结构件电磁兼容设计规范电磁屏蔽设计
电磁兼容和电磁屏蔽的主要工程技术方法
电磁兼容和电磁屏蔽的主要工程技术方法1. 电磁兼容技术方法之一是尽量减小电路布局中的回路面积,这有助于减小电磁干扰。
这意味着设计中应该尽量减小布线的环路面积。
2. 选择合适的布局层次结构也是一种重要的电磁屏蔽技术方法。
通过合理分层,避免信号与电源、地线等混在一起,可以有效降低信号之间的干扰。
3. 对于高频电路来说,使用差分信号传输线也是一种有效的电磁兼容技术。
差分传输线可以减少共模干扰,提高抗干扰能力。
4. 地线规划也是电磁兼容的重要技术方法之一。
合理规划地线可以有效减小地线回流路径,减少电磁辐射。
5. 采用屏蔽罩是一种主要的电磁屏蔽技术方法。
屏蔽罩可以在外部环境中有效隔离电磁波,防止外界信号对内部电路的干扰。
6. 采用电磁屏蔽材料也是一种常见的技术方法。
这些材料可以有效吸收或反射电磁波,达到屏蔽的效果。
7. 采用差分模式传输也是一种重要的电磁兼容技术方法。
差分模式传输可以有效抑制共模干扰,提高电路的抗干扰能力。
8. 对高频电路进行阻抗匹配也是一种重要的电磁兼容技术方法。
匹配合适的阻抗可以减少信号的反射和干扰。
9. 采用屏蔽线缆也是一种有效的电磁屏蔽技术方法。
屏蔽线缆可以有效减少外界电磁干扰对信号传输线的影响。
10. 采用滤波器是一种重要的电磁兼容技术方法。
滤波器可以对电路进行频率选择性的衰减,减小干扰信号的影响。
11. 为电路添加衰减器也是一种重要的电磁兼容技术方法。
衰减器可以在电路中消耗多余的能量,减小电磁辐射。
12. 采用电磁屏蔽罩也是一种常见的技术方法。
电磁屏蔽罩可以有效隔离内部电路和外部电磁波,减小相互干扰。
13. 采用电磁屏蔽涂料是一种有效的技术方法。
这种涂料可以在电路表面形成一层屏蔽膜,减小电磁波的穿透和干扰。
14. 采用差分信号调整器也是一种重要的电磁兼容技术方法。
这种调整器可以对信号进行差分调整,提高抗干扰能力。
15. 在设计中合理规划电路的接地方式也是一种重要的电磁兼容技术方法。
EMC结构电磁兼容设计规范
EMC结构电磁兼容设计规范篇一:结构设计规范(EMC)EMC)结构设计规范(一、简单介绍电磁兼容(Electromagnetic Compatibility , EMC)主要包含两方面的内容:电磁干扰(Electromagnetic interference , EMI);电磁敏感度(Electromagnetic susceptibility , EMS)。
电磁兼容设计基本目的:A 产品内部的电路互相不产生干扰,达到预期的功能。
B 产品产生的电磁干扰强度低于特定的极限值。
C 产品对外界的电磁干扰有一定的抵抗能力。
在整个工程项目中,必须在设计初期开始考虑电磁兼容设计。
一方面,这对整个工程项目是个效费比很高的措施,可以有效避免工程项目因为电磁兼容测试未通过而进行较大修改,产生不必要的成本增加。
另一方面,设计初期可以采取相对较多的措施来满足电磁兼容要求,而后期可采取的措施比较少。
在电磁兼容设计过程中,针对电磁兼容性设计中的重点和关键,分析并预测各种可能发生的电磁兼容问题,并从设计初期就采取各种技术措施,包括电路硬件与结构相结合、电路硬件与软件相结合的技术措施。
电磁兼容设计主要从三个方面进行:电磁干扰源、耦合途径、敏感设备。
耦合途径主要是传导和辐射。
具体在工程措施上,电磁兼容设计可分为:信号设计、线路设计、屏蔽、接地与搭接、滤波、合理布局。
其中与结构关系较大的有:屏蔽、接地与搭接、合理布局。
但这并不代表其他措施与结构设计完全无关,结构设计亦需配合完成其他措施比如滤波。
二、常用测试项目2.1、在电磁兼容性设计中遇到的常用测试项目,从干扰源与被干扰对象角度可分为两类:EMI(电磁发射测试)和EMS(电磁敏感度测试)。
EMI(电磁发射):被测设备为干扰源,测试被测设备对外界发射的电磁干扰水平。
EMS(电磁敏感度):被测设备为被干扰对象,通过测试仪器对其施加干扰,测试其抗干扰能力。
从干扰路径区分,又可分为传导测试与辐射测试两类。
华为电磁兼容性结构设计规范_第三版
华为技术有限公司企业技术规范DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范2003-11-30发布2003-11-30实施华为技术有限公司内部公开前言本规范于1999年12月25日首次发布。
本规范于2001年7月30日第一次修订。
本规范于2003年10月30日第二次修订。
本规范起草单位:华为技术有限公司结构造型设计部本规范授予解释单位:华为技术有限公司结构造型设计部本华为机密,未经许可不得扩散第1页,共1页内部公开目录1 范围 ... ....................................................................................................................................................... ..42 引用标准 ... . (4)3 术语 ... ....................................................................................................................................................... ..44 电磁兼容基本概念... (5)4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .54.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..65 电磁屏蔽基本理论... (7)5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..75.2.1缝隙屏蔽 ... (7)5.2.2开孔屏蔽 ... (8)5.2.3电缆穿透 ... . (10)6 屏蔽设计 ... .. (12)6.1 结构屏蔽效能 ... .......................................................................................................................... (12)6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13)6.3.1紧固点连接缝隙 ... . (13)A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13B. 增加缝隙深度 ... ........................................................................................................................................ .. 14C. 紧固点间距 ... ........................................................................................................................................... (15)6.3.2安装屏蔽材料 ... ....................................................................................................................... ..176.3.3屏蔽材料的选用 ... . (18)A. 