FED 等吗? 为什么?AC∥FD吗? 为什么? 解:全等. 因为BD=EC, 所以BD-CD=EC-CD,即BC=ED. 因在△ABC与△FED中, 为AB=EF ,∠B=∠E ,BC=ED, 以△ABC ≌ △FED(SAS). 所以∠ACB=∠FDE.所以∠ACD=∠FDC. 所以AC∥FD.
判定两个三角形全等的思路: (1)至少应找出一组对应边相等. (2)根据已知条件寻找合适的判定方法: 已知两边想到用SAS或SSS;已知一角一边想到用SAS 或ASA或AAS;已知两角想到用ASA或AAS.
谢谢观赏
勤能补拙,学有成就!
2021下册 北师大版
第四章 三角形
3 探索三角形全等的条件(第1课时)
1.能记住三角形全等的“SSS”判定条件及三角形的稳 定性. 2.经历对三角形全等的分析与画图,归纳获得三角形全 等的条件并会利用.
如图,工人师傅要检查人字梁的∠B和∠C是否相等, 但他手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量 出DE的长为a米,FG的长为b米.若a=b,则说明∠B和∠C是 相等的.你想知道其中的奥秘吗?让我们一起来探索吧!
第四章 三角形 3 探索三角形全等的条件
第2课时
1.通过作图、思考、探索出全等三角形的“ASA”“AAS” 的判定方法.
2.能说出判定三角形全等的“ASA”“AAS”的内容,并会运 用它们解决简单的数学问题.
如图,某同学不慎将一块三角形玻璃模具打碎成了三块, 他是否可以只带其中的一块碎片到商店去,配到一块与原 来一样的三角形模具?如果可以,带哪块去合适?为什么?
关于三角形的小论文初一
关于三角形的小论文初一
在日常生活中,我们常常运用到三角形,这是为什么呢?因为三角形具有稳定性,所以在生活中我们随处可见三角形。
例如,有些小别墅的屋顶;高压电线杆的支架等等,真是数不胜数。
而三角形在古代却有他独特的作用,早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品。
例如,古希腊门纳劳斯著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理。
但是在日常生活中,三角形的运用并不只限于这些,在2001年俄罗斯就新发明了一款三角形多用途飞机,这是一种两人乘坐的小型飞机,飞机名为“克鲁伊兹”,由超轻型复合材料制成。
飞机的机身呈三角形,机翼可在飞行员控制下灵活地变换飞行角度。
“克鲁伊兹”配有特技飞行、领航和发动机参数控制系统,能够完成高难度的飞行动作且操作流程简便。
它既可对林场、输电线路、石油管道进行多架次空中监护,为农田喷药施肥,又能搭载游客,使其亲身感受惊险的特技飞行。
他的优良性能与三角形的特性是分不开的。
所以说三角形在我们的生活中是无处不在的,我想只要细心仔细的观察还能发现三角形中更多的秘密。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学三角形3篇
三角形是初一下学期学习的第四章内容,并且也是初中数学中几何部分的基础图形,这一部分是初中、高中乃至整个数学的基础,是很重要的一部分内容。
下面是小编给大家带来的七年级数学三角形,欢迎大家阅读参考,我们一起来看看吧!
初一下册数学三角形专题复习提纲
三角形
一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识点、概念总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和
垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7. 三角形内角和定理:三角形三个内角的和等于180°
初一数学三角形知识点详解
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
快速判定方法:1)不等边三角形:最小两个边之和大于第三个边,就能组成三角形。
2)等腰三角形:两腰之和大于底,就能组成三角形。
3)等边三角形:肯定能组成。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的画法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9. 三角形内角和定理:三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余 ;推论2 三角形的一个外角等于和它不相邻的两个内角和 ;推论3 三角形的一个外角大于任何一个和它不相邻的内角 ;三角形的内角和是外角和的一半。
10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角(六选三原则)
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线 ;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
初中数学三角形练习题及答案
一、基础选择题
1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( )
A.10
B.12
C.14
D.16
2.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是( )
A.a>2
B.2<a<14 p="" d.a<14<="" c.7<a
3.一个三角形的三个内角中,锐角的个数最少为 ( )
A.0
B.1
C.2
D.3
4.下面说法错误的是 ( )
A.三角形的三条角平分线交于一点
B.三角形的三条中线交于一点
C.三角形的三条高交于一点
D.三角形的三条高所在的直线交于一点
5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )
A.中线
B.角平分线
C.高线
D.三角形的角平分线
6.如图5-12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )
A.∠1
B.∠2
C.∠B
D.∠1、∠2和∠B
7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( )
A.∠APC>∠B
B.∠APC=∠B
C.∠APC<∠B
D.不能确定
8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-
c),那么 ( )
A.M>0
B.M=0
C.M<0
D.不能确定
二、填空题
1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.
2.在△ABC中,AB=6,AC=10,那么BC边的取值范围是________,周长的取值范围是___________.
3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形.
4.一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.
6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.
7.在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=________.
8.如图5-13,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D、C、F、E,则_______是△ABC中BC边上的高,_________是△ABC中AB边上的高,_________是△ABC中AC边上的高,CF是△ABC的高,也是△_______、△_______、△_______、△_________的高.
9.如图5-14,△ABC的两个外角的平分线相交于点D,如果∠A=50°,那么∠D=_____.
10.如图5-15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_____.
12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.
三、拓展选择题
1.一定在△ABC内部的线段是( )
A.锐角三角形的三条高、三条角平分线、三条中线
B.钝角三角形的三条高、三条中线、一条角平分线
C.任意三角形的一条中线、二条角平分线、三条高
D.直角三角形的三条高、三条角平分线、三条中线
2.下列说法中,正确的是( )
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形
B.一个等腰三角形一定是锐角三角形,或直角三角形
C.一个直角三角形一定不是等腰三角形,也不是等边三角形
D.一个等边三角形一定不是钝角三角形,也不是直角三角形
3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( ) A.4对 B.5对 C.6对 D.7对
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无法确定
5.下列各题中给出的三条线段不能组成三角形的是( )
A.a+1,a+2,a+3(a>0)
B.三条线段的比为4∶6∶10
C.3cm,8cm,10cm
D.3a,5a,2a+1(a>0)
6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )
A.18
B.15
C.18或15
D.无法确定
7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种
A.3
B.4
C.5
D.6
10.三角形所有外角的和是( )A.180°B.360° C.720° D.540°
11.锐角三角形中,角α的取值范围是( )
A.0°<α<90°;
B.60°<α<180°;
C.60°<α<90°;
D.60°≤α<90°
12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( )
A.锐角或直角三角形;
B.钝角或锐角三角形;
C.直角三角形;
D.钝角或直角三角形
13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC 一定( )
A.小于直角;
B.等于直角;
C.大于直角;
D.大于或等于直角
一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C
二、1.3;2. ;3.锐角;4. ; 6. 和 ; 7. ; 8. ;9. ; 10. ;12. .
三1.A; 2.D; 3.A; 4.C;5.B; 6.C; 7.B; 10.C; 11.D; 12.D; 13.C;。