常用屏蔽材料................................................................... .. 18B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 246.4 开孔屏蔽设计 ... .......................................................................................................................... (25)6.4.1通风孔屏蔽 ... .......................................................................................................................... (25)6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27)6.6 单板局部屏蔽 ... .......................................................................................................................... (28)6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28内部公开6.6.2围框式屏蔽盒 ... ....................................................................................................................... ..29 6.7 电缆屏蔽设计 ... .......................................................................................................................... (29)6.7.1屏蔽电缆夹线结构 ... .............................................................................................................. (29)6.7.2屏蔽连接器转接 ... . (33)6.7.3非屏蔽电缆 ... .......................................................................................................................... (34)7 典型结构屏蔽方案... . (35)7.1 2000机柜屏蔽方案 ... . (35)7.2 2000插箱屏蔽方案 ... . (37)7.3 S3026C钣金盒式结构屏蔽方案 ... (42)7.4 R413PAVO塑胶盒式结构屏蔽方案 ... ..................................................................................... (44)7.5 型材面板屏蔽 ... .......................................................................................................................... (47)7.6 钣金面板屏蔽 ... .......................................................................................................................... (49)7.7 扣板面板屏蔽 ... .......................................................................................................................... (52)7.8 防水&屏蔽结构 ... ....................................................................................................................... (54)内部公开电磁兼容性结构设计规范1范围本规范规定了电磁兼容性结构屏蔽设计的主要原理、设计原则和详细设计方法。
建筑电气设计的规范要求与电磁兼容性
建筑电气设计的规范要求与电磁兼容性规范要求在建筑电气设计中,电磁兼容性是一个重要的考虑因素。
电磁兼容性指的是在电磁环境中保证设备、系统和建筑结构之间相互协调和正常运行的能力。
为了确保建筑电气系统的正常运行和安全性,以下是建筑电气设计的规范要求与电磁兼容性的相关内容。
一、电气线缆布置在建筑电气设计中,电气线缆的布置应当符合以下要求:1. 线缆的布置应当避免与强电设备、强磁场设备和高频设备的交叉布置,以减少电磁干扰。
2. 电气线缆应当与其他线缆和设备保持一定的距离,避免相互干扰。
3. 线缆的走向和布置应当合理,避免出现交叉或大弯曲的情况,以减少电缆中的电磁泄漏。
二、设备接地设备的接地是电气安全和电磁兼容性的重要因素。
在建筑电气设计中,设备的接地应当符合以下要求:1. 设备的接地电阻应当满足相关标准的要求,以确保设备接地的效果。
2. 设备的接地应当与大地形成良好的连接,减少接地电阻,提高接地效果。
3. 不同设备之间的接地应当相互连接,形成同一接地系统,避免电磁回路的浮动。
三、综合布线系统在建筑电气设计中,综合布线系统对于电磁兼容性也有一定的影响。
以下是综合布线系统的规范要求:1. 综合布线系统应当合理规划,并遵循相关的标准和规范要求。
2. 综合布线系统的线缆应当符合相关标准的要求,并具备良好的屏蔽性能,以减少电磁干扰。
3. 综合布线系统的设备应当具备良好的抗干扰能力,以确保信号传输的稳定性和可靠性。
四、设备保护与隔离在建筑电气设计中,设备的保护性与隔离性对于电磁兼容性也有一定的意义。
以下是设备保护与隔离的规范要求:1. 对于敏感设备,应当设置适当的保护措施,如隔离箱、屏蔽罩等,以减少外界电磁干扰。
2. 不同设备之间应当设置适当的隔离距离,避免相互干扰。
3. 电气设备应当符合相关的标准和规范要求,以确保良好的电磁兼容性。
总结:建筑电气设计中,电磁兼容性是一个重要的方面。
电气线缆布置、设备接地、综合布线系统和设备保护与隔离都是建筑电气设计中需要考虑到的规范要求。
结构电磁兼容设计
结构电磁兼容设计结构电磁兼容设计是指在电子设备的设计过程中,考虑到设备结构对电磁兼容性的影响,并采取相应的措施以消除或减小电磁干扰和电磁辐射。
在现代社会中,电子设备的使用越来越普及,而不同设备之间的电磁干扰问题也逐渐凸显。
为什么需要结构电磁兼容设计?首先,电子设备本身会产生电磁辐射,在无线通信、雷达、电视广播等频段中工作的设备会产生较高的电磁辐射能量,可能干扰到其他设备的正常工作。
此外,电子设备还会受到外部电磁场的影响,如电磁波、闪电等,这些外部电磁场也可能对设备的正常工作造成影响。
因此,为了确保电子设备的正常运行,结构电磁兼容设计显得尤为重要。
在结构电磁兼容设计中,需要考虑以下几个方面。
首先,设备的物理结构应该合理布局,避免少数部件集中装配在一起,以减少电磁干扰的发生。
其次,合理选择材料,尤其是金属材料的使用,可以有效地屏蔽电磁辐射。
此外,通过合理设计接地系统和接口结构也能降低电磁干扰和提高抗干扰能力。
在实际的结构电磁兼容设计中,通常需要考虑以下关键因素。
首先是电磁辐射的控制。
为了减小设备对外部电磁环境的干扰,应选择合适的屏蔽材料和设计屏蔽结构,以降低电磁辐射。
其次是电磁干扰的抑制。
通过合理的布线、屏蔽技术和滤波器的应用,可以有效抑制电磁干扰的发生和传播。
此外,还可以通过优化电磁场分布和控制电磁波传输路径,减小电磁干扰的影响范围。
在结构电磁兼容设计中,还需考虑设备的抗电磁脉冲(EMP)能力。
EMP是指由核爆炸或雷电等发生时产生的电磁脉冲,其能量较高且辐射范围广,可能对电子设备造成严重破坏。
为了提高设备的EMP抗干扰能力,可以采用屏蔽技术、地线设计、电磁隔离等措施。
在一些特殊场景下,如医疗设备、军用设备等,对结构电磁兼容设计有更高的要求。
例如,在核医学影像设备中,需要对设备进行严格的电磁防护设计,以防止其产生的电磁辐射影响到其他医疗设备的正常工作。
总结而言,结构电磁兼容设计是确保电子设备正常运行的重要一环。
电子设备电磁屏蔽的结构设计
电子设备电磁屏蔽的结构设计电子设备在现代社会中起着重要的作用,而电磁屏蔽则是保证这些设备正常运行的重要因素之一。
电磁屏蔽是指采取一系列设计措施,将电子设备的电磁辐射控制在一定范围内,从而避免对周围环境和其他设备产生干扰。
在现代电子设备中,电磁屏蔽的结构设计至关重要,下面将就电子设备电磁屏蔽的结构设计进行详细介绍。
一、电磁屏蔽的基本原理电磁屏蔽的基本原理是通过控制电磁波的传播和干扰,从而减少电磁辐射对其他设备和环境的影响。
电磁辐射是电子设备在运行时产生的一种能量传播形式,如果不加以控制,就会对周围的其他电子设备和人体造成危害。
电磁屏蔽的结构设计就是为了最大程度地减少电磁辐射的泄露,通过合理的设计和材料的选择,将电磁波限制在一定的范围内。
二、电磁屏蔽的结构设计1. 金属外壳电子设备通常会采用金属外壳作为外部的保护结构,同时也可以起到电磁屏蔽的作用。
金属外壳可以有效地屏蔽电磁波的辐射,将其限制在设备内部,避免对外部环境产生干扰。
在金属外壳的设计上,需要考虑壳体的材质、厚度,以及连接部件的精密度,确保其能够有效地屏蔽电磁波的干扰。
2. 电磁波隔离层除了金属外壳之外,电子设备的结构设计中还需要考虑电磁波隔离层的配置。
电磁波隔离层是一种特殊的材料层,可以有效地阻止电磁波的传播。
在设计中需要考虑材料的选择、厚度和结构,以确保其能够有效地隔离电磁波的传播,并将其限制在设备内部。
3. 导电屏蔽结构导电屏蔽结构是电子设备中常用的一种屏蔽设计,通过在电路板或电子元件周围设置导电屏蔽结构,可以有效地限制电磁波的辐射。
导电屏蔽结构通常采用导电材料制成,通过连接到设备的接地系统,将电磁波引导到地面,从而避免对其他设备和环境的干扰。
4. 合理的布局和连接设计除了上述结构设计之外,电子设备的整体布局和连接设计也对电磁屏蔽起着重要的影响。
合理的布局可以减少电磁波在设备内部的传播距离,从而减少辐射的泄露。
在连接设计上也需要考虑连接线的长度和走向,确保电磁波能够得到有效地控制和阻止。
HFSS电磁屏蔽电磁兼容设计实验
H F S S电磁屏蔽电磁兼容设计实验-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN目录第一章屏蔽体的设计理念1.1屏蔽的概念及基本原理 (3)1.2屏蔽体的基本问题和分析方法 (4)1.3设计屏蔽体的基本参数设定 (4)第二章屏蔽体的建模过程2.1创建屏蔽体的单位模型及缝隙模型 (5)2.2创建屏蔽体的外空气体及其设置 (7)2.3创建同轴屏蔽罩及同轴芯 (11)2.4设置屏蔽体的激励及指定激励端口 (14)2.5创建电阻及空气腔 (15)2.6创建辐射边界 (21)第三章屏蔽体性能的仿真分析及其结果3.1设置添加对屏蔽体的分析功能并分析模型 (23)3.2计算屏蔽体的数据及创建分析报告 (26)3.3保存屏蔽体工程并保存其分析报告 (30)第一章屏蔽体的设计理念1.1屏蔽体的概念及基本原理屏蔽是电磁兼容工程中广泛采用的抑制电磁干扰的有效方法之一。
所谓电磁屏蔽,就是用导电或导磁材料制成的金属屏蔽体将电磁干扰源限制在一定的范围内,使干扰源从屏蔽体的一面耦合或当其辐射到另一面时受到的抑制或衰减。
屏蔽的目的是采用屏蔽体包围电磁干扰源,以抑制电磁干扰源对其周围空间存在的接收器的干扰;或采用屏蔽体包围接收器,以避免干扰源对其干扰。
电磁屏蔽一般是指高频交变电磁屏蔽,因为在交变场中,电场和磁场总是同时存在的,只是在频率较低的范围内,电磁干扰一般出现在近场区。
近场随着干扰源的性质不同,电场和磁场的大小有很大差别。
高电压小电流干扰源以电场为主,磁场干扰可以忽略不计。
这时就只可以考虑电场屏蔽;低电压高电流干扰源以磁场干扰为主,电场干扰可以忽略不计,这时就只可以考虑磁场屏蔽。
随着频率增高,电磁辐射能力增强,产生辐射电磁场,并趋向于远场干扰。
远场中的电场干扰和磁场干扰都不可以忽略,因此需要将电场和磁场同时屏蔽,即为电磁屏蔽。
高频时即使在设备内部也可能出现远场干扰,需要进行电磁屏蔽。
如前所述,采用导电材料制作的且接地良好的屏蔽体,就能同时起到电场屏蔽和磁场屏蔽的作用。
HFSS电磁屏蔽电磁兼容设计实验
第一章屏蔽体的设计理念1.1 屏蔽的概念及基本原理 (3)1.2 屏蔽体的基本问题和分析方法 (4)1.3 设计屏蔽体的基本参数设定 (4)第二章屏蔽体的建模过程2.1创建屏蔽体的单位模型及缝隙模型 (5)2.2创建屏蔽体的外空气体及其设置 (7)2.3创建同轴屏蔽罩及同轴芯 (11)2.4设置屏蔽体的激励及指定激励端口 (14)2.5创建电阻及空气腔 (15)2.6创建辐射边界 (21)第三章屏蔽体性能的仿真分析及其结果3.1 设置添加对屏蔽体的分析功能并分析模型233.2 计算屏蔽体的数据及创建分析报告263.3 保存屏蔽体工程并保存其分析报告30第一章屏蔽体的设计理念1.1 屏蔽体的概念及基本原理屏蔽是电磁兼容工程中广泛采用的抑制电磁干扰的有效方法之一。
所谓电磁屏蔽,就是用导电或导磁材料制成的金属屏蔽体将电磁干扰源限制在一定的范围内,使干扰源从屏蔽体的一面耦合或当其辐射到另一面时受到的抑制或衰减。
屏蔽的目的是采用屏蔽体包围电磁干扰源,以抑制电磁干扰源对其周围空间存在的接收器的干扰;或采用屏蔽体包围接收器,以避免干扰源对其干扰。
电磁屏蔽一般是指高频交变电磁屏蔽,因为在交变场中,电场和磁场总是同时存在的,只是在频率较低的范围内,电磁干扰一般出现在近场区。
近场随着干扰源的性质不同,电场和磁场的大小有很大差别。
高电压小电流干扰源以电场为主,磁场干扰可以忽略不计。
这时就只可以考虑电场屏蔽;低电压高电流干扰源以磁场干扰为主,电场干扰可以忽略不计,这时就只可以考虑磁场屏蔽。
随着频率增高,电磁辐射能力增强,产生辐射电磁场,并趋向于远场干扰。
远场中的电场干扰和磁场干扰都不可以忽略,因此需要将电场和磁场同时屏蔽,即为电磁屏蔽。
高频时即使在设备内部也可能出现远场干扰,需要进行电磁屏蔽。
如前所述,采用导电材料制作的且接地良好的屏蔽体,就能同时起到电场屏蔽和磁场屏蔽的作用。
1.2 屏蔽体的基本问题和分析方法此例讲解如何在HFSS设计环境下创建、仿真、分析一个屏蔽体模型。
电磁兼容性测试与设计原则
电磁兼容性测试与设计原则电磁兼容性(EMC)测试与设计原则是一种确保电子设备在电磁环境中正常工作和共存的重要手段。
在现代社会中,我们被电子设备所环绕,因此需要保证这些设备能够相互兼容,并且不会产生电磁干扰。
本文将详细介绍电磁兼容性测试与设计的步骤和原则。
一、电磁兼容性测试步骤:1. 确定测试需求:首先,确定进行电磁兼容性测试的设备或系统类型,并明确测试的目的和标准。
根据不同类型的设备,选择相应的测试方法和标准。
2. 测试计划制定:制定详细的测试计划,包括测试时间、地点、测试范围和测试方法等内容。
确保测试过程能够顺利进行。
3. 测试设备准备:准备测试所需的仪器设备,如频谱分析仪、信号发生器和电磁泄漏仪等。
同时,确保测试设备能够准确地测量和分析设备的电磁辐射和敏感度。
4. 确定测试环境:在电磁兼容性测试之前,需要确定测试环境中的干扰源和敏感设备,以及它们之间的关系和布置。
保证测试环境的真实性和可靠性。
5. 测试执行:按照测试计划,进行电磁兼容性测试。
根据测试设备的不同,可以进行辐射测试、传导测试和抗干扰测试等。
确保测试过程中的数据准确可靠。
6. 测试结果分析:根据测试数据,对电磁兼容性进行分析和评估。
判断设备是否符合相关的电磁兼容性标准和要求。
如果不符合,需要采取相应措施进行修正。
7. 结果报告编制:根据测试结果,编制详细的测试报告。
报告应包括测试方法、测试结果和建议措施等内容,以便后续的设计和改进工作。
二、电磁兼容性设计原则:1. 屏蔽设计:采用合适的屏蔽材料和屏蔽结构,减少电磁辐射和敏感度。
例如,在 PCB 设计中,可以采用地域划分和屏蔽墙等方法,提高电路板的抗干扰能力。
2. 地线设计:合理规划地线的布局和走向,减少地线的回流路径和互连电感。
地线的设计应从整体考虑,保证设备的地电位稳定和低阻抗。
3. 滤波设计:在输入和输出接口处添加滤波器,减少电源线上的高频噪声和互联线上的干扰信号。
滤波器的选型和布局应根据具体设备的特点来确定。
电磁兼容性设计指南
电磁兼容性设计指南电磁兼容性设计指南:电磁兼容性(Electromagnetic Compatibility,EMC)是指电子设备在电磁环境中能够以正常工作状态工作,而不会产生互相干扰,以及不会对周围的电磁环境产生负面影响。
在现代社会中,电子设备应用越来越广泛,因此保证设备的电磁兼容性显得尤为重要。
为了保证电子设备在整个生命周期内都具有良好的电磁兼容性,设计过程中需遵循一系列的指南和规范。
首先,对于电磁兼容性设计,应该从产品的整体结构和布局开始考虑。
尽量减少电磁干扰源的数量及强度,合理设计电路板布局、模块布局和信号线路径,避免相互干扰。
此外,在产品外壳设计中,应采用电磁屏蔽措施,如有效接地、铁氧体吸收材料、金属外壳等,以减少外部电磁干扰对设备的影响。
其次,产品在设计过程中需考虑干扰源和受干扰源之间的耦合路径。
通过分析整个系统的电磁耦合路径,可以有效地减少电磁干扰的影响。
在电路设计中,应避免磁场、电压和电流的耦合,采取措施隔离和屏蔽干扰源,如在信号线中加入滤波器以抑制高频干扰。
此外,在电气接口设计中,需要考虑信号的传输线路、输入输出端口的规划、接地设计、防护等措施,以防止电磁干扰对接口传输信号的影响。
保证设备的输入输出接口符合各项标准和规范,以提高设备的电磁兼容性。
最后,在整个产品设计过程中,应该遵循相关的电磁兼容性标准和法规要求,如CISPR、FCC、EN等标准。
产品设计完成后,还需要进行电磁兼容性测试,确保产品在实际工作环境下具有良好的电磁兼容性。
通过不断优化设计和测试,确保产品在市场上具有竞争力和可靠性。
总之,电磁兼容性设计对于现代电子产品至关重要。
只有通过合理的设计和实施电磁兼容性策略,才能保证设备在复杂的电磁环境中稳定可靠地工作,减少电磁干扰对设备和周围环境的影响,提高产品的市场竞争力和可靠性。
希望以上电磁兼容性设计指南能够为您的产品设计提供一定的参考和指导。
电子产品结构设计中的电磁兼容性(EMC)设计
电子产品结构设计中的电磁兼容性(EMC)设计摘要:本文针对电子产品结构中的电磁兼容性设计展开分析,为使电磁兼容性设计满足正常使用要求,具备安全性与稳定性,对电磁兼容设计工作的重要性展开探讨,并对电磁兼容设计相关经验做出详细分析。
关键词:电子产品;电磁兼容性;实用经验0引言电子设备在使用中,难免遇到电磁干扰问题,合理应用电磁兼容技术就可以解决了这个电磁干扰问题。
本文针对电磁兼容性展开分析,并结合电磁干扰与电子产品电磁兼容性之间存在的关系加以阐述。
1概念电磁兼容性(EMC)指的是电子器件、电子设备或电子系统,在电磁环境中仍然能正常运行,且不会对所处环境带来不好的电磁骚扰。
EMC的主要要求有两个方面:一方面是正常运行的设备对所处环境带来的电磁骚扰(EMI)要低于某限值;另一方面是设备不会受到环境中其他电磁信号的骚扰。
为保证电子系统内各种设备能够互不干扰,要做好电磁兼容性设计。
2电磁兼容设计的具备方法2.1系统制备法系统制备法是在规划设计时,为提更高研发电磁兼容的效率而兴起的,该方法实现了多种先进技术的相互融合,将电磁干扰与兼容紧密连接起来。
能模拟出设计指标与参数,并加以计算优化。
2.2规范制备法在电子产品的电磁兼容设计中,规范制备法体现的是相关标准,可用于对产品设计的成果加以验证测试。
规范制备法虽然有局限性,但能从不同角度解决多种电磁兼容问题。
若安全标准太苛刻,会引起资源浪费,故制定的规范务必要合理。
2.3故障清除制备法在电子产品的电磁兼容设计中,故障清除制备法是最根本的设计方法。
能很快解决已发现的电磁干扰故障,但解决不了其他问题,在预防方面存在短板。
3电子兼容重要技术3.1电磁屏蔽技术电磁屏蔽技术需要借助实物对电磁干扰加以屏蔽,阻隔电磁能量的传播,能有效抑制电磁能量干扰,在电子设备中应用广泛。
电磁屏蔽技术主要有三种:电场屏蔽、磁场屏蔽,还有电磁场屏蔽。
其抑制效果取决于选材,最好选择那种导磁率、导电率高的材料,譬如钢板、铝箔铜板,或者使用金属镀层,还有导电涂料等。
机械工程电磁兼容规范要求
机械工程电磁兼容规范要求一、引言机械工程电磁兼容(EMC)是确保机械系统在电磁环境中正常运行的关键要求之一。
本文旨在介绍机械工程领域中的电磁兼容规范要求,以确保设备的可靠性和安全性。
二、电磁辐射要求电磁辐射是指机械设备或系统产生的电磁能量向周围环境传播的过程。
为了避免对其他设备或系统产生干扰,机械工程领域需要遵守以下几项电磁辐射要求:1.辐射源识别:对于每个机械设备或系统,需要识别出可能产生辐射的源头,并确保其辐射水平符合国家相关标准。
2.辐射限制:根据设备或系统的使用场景和所处环境不同,应制定相应的辐射限制要求,确保其辐射水平在允许范围内。
3.屏蔽和滤波:机械设备或系统应配备适当的屏蔽和滤波措施,以降低辐射水平并防止电磁干扰。
三、电磁感应要求电磁感应是指机械设备或系统对于外部电磁场的敏感程度。
为了确保机械设备或系统能够正常工作并抵御外界电磁场的干扰,以下是电磁感应方面的要求:1.抗干扰能力:机械设备或系统需要具备一定的抗干扰能力,即能够在强电磁场的环境中正常运行而不受干扰。
2.阻抗匹配:合理选择和设计机械设备或系统的电气部件,以确保其电阻、电容和电感与外界电磁场的特性相匹配。
3.地线设计:机械设备或系统的地线设计应符合国家相关标准,确保设备的接地能够有效降低电磁干扰。
四、电磁静电防护要求电磁静电是机械设备或系统在操作过程中产生的静电电荷积聚所引起的一种现象。
为了避免因静电干扰造成设备损坏或危险,以下是电磁静电防护方面的要求:1.接地设计:机械设备或系统应确保良好的接地设计和接地连接,以排除或减小静电电荷的累积。
2.防静电涂料:对于易产生静电的表面,应采用特殊的防静电涂料进行涂覆,以防止静电积聚和放电。
3.静电消除:合理布置和使用静电消除器件,如静电棒和静电接地线,以有效地消除或降低静电电荷。
五、电磁噪声防护要求电磁噪声是指机械设备或系统在工作时产生的电磁干扰信号。
为了确保机械设备或系统的可靠性和安全性,以下是电磁噪声防护方面的要求:1.屏蔽设计:对于容易发生电磁噪声的部件和线缆,应采用合适的屏蔽设计,降低电磁辐射和电磁感应。
华为电磁兼容性结构设计规范_第三版
华为技术有限公司企业技术规范DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范2003-11-30发布2003-11-30实施华为技术有限公司内部公开前言本规范于1999年12月25日首次发布。
本规范于2001年7月30日第一次修订。
本规范于2003年10月30日第二次修订。
本规范起草单位:华为技术有限公司结构造型设计部本规范授予解释单位:华为技术有限公司结构造型设计部本华为机密,未经许可不得扩散第1页,共1页内部公开目录1 范围 ... ....................................................................................................................................................... ..42 引用标准 ... . (4)3 术语 ... ....................................................................................................................................................... ..44 电磁兼容基本概念... (5)4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .54.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..65 电磁屏蔽基本理论... (7)5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..75.2.1缝隙屏蔽 ... (7)5.2.2开孔屏蔽 ... (8)5.2.3电缆穿透 ... . (10)6 屏蔽设计 ... .. (12)6.1 结构屏蔽效能 ... .......................................................................................................................... (12)6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13)6.3.1紧固点连接缝隙 ... . (13)A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13B. 增加缝隙深度 ... ........................................................................................................................................ .. 14C. 紧固点间距 ... ........................................................................................................................................... (15)6.3.2安装屏蔽材料 ... ....................................................................................................................... ..176.3.3屏蔽材料的选用 ... . (18)A. 常用屏蔽材料................................................................... .. 18B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 246.4 开孔屏蔽设计 ... .......................................................................................................................... (25)6.4.1通风孔屏蔽 ... .......................................................................................................................... (25)6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27)6.6 单板局部屏蔽 ... .......................................................................................................................... (28)6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28内部公开6.6.2围框式屏蔽盒 ... ....................................................................................................................... ..29 6.7 电缆屏蔽设计 ... .......................................................................................................................... (29)6.7.1屏蔽电缆夹线结构 ... .............................................................................................................. (29)6.7.2屏蔽连接器转接 ... . (33)6.7.3非屏蔽电缆 ... .......................................................................................................................... (34)7 典型结构屏蔽方案... . (35)7.1 2000机柜屏蔽方案 ... . (35)7.2 2000插箱屏蔽方案 ... . (37)7.3 S3026C钣金盒式结构屏蔽方案 ... (42)7.4 R413PAVO塑胶盒式结构屏蔽方案 ... ..................................................................................... (44)7.5 型材面板屏蔽 ... .......................................................................................................................... (47)7.6 钣金面板屏蔽 ... .......................................................................................................................... (49)7.7 扣板面板屏蔽 ... .......................................................................................................................... (52)7.8 防水&屏蔽结构 ... ....................................................................................................................... (54)内部公开电磁兼容性结构设计规范1范围本规范规定了电磁兼容性结构屏蔽设计的主要原理、设计原则和详细设计方法。
电子设备结构件设计中的电磁屏蔽技术
收稿 日期 :07—0 —0 作者 20 8 8 丁小玲 女 4岁 5 工程师
8 )选择高导电率和弹性好的衬垫。选 择衬垫 时要 考虑 接合处所使用 的频率 ;
维普资讯
1 2 选择屏蔽方案 . 选择屏蔽方案 , 应该考虑 成本 、 技术难 度 以及 操作性 等
4 )在不加导 电衬垫时 , 螺钉 间距 一般应小 于最 高工作 频率 的 1 %波长 , 至少不大于 12 /0波长 ; 5 )用螺钉或铆 接进行搭 接时 , 应首先在 缝的 中部搭接
好, 然后逐渐向两端延伸 ;
电涂料 , 缩短螺钉间距 等。
较理想的解决方 案 , 推荐在大多数产品 中应用 ;
2 )插箱 / 子架屏蔽 与模块 屏蔽有一些类 似 , 只是屏 蔽
体是插箱仔 架 。相对机柜级屏蔽 , 插箱/ 子架级屏蔽 最大的
1 在底板和机壳的每一 条缝 和不 连续 处要 尽可能好地 )
搭接 ; 2 )保证接缝处金 属对金 属的接触 , 以防电磁能 的泄漏 和辐射 ;
2 1 缝 隙 屏 蔽 .
为了使产品实现电磁兼容 , 采取屏 蔽措 施的方案按 照屏
蔽级别的不同可以分为 : C P B板 、 器件 、 元 模块 、 插箱 / 子架 、 机柜等屏蔽。P B板 、 C 元器件级别的屏蔽 由于已经超 出结 构 设计的范围 , 本文不介绍 。 1 )模块屏蔽 是指将一些辐射 大或抗干扰能力 差的单 板或模块 , 单独安装在屏 蔽盒 中。模块 屏蔽 不但容 易实 现, 成本低 , 而且可 以减弱单 板或模块 之间 的相互 干扰 , 现系 实 统 内部模块之间的电磁兼 容。模 块屏蔽 是一种综 合性 能 比
电磁兼容结构设计方案
电磁兼容结构设计方案一、整体思路。
咱就把这个电磁兼容结构想象成一个超级防护盾,既要保护自己不受外界电磁干扰的欺负,又不能让自己内部产生的电磁能量跑出去骚扰别人。
二、外壳部分。
1. 材料选择。
咱就像给电子产品穿上一层铠甲一样,选金属材料来做外壳。
铝啊、钢啊之类的就很不错。
这些金属就像电磁小卫士,能够阻挡外界的电磁干扰,把那些乱七八糟的电磁信号都反射回去。
这就好比是在房子外面砌了一堵结实的墙,不让坏东西进来。
如果不想用纯金属,那种金属涂层的塑料也可以考虑。
它既有塑料的轻便,又有金属的电磁屏蔽能力,就像是给塑料穿上了一件金属制的防护服。
2. 密封性。
外壳的接缝处得密封好。
要是有缝儿,电磁干扰就像小老鼠一样,会从缝里钻进来或者跑出去。
可以用导电橡胶条来密封接缝,这导电橡胶条就像是一条电磁密封胶带,把那些可能的电磁泄漏通道都堵得死死的。
3. 接地。
外壳得接地,这接地可重要了。
就像是给那些多余的电磁能量找了个下水道,让它们都流到地下去,不会在设备周围乱晃。
接地要接得牢固,最好用粗一点的导线,这样电流才能顺畅地流走。
三、内部布局。
1. 分区。
把产生强电磁干扰的部件和那些对电磁干扰敏感的部件分开,就像把调皮捣蛋的孩子和爱安静的孩子分开一样。
比如说,电源部分通常会产生一些电磁噪声,就把它和那些精密的芯片之类的隔得远一点。
可以用金属隔板把不同的区域隔开,这隔板就像是一道电磁隔离墙。
2. 布线。
布线就像给电子元件们修路一样。
信号传输线和电源线要分开走,不能让它们混在一起。
如果混在一起,电源线的电磁噪声可能就会窜到信号线上,把信号搞得乱七八糟。
可以把信号线放在内层电路板,电源线放在外层,就像把不同类型的车分车道行驶一样。
而且,线要尽量短,太长的线就像一根长长的天线,会更容易接收和发射电磁干扰。
如果实在需要长一点的线,那就用屏蔽线,这屏蔽线就像是给信号穿上了一层防电磁干扰的罩衣。
四、通风散热与电磁兼容的兼顾。
1. 通风孔设计。
电磁屏蔽结构设计实用技术
机箱、机柜的电磁屏蔽
图4-14 截止波导结构
机箱、机柜的电磁屏蔽
▲图4-15 正确和 不正确的屏蔽穿线孔 示例 为了进行机械和 电气连接,需在设备 封壳上开一些孔。
机箱、机柜的电磁屏蔽
图4-16 表头孔和钮子开关的防泄漏安装
机箱、机柜的电磁屏蔽
▲通风口屏蔽:通常用穿孔金属板(板上开阵列孔)。 ——板的孔隙率在30~60%,可满足一般电子设备的需 要;屏蔽性能一般在10~30/1GHz。 ——影响穿孔板屏蔽性能的最主要的以上是开孔最大尺 寸。 ▲局部开孔屏蔽:指数量不多的开孔,如光纤出线孔、 指示灯、拨码开关、调测孔、观察孔等。 ——开孔最大尺寸小于波长的1/20,屏蔽性能为20dB。 ——开孔最大尺寸小于波长的1/50,屏蔽性能为30dB。 ——示例:要求屏蔽性能为20dB/1GHz(波长为300mm), 局部开孔最大尺寸应小于15mm。
机箱、机柜的电磁屏蔽
●塑料件屏蔽 ▲有两种方案:内侧喷涂导电漆或内衬薄金属片。 ▲喷涂导电漆用于屏蔽性能小于15dB/1GHz场合。推荐 选用Ag/Cu颗粒导电漆,其性价比较合适。 ▲塑料盒体与盒盖间接缝的屏蔽: ——方式1:盒体盒盖利用塑料件自身弹性保证缝隙接 触,通过几个螺钉连接。简便,但难于保证缝隙的可靠 接触,屏蔽性能不超过10dB/1GHz。 ——方式2:接缝处增加屏蔽材料,在盒体盒盖压紧后 提供良好的屏蔽效果。其性价比良好。 ——方式3:盒体内侧固定的不锈钢片与盒盖(已喷涂 导电漆)的内侧接触。屏蔽性能可达20dB/1GHz。
机箱、机柜的电磁屏蔽
▲目前广为应用的各种屏蔽辅助材料,如导电衬 垫、屏蔽网板、屏蔽玻璃、屏蔽电缆、射频接插 件等的屏蔽效能,一般在60~70dB,甚至更低。 ▲低频磁场屏蔽效能难以做得很好,例如,双层 钢板磁屏蔽,在50Hz时大约只能有20dB~30dB。 ●双重屏蔽:可提高设备的性/价比和抗腐蚀性。 ▲如单层机壳达不到屏蔽要求,可在壳内再对高 电平单元或低电平单元,机箱第二重屏蔽。 ▲第二重屏蔽体内电路的工作,可以通过外面的 低频(或直流)信号控制,或通过键盘、轨迹球 等深度实施控制。
结构设计规范(EMC)
结构设计规范(EMC)一、简单介绍电磁兼容(Electromagnetic Compatibility , EMC)主要包含两方面的内容:电磁干扰(Electromagnetic interference , EMI);电磁敏感度(Electromagnetic susceptibility , EMS)。
电磁兼容设计基本目的:A 产品内部的电路互相不产生干扰,达到预期的功能。
B 产品产生的电磁干扰强度低于特定的极限值。
C 产品对外界的电磁干扰有一定的抵抗能力。
在整个工程项目中,必须在设计初期开始考虑电磁兼容设计。
一方面,这对整个工程项目是个效费比很高的措施,可以有效避免工程项目因为电磁兼容测试未通过而进行较大修改,产生不必要的成本增加。
另一方面,设计初期可以采取相对较多的措施来满足电磁兼容要求,而后期可采取的措施比较少。
在电磁兼容设计过程中,针对电磁兼容性设计中的重点和关键,分析并预测各种可能发生的电磁兼容问题,并从设计初期就采取各种技术措施,包括电路硬件与结构相结合、电路硬件与软件相结合的技术措施。
电磁兼容设计主要从三个方面进行:电磁干扰源、耦合途径、敏感设备。
耦合途径主要是传导和辐射。
具体在工程措施上,电磁兼容设计可分为:信号设计、线路设计、屏蔽、接地与搭接、滤波、合理布局。
其中与结构关系较大的有:屏蔽、接地与搭接、合理布局。
但这并不代表其他措施与结构设计完全无关,结构设计亦需配合完成其他措施比如滤波。
二、常用测试项目2.1、在电磁兼容性设计中遇到的常用测试项目,从干扰源与被干扰对象角度可分为两类:EMI(电磁发射测试)和EMS(电磁敏感度测试)。
EMI(电磁发射):被测设备为干扰源,测试被测设备对外界发射的电磁干扰水平。
EMS(电磁敏感度):被测设备为被干扰对象,通过测试仪器对其施加干扰,测试其抗干扰能力。
从干扰路径区分,又可分为传导测试与辐射测试两类。
综合起来测试项目可分为四种测试模式:CE-传导发射测试,CS-传导敏感度测试;RE-辐射发射测试,RS-辐射敏感度测试。
电气设备工程电磁兼容规范要求与干扰屏蔽方法
电气设备工程电磁兼容规范要求与干扰屏蔽方法电气设备工程在不同的工作环境中,往往会受到电磁干扰的影响,甚至会对其他设备或系统造成干扰。
为了保证电气设备的稳定运行和系统的正常工作,制定了电磁兼容规范,同时也需要采取合适的干扰屏蔽方法。
本文将详细介绍电气设备工程电磁兼容规范要求及干扰屏蔽方法的相关内容。
1. 电磁兼容规范要求电气设备工程的电磁兼容规范要求包括了对电磁辐射和电磁抗扰度两个方面的要求。
1.1 电磁辐射要求电磁辐射是指电气设备在工作时所发射出的电磁场能量。
为了保证电气设备在工作时的电磁辐射不会对其他设备或系统产生不良影响,电磁兼容规范一般要求设备的电磁辐射水平应在允许范围内。
具体的要求可以根据不同的设备类型和工作环境来决定,但一般都要求设备的电磁辐射能量不超过特定的限值。
1.2 电磁抗扰度要求电磁抗扰度是指电气设备在工作时所能抵抗的外部电磁场干扰能力。
为了保证设备在受到外部电磁场干扰时能够正常工作,电磁兼容规范要求设备的电磁抗扰度应满足一定的要求。
具体的要求包括设备在受到特定干扰源时的工作能力、设备内部电路的抗干扰能力等。
2. 干扰屏蔽方法为了满足电磁兼容规范的要求,可以采取一系列的干扰屏蔽方法来减少电磁辐射和提高电磁抗扰度。
2.1 电磁辐射屏蔽方法在设计电气设备工程时,可以采取各种措施来屏蔽设备的电磁辐射。
例如,在设备外壳上添加金属屏蔽罩,通过金属的导电性能来吸收和散射电磁辐射能量;在电路板上添加地线和屏蔽层,形成电磁屏蔽结构,减少电磁辐射的泄漏;采用滤波器和阻抗匹配等措施,减少电磁辐射的频率成分。
2.2 电磁抗扰度提高方法为了提高设备的电磁抗扰度,可以采取一系列的措施。
例如,合理设计设备的电路结构,采用抗干扰能力较强的元器件;增加电磁兼容规范要求,提高设备的电磁抗扰度水平;通过合理的电磁屏蔽设计来防止外部电磁场的干扰;采取地线设计、滤波设计等措施,减少电磁干扰的传导和辐射。
3. 总结电磁设备工程的电磁兼容规范要求与干扰屏蔽方法是确保设备稳定运行和系统正常工作的重要措施。
电子产品EMC设计中的屏蔽结构设计
电子产品EMC设计中的屏蔽结构设计
电子产品的EMC设计中,屏蔽结构设计是非常重要且必不可少的一部分。
屏蔽结构的设计主要是为了防止电磁辐射干扰或者电磁敏感性问题,确保电子产品在工作过程中能够正常工作且不受外界干扰。
首先,屏蔽结构设计需要考虑整体产品的电磁兼容性。
在设计屏蔽结构时,需要考虑到产品内部的各个部件之间的电磁干扰问题,以及产品与外界环境之间的电磁干扰问题。
通过合理设计屏蔽结构,可以有效地降低电磁辐射干扰的影响,提高整个产品的电磁兼容性。
其次,屏蔽结构设计需要根据产品的具体特点和需求来选择合适的材料。
通常情况下,屏蔽结构设计会采用金属材料,如铝、铜等。
这些材料具有良好的导电性和屏蔽性能,可以有效地隔离电磁波,保护产品内部的电子元件免受干扰。
另外,屏蔽结构设计还需要考虑产品的散热问题。
屏蔽结构一般会影响产品的散热效果,因此在设计屏蔽结构时需要充分考虑产品的散热需求,确保产品在正常工作时不会因为过热而影响性能或寿命。
此外,在屏蔽结构的设计过程中,需要遵循一些设计原则。
例如,屏蔽结构的连接部位需要进行良好的接地处理,确保整个结构的导电性能良好;屏蔽结构的设计需要考虑到整个产品的布局和结构,确保各个部件之间的连接紧密,避免出现电磁泄漏等问题。
总的来说,电子产品的EMC设计中的屏蔽结构设计是至关重要的一环,在设计过程中需要综合考虑产品的电磁兼容性、材料选择、散热问题等方面,确保产品在工作过程中能够稳定可靠地工作,同时也能够满足相关的标准和要求。
只有在屏蔽结构设计合理且有效的情况下,才能够保证产品的质量和性能,提高产品的竞争力和市场占有率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构件电磁兼容设计规范1、概述:本规范规定了结构件电磁兼容设计(主要是屏蔽和接地)的设计指标、设计原则和具体设计方法。
本规范适应于结构设计人员进行结构件的电磁兼容设计,目的是规范机电协调中电磁兼容方面的内容,指导结构设计人员正确地选择方案和进行详细设计。
下列标准包含的条文,通过在本标准中引用而构成本标准的条文。
在标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GJB 1046《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》GJB 1210《接地、搭接和屏蔽设计的实施》GJB/Z 25《电子设备和设施的接地搭接和屏蔽设计指南》MIL-HDBK-419 《电子设备和设施的接地搭接和屏蔽》IEC 61587-3 (草案)《第三部分: IEC 60917-... 和 IEC 60297-... 系列机箱、机柜和插箱屏蔽性能试验》《结构件分类描述优化方案及图号缩写规则》术语本规范中的专业术语符合 IEC50-161 《电磁兼容性术语》的规定。
2、设计程序要求对于有EMC 要求的项目的开发程序,在遵守部门现有的结构造型设计流程基础上,提出以下特殊的要求:所有需要考虑屏蔽的A 类项目以及产品定位为海外市场的所有项目,必须通过EMC 方案评审后才能进行详细的设计;对于 C 级以上屏蔽等级(具体级别划分见 5.1)要求的项目,方案评审时必须提交详细的 EMC 设计方案(包括屏蔽体的详细结构和具体处理措施);对于 C 级以上屏蔽等级的项目,样机评审时必须提交屏蔽效能测试报告;除通用结构件(例如 19" 标准机柜)外,如果样机的屏蔽效能测试结果达不到设计134指标的要求,只要整机(产品)的EMC 测试中相应指标符合要求,结构件可以不要求再作优化。
3、屏蔽效能等级3.1、屏蔽效能等级的划分一般结构件的屏蔽效能分为以下六个等级,各级屏蔽效能指标规定如下:E级: 30-230 MHz 20 dB;230-1000 MHz 10 dBD 级:30-230 MHz 30 dB;230-1000 MHz 20 dBC级: 30-230 MHz 40 dB;230-1000 MHz 30 dBB 级:30-230 MHz 50 dB;230-1000 MHz 40 dBA 级:30-230 MHz 60 dB;230-1000 MHz 50 dBT级:比A级高10dB或者以上,和/或对低频磁场、1GHz以上平面波屏蔽效能有特殊需求。
屏蔽效能等级由高至低分别为:T 级 A 级 B 级 C 级 D 级 E级。
一般统称 T 级和 A 级为高等级屏蔽效能, B 级和 C 级为中等级屏蔽效能, D 级和E级为低等级屏蔽效能。
一般结构件只需要注明需要达到哪一级即可,但是选用 T 级时需要注明具体的指标要求和其他特殊要求。
3.2、屏蔽效能测试标准所有结构件,无论结构尺寸是否采用 IEC297 标准(即 19" 标准),在 30-1000 MHz 范围内的屏蔽效能测试一律采用 IEC61587-3 作为测试标准。
对于屏蔽体内部空间小于 300 X 300 X 300的结构件,由于其净空间太小,不能按照 IEC 61587-3 的标准进行测试,其屏蔽效能只能参照结构形式相同的同系列产品的测试结果。
低频磁场和高于1GHz平面波的屏蔽效能测试标准依照 EMC实验室的测试规定。
1353.3、屏蔽效能等级的确定a)、选用屏蔽效能等级的要求一般结构件最高选 B 级屏蔽等级,有特殊需求时允许选到 A 级。
如果要求选用 T 级屏蔽等级,应该报总体组评审并批准,这时应该组建专门的攻关小组解决问题。
选用TEMC级屏蔽效能等级一般用于以下场合:电源设备(一次 / 二次电源、逆变器等)有特殊需求时,可以专门要求低频磁场性能指标。
这时应该考虑采取导磁性能良好的材料以提高结构件的磁屏蔽性能;电源设备(一次 / 二次电源、逆变器等)与磁敏感元器件(例如显示器)安装在一起,必要时可以提出磁场屏蔽效能要求,实现磁场的隔离,保证敏感元器件的正常工作;当系统EMC测试不能通过,且判定是结构件的屏蔽问题时,或者现有产品为了通过EMC 测试,必须提高结构件的屏蔽效能(这时往往其他部分难以改动),这时允许提出特殊指标要求。
b )、屏蔽效能等级确定方法具体项目设计时选择结构件屏蔽效能的等级应该根据不同情况区别对待:对于已有产品为实现电磁兼容而进行优化,可以先对现有系统进行测试,根据系统辐射发射以及辐射敏感度与标准要求之间的差距,得出结构件在各种频率下的屏蔽效能要求,并加6-10dB的安全余量,从而确定出结构件的屏蔽效能等级。
对于新开发的产品,应该在硬件规格说明书中明确系统的EMC指标要求,并在硬件总体设计方案(如无,写在硬件规格说明书中)中明确结构件的屏蔽方案、屏蔽效能等级要求以及接地方式等EMC要求。
对于新开发的产品,如果无法分解结构件的屏蔽效能指标或者存在争议,从经济性角度出发,可以先按照以下原则选择:i. 工作频率不超过100MHz的产品一般选用 D级或者E级;ii. 无线产品或工作频率超过 100MHz的产品可以选 B级或者C级;136iii. 只有在要求特别高时才选用 A级;iv. 慎重选用T级,实现存在较大的技术困难,而且结构件的成本将十分高。
c)、屏蔽效能指标的默认意义结构件屏蔽效能的指标如果不特殊说明,其默认的意义是:按照 IEC61587-3 作为测试标准,在 30-1000MHz 范围内的最低屏蔽效能值。
3.4 、成本控制相对于类似结构的非屏蔽结构件,不同屏蔽效能等级的结构件成本允许增加:E级:0.25倍D级:0.5倍C 级: 1 倍B级:2倍A 级: 3 倍T 级: 4-5 倍或者更高例如,如果一个非屏蔽机柜成本为3000元/台,那么达到E级的屏蔽等级,该机柜的成本允许达到 3750元/台,D级的屏蔽要求允许达到 4500元/台,C级的屏蔽要求允许达到6000 元/台,B 级的屏蔽要求允许达到9000 元/台,A 级的屏蔽要求允许达到12000元/台,而T级的成本将会是十分惊人的。
4 、屏蔽设计指引4.1、屏蔽设计的基本原则屏蔽体结构简洁,尽可能减少不必要的孔洞,尽可能不要增加额外的缝隙;避免开细长孔,通风孔尽量采用圆孔并阵列排放。
屏蔽和散热有矛盾时尽可能开小孔,多开孔,避免开大孔;足够重视电缆的处理措施,电缆的处理往往比屏蔽本身还重要;足够细心,电磁兼容设计必须注意每一个小环节,稍不注意就可能功137归一篑;屏蔽体的电连续性是影响结构件屏蔽效能最主要的因素,相对而言,材料本身屏蔽性能的影响是微不足道的(低频磁场例外);有强烈的成本意识,注意高性能是以高成本为代价的。
4.2、屏蔽方案的选择4.2.1 、屏蔽方案的类别为了使产品实现电磁兼容,采取屏蔽措施的方案按照屏蔽级别的不同可以分为:PCB板、元器件、模块、插箱/子架、机柜等屏蔽。
PCB板、元器件级别的屏蔽由于已经超出结构设计的范围,本文不介绍。
模块屏蔽模块屏蔽是指将一些辐射大或抗干扰能力差的单板或模块,单独安装在屏蔽盒中。
模块屏蔽不但容易实现,成本低,而且可以减弱单板或模块之间的相互干扰,实现系统内部模块之间的电磁兼容。
模块屏蔽是一种综合性能比较理想的解决方案,推荐在大多数产品中应用。
插箱 / 子架屏蔽插箱 /子架屏蔽与模块屏蔽有一些类似,只是屏蔽体是插箱 / 子架。
相对机柜级屏蔽,插箱/子架级屏蔽最大的优点是可以在出线的接插件上面采取措施屏蔽,从而避免了电缆采取屏蔽措施。
插箱 /子架屏蔽也是一种比较理想的屏蔽方式。
机柜屏蔽机柜屏蔽是指在机柜上面采取措施实现屏蔽。
由于机柜中不可避免存在各种缝隙,机柜的屏蔽效能一般不能太高。
另外许多系统中线缆多,往往造成机柜屏蔽失败的主要原因正是电缆。
机柜屏蔽方案中需要特别注意电缆的屏蔽措施,一般可以采取屏蔽电缆或者转接等方式。
4.2.2)、选择屏蔽方案对于产品应该选用什么屏蔽方案,应该考虑成本、技术难度以及操作性等其他方面的综合因素,一般应该参照以下原则:最好采取综合的方案,即根据实际情况,综合选用不同级别的屏蔽方案,达到综合性能最优的目的;对于进出线缆十分多的系统,最好采用模块屏蔽或者插箱/ 子架屏蔽,慎重138 使用机柜级屏蔽方案;对于要求特别高的产品,可以采用多级屏蔽的方式,即模块屏蔽加插箱/ 子架屏蔽,还可以加机柜屏蔽。
这样每级屏蔽性能要求都不高,技术上比较容易,综合屏蔽效果却十分好,而且成本也不高。
4.3、缝隙的屏蔽两个零件结合在一起,结合面的缝隙是影响结构件屏蔽效能的主要因素。
如果不安装屏蔽材料,结构方面影响缝隙屏蔽效能的因素主要有:缝隙的最大尺寸、缝隙的深度等。
如果缝隙中安装屏蔽材料,缝隙的屏蔽效能还与屏蔽材料自身的特性有关。
在实际设计中缝隙的最大尺寸与以下因素有关:紧固点的距离、零件的刚性、结合面表面的精度等。
紧固点的距离紧固点的紧固方式包含采取螺钉连接、铆接、点焊以及锁等使两个零件的结合面结合在一起之类的措施。
实际设计中,由于其他因素往往会受到限制,紧固点的距离一般就直接决定了缝隙的最大尺寸,是影响缝隙屏蔽效能的最主要因素。
由于目前尚无实用的计算方法计算缝隙的屏蔽效能,紧固点的距离只能从经济性和可操作性的角度考虑,按照以下经验数据取值:i•中、低等级(C级以下)屏蔽效能取 50-100mm ;ii. 高等级(C级以上)屏蔽效能取 20-50mm。
具体取值还需考虑缝隙的深度以及结合面零件的刚性等因素。
例如,当折弯次数多或者采用型材时,由于零件的刚性好,可以取大值;如果仅仅是单层钢板(或铝板)直接压紧,由于刚性差,应该取小值。
如果紧固点太多导致存在装配工艺性差等困难,建议在缝隙中安装屏蔽材料,从而减少螺钉的数量。
零件的刚性当紧固点距离不变时,结合面零件的刚性好,则缝隙的最大尺寸更小,因此提高零件的刚性可以提高缝隙的屏蔽效能。
增加零件刚性的常用措施有:采用型材、增加板材厚度,增加折弯次数等等。
缝隙的深度增加结合面缝隙的深度可以大大提高缝隙的屏蔽效能,其作用要明显大于减139 小紧固点的间距。
对于钣金件一般推荐缝隙的深度是板厚的10-15 倍。
因为实际设计中往往会受到其他因素的限制,该指标仅为参考数值,设计人员在设计过程中应尽量增加结合面缝隙的深度。
另外,对于同样的紧固点数量,双排紧固点(相互错位)会比单排的屏蔽效能要好得多,因此在设计中,可以考虑采取双排紧固的方式。
结合面表面精度结合面的表面精度(粗糙度、平面度等)对缝隙的屏蔽效能也有影响。
但是由于涉及到工艺水平以及加工设备的精度等难以改变的因素,实际设计中一般不对零件的表面精度提出特殊要求